喀斯特灌丛群落豆科植物共生固氮资源调查及根瘤菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国喀斯特地区石漠化严重,生态系统严重退化,是我国急需治理的生态脆弱区之一。该地区氮素在耕作和退化土壤中流失严重,使其成为植被恢复过程的重要限制性因素之一。豆科植物能明显改善土壤结构和营养状况,并能改善土壤微环境,为其他植物的迁移、定居、生长创造条件,从而促进退化生态系统植被演替与恢复。但到目前为止,对喀斯特地区豆科植物及其共生根瘤菌资源调查还很少,根瘤菌的区域特异性及其生态效应还不清楚。另外,退化生态系统恢复与石漠化治理过程中,灌丛演替阶段的生态意义重大。石漠化灌丛是轻、中、重度等各石漠化程度生境上分布面积最大的一类植被,是退化生态系统恢复过程中极其重要的转折阶段。从灌丛阶段开始,生态系统水土流失等退化过程基本停止,土壤肥力、物种多样性显著提高,恢复过程逐步加强。对喀斯特地区灌丛群落开展豆科植物及其共生根瘤菌资源调查与根瘤菌多样性研究,有利于加深对该地区豆科植物及其根瘤菌共生资源多样性与特异性的认识,并为筛选出能适应喀斯特退化生境的先锋豆科植物-高效固氮根瘤菌组合提供技术指导,为豆科植物在喀斯特地区生态恢复与重建中的应用提供理论依据与实践支持。本文对喀斯特地区的25块灌木样地进行植被调查和豆科植物结瘤调查,并对分离的根瘤菌构建了16S rDNA与nifH系统发育树,主要结论如下:
     1.样地共有植物81科,172属,218种。其中最大的科为豆科,有13属,16种。豆科植物占总属的7.56%,占总种数的7.34%。灌丛群落灌木层优势种为檵木、黄荆和豹皮樟;草本层优势种为翠云草、肾蕨和苔草。相比群落优势种,豆科植物在灌丛群落的重要值均很小。其中,西南杭子梢、香合欢、藤黄檀的重要值稍大。
     2.16种豆科植物中,共发现7种植物结瘤。其中,蝶形花亚科6种,含羞草亚科1种,云实亚科未发现结瘤。根瘤大多数着生在侧根上,少数着生在主根上;形态多为球状、棒状,少数为珊瑚状;表面皮层厚,颜色多为土黄色或褐色。
     3.总共分离出7种菌株,菌株在YMA平板上的菌落形态为透明或半透明,白色或乳白色,凸起,边缘光滑,有荚膜产生。对分离的根瘤菌进行16S rDNA与nifH序列测序,参照根瘤菌相关的标准菌株,构建供试菌株与标准菌株的系统发育树。对16SrDNA与nifH系统进化树分析发现,分离自不同植物的7种根瘤菌均属于慢生根瘤菌属(Bradyrhizobium),但根据16S rRNA基因与nifH构建的系统进化树之间存在差异。在根据16S rDNA序列构建的系统发育树中,7种菌株分别与B.canariense和B.pachyrhizi聚在一起;在根据nifH构建序列构建的系统发育树中,7种菌株分别与B.canariense、B.pachyrhizi与B.jicamae聚在一起。
The rocky desertification of Karst region is serious and the ecosystem becomes serious degradation. The Karst region is one of the ecologically fragile areas in China, which is urgent to-treatment. In the region, nitrogen drain is serious in farming and degraded soils, which makes nitrogen becoming one of the important limiting factor to recover the vegetation. Legumes can significantly improve the structure of the soil, nutritional status, and the microenvironment of the soil, which can create the conditions for other plants migration, settlement and growth. Thus it can promote the succession and restoration of degraded ecosystem. But so far, the survey of the Karst areas about leguminous plants and their symbiotic rhizobial resources is little, the regional specificity of rhizobium and its ecological effect is unclear. In addition, during the restoration of degraded ecosystems and in the processing of controlling the rocky desertification, the shrub community stage is important. The area of shrub communities is largest on the light, moderate and severe degree of rocky desertification region. The erosion of soil and other degradation processes in ecosystems stop, and the fertility of soil and the diversity of species increase significantly, and the recovery ability of shrub community gradually strengthen on the stage of shrub communities. The research about the legumes and their symbiotic rhizobial resource in Karst areas can helps us to deepen the understanding of the diversity of the regional legumes and the specificity of and rhizobia symbiosis resource. It can provide the technical guidance for selecting the pioneer legumes-efficient nitrogen-fixing rhizobium combinations which can adapt to Karst degraded ecosystem, and provide a theoretical basis for the application of leguminous plants to Karst ecological recovery and reconstruction.
     In this research, we investigated the vegetation of25shrub communties and collected the nodules of legume plants in Karst shrub communities, then constructed the phylogenetic trees based on16S rDNA and nifH sequences of the rhizobia. The main results of my research were shown as following:
     There are81families,172genera,218species of plants in plots. The largest family is Leguminosae. In shrub layer, the dominant species of shrub communities are Loropetalum chinense, Vitex negundo, Litsea coreana var. sinensis. In herbaceous layer, the dominant species of shrub communities are Selaginella uncinata, Nephrolepis cordifolia, Carex tristachya. Compared to the dominant species, the important values of legume plants are very small. Of sixteen legume plants,
     Six species of Fabaceae and one species of Mimosaceae can nodulate in total sixteen legume species. The forms of the most nodules are spherical or rod-like. The color of the most nodules is khaki or brown. The most nodules grow on the lateral roots. Seven strains are isolated. The colony morphology of the strains in YMA are transparent or translucent, white or milk white, convex, edge smooth. The strains are Gram negative strains.The phylogenetic trees based on16S rDNA and nifH sequences are constructed by neighbour-joining method. All of the seven strains belong to Bradyrhizobium, but there are some differences between the phylogenetic trees based on16S rDNA and nifH sequences.
引文
[1]欧阳自远.中国西南喀斯特生态脆弱区的综合治理与开发脱贫[J].世界科技研究与发展,1998,20(2):53-56.
    [2]Liu F, Wang S, Liu Y et al. Changes of soil quality in the process of karst rocky desertification and evaluation of impact on ecological environment[J]. Acta Ecologica Sinica,2005,25:639-644.
    [3]刘方,王世杰,刘元生,等.喀斯特石漠化过程土壤质量变化及生态环境影响评价[J].生态学报,2005,25:639-644.
    [4]Brockwell J, Bottomley P J, Thies J E. Manipulation of rhizobia microflora for improving legume productivity and soil fertility:a critical assessment J]. Plant and Soil, 1995,174:143-180.
    [5]Beijerinck M W. Cultur des Bacillus radicicola aus den Knollchen[J]. Bot Ztg,1888, 46:740-750.
    [6]Mabberley D J. The Plant Book,2nd ed[M]. Cambridge:Cambridge University Press, 1997.
    [7]Allen O N, Allen E K. The Leguminosae:A Source Book of Characteristics, Uses, and Nodulation[M], Madison:University of Wisconsin Press,1981.
    [8]Janet I S. Nodulation in Legumes[M]. Kew:The Cromwell Press Ltd,2001.
    [9]黄维南,黄志宏.我国豆科树种结瘤调查[J].亚热带植物农业.2001,30(1):36-45.
    [10]Amor B B, Shaw S L, Oldroyd G E, et al. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation[J]. The Plant Journal:For Cell and Molecular Biology, 2003,34,495-506.
    [11]Timmers A C, Soupene E, Auriac M C, et al. Saprophytic intracellular rhizobia in alfalfa nodules[J]. Mol Plant Microbe Interact.2000,13(11):1204-13.
    [12]Brewin N J. Tissue and cell invasion by Rhizobium, the structure and development of infection threads and symbiosomes. In:Spaink H P, Kondorosi A, Hooykaas P J J eds. The Rhizobiaceae:Molecular Biology of Model Plant-Associated Bacteria[M]. Kluwer Academic Publishers, Dordretch, The Netherlands,1998,417-429.
    [13]丑敏霞,魏新元.豆科植物共生结瘤的分子基础和调控研究进展[J].植物生态学报,2010,34(7):876-888.
    [14]Timmers A C J, Auriac M C, Truchet G. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements[J]. Development,1999,126,3617-3628.
    [15]van Spronsen P C, Gronlund M, Pacios Bras C, et al. Cell biological changes of outer cortical root cells in early determinate nodulation[J]. Molecular Plant-Microbe Interactions,2001,14:839-847.
    [16]Jones K M, Kobayashi H, Davies B W, et al. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model[J]. Nat Rev Microbiol.2007,5(8):619-33.
    [17]Fred E B, Baldwin I L, McCoy E. Root nodule bacteria and leguminous plant[M]. Madison:University of Winconsin Press,1932.
    [18]Graham P H. The Application of Computer Techniques to the Taxonomy of the Root-nodule Bacteria of Legumes[J]. J Evol Microbiol,1964,35:511-517.
    [19]Jordan D C, Allenn O N. Family III. Rhizobiaceae. In:Buchanan R E, Gibbons N E. Bergey's manual of determinative bacteriology,8th ed. Baltimore[M]:The Williams & Wilkins Co,1974.261-264.
    [20]Jordan D C. Family III Rhizobiaceae Conn 1938. In:Krieg N R, Holt J C. Bergey's of Systematic Bacteriology, Vol 1. Baltimore, M D[M]:The Williams & Wilkins Co,1984. 234-236.
    [21]Moulin L, Munive A, Dreyfus B. Nodulation of legumes by members of the β-subclass of Proteobacteria[J]. Nature,2001,411(6840):948-950.
    [22]Valverde A, Igual J M, Peix A, et al. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris[J]. Int J Syst Evol Microbiol,2006,56:2631-2637.
    [23]Young J M, Kuykendall L D, Martinez-Romero E, et al. Classification and nomenclature of Agrobacterium and Rhizobium-a reply to Farrand [J]. Int J Syst Evol Microbiol,2003(53):1689-1695.
    [24]Farrand S K, Van Berkum P B, Oger P. Agrobacterium is a definable genus of the family Rhizobiaceae[J]. Int J Syst Evol Microbiol,2003,53(5):1689-1695.
    [25]张晓霞,马晓彤,姜瑞波.根瘤菌分类研究进展及存在的争议[J].微生物学通报.2010,37(4):601-606.
    [26]Marin V A, Teixeira KRS, Baldanim J I, et al. Characterization of amplified polymerase chain reaction glnB and nifH gene fragments of nitrogen-fixing Burkholderia species[J]. Letters in Applied Microbiology,2003,36:77-82.
    [27]Perret X, Steaheli N C, Brough Ton W J. Molecular basis of symbiotic promiscuity[J]. Microbiology and Molecular Biology Reviews,2000,64:180-201.
    [28]陈文新,汪恩涛,陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系[J].中国农业科学,2004,37(1):81-86.
    [29]Magori S, Kawaguchi M. Long-distance control of nodulation:molecules and models[J]. Molecules and Cells,2009,27:129-134.
    [30]Okamoto S, Ohnishi E, Sato S, et al. Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation[J]. Plant & Cell Physiology,2009, 50:67-77.
    [31]Glenn A R, Dilworth M J. The life of root nodule bacteria in the acidic underground[J]. FEMS Microbiology Letters,1994,123:6-9.
    [32]Gemell L G, Roughley R J. Fieldevaluation in acidsoils of strains of Rhizobium leguminosarum bv. trifolii selected for their tolerance or sensitivity to acidsoil factors in agar medium[J]. Soil Biology and Biochemistry,1993,25(10)447-1452.
    [33]Serraj R. Response of sumbiotic nitrogen fixation to drought and salinity stresses[J]. Physiol Mol Biol Plants,2002,8(1):77-86.
    [34]何庆元,胡艳,玉永雄.生态环境对根瘤菌竞争结瘤影响的研究进展[J].大豆科学,2004,23(1):66-70.
    [35]Oka-Kira E, Tateno K, Miura K, et al. Clavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. The Plant Journal:For Cell and Molecular Biology[J],2005,44:505-515.
    [36]Barbulova A, Rogato A, D'Apuzzo E, et al. Differential effects of combined N sources on early steps of the Nod factor-dependent transduction pathway in Lotus japonicus[J]. Molecular Plant-Microbe Interactions,2007,20:994-1003.
    [37]Fei H, Vessey J K. Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium:quantitative reverse transcription PCR analysis of selected genes[J]. Plant Physiology,2009,135:317-330.
    [38]Thomas R J. The role of the legume in the nitrogen cycle of productive and sustainable pastures[J]. Grass and Forage Science,1992,47:133-142.
    [39]Cheng Q. Perspectives in biological nitrogen fixation research[J] Journal of Integrative Plant Biology,2009,50(7):786-798.
    [40]赵玉洁,张宇清.固氮类植物的生态功能及其在生态修复中的应用[J].干旱区资源与环境,2012,26(1):179-183.
    [41]宋成军,马克明,傅伯杰,等.固氮类植物在陆地生态系统中的作用研究进展.生态学报,29:869-877.
    [42]Mitchell J S, Ruess R W. N2 fixing alder (Alnus viridis spp. fruticosa) effects on soil properties across a secondary successional chronosequence in interior Alaska[J]. Biogeochemistry,2009,95:215-229.
    [43]Rhodades C C, Eckert G E, Coleman D C. Effect of pasture trees on soil nitrogen and organic matter:Implication for tropical monatne forest restoration. Restoration Ecology[J],1998,6:262-270.
    [44]Rodriguez A, Duran J, Gallardo A. Influence of legumes on N cycling in a heathland in northwest Spain[J]. Web Ecology,2007,7:87-93.
    [45]Zou X, Binkley D, Caldwell B A. Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests[J]. Soil Science Society of America Journal,1995,59:1452-1458.
    [46]Pastor J, Binkley D. Nitrogen fixation and the mass balances of carbon and nitrogen in eco-systems[J]. Biogeochemistry,1998,43:63-78.
    [47]Rhoades C C, Eckert G E, Coleman D C. Effect of pasture trees on soil nitrogen and organic matter:Implications for tropical Montane forest restoration [J]. Restoration Ecology,1998,6(3):262-270.
    [48]Clarkson B R, Walker L R, Clarkson B D, et al. Effect of Coriaria arborea on seed banks during primary succession on Mt Tarawera, New Zealand[J]. New Zealand Journal of Botany,2002,40:629-638.
    [49]Walker L R, Clarkson B D, Silvester, W B, et al. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession[J]. Journal of Vegetation Science,2003,14,277-290.
    [50]Bellingham P J, WALKER L R, Wardle D A. Differential facilitation by a nitrogen-fixing shrub during primary succession influences relative performance of canopy tree species[J]. Journal of Ecology,2001,89,861-875.
    [51]Herrera M A, Salamanca C P, Barea J M. Inoculation of Woody Legumes with Selected Arbuscular Mycorrhizal Fungi and Rhizobia To Recover Desertified Mediterranean Ecosystems [J]. Appl Environ Microbiol,1993,59,129-133.
    [52]Sprent J I, Parsons R. Nitrogen fication in legum and no-legum tree[J]. Field Crops Research,2000,65,183-196.
    [53]Joshia B, Tyagi, V. Potential of Coriaria nepalensis for Establishment of Tree Seedlings: Implication for Restoration of Degraded Hill Slopes of Central Himalaya[J]. Russian Journal of Ecology,2009,40,477-481.
    [54]胡婵娟,傅伯杰,靳甜甜,等.黄土丘陵沟壑区植被恢复对土壤微生物生物量碳和氮的影响[J].应用生态学报,2009,20(1):45-50.
    [55]曹世雄,陈莉,高旺盛.黄土丘陵区三种典型土壤地造林技术[J].生态学杂志,2005,24(12):1543-1548
    [56]Thrall P H, Millsom D A, Jeavons A C, et al. Seed inoculation with effective root-nodule bacteria enhances revegetation success [J]. Journal of Applied Ecology, 2005,42,740-751.
    [57]李清河,江泽平,张景波,等.灌木的生态特性与生态效能的研究与进展[J].干旱区资源与环境,2006,20(2):159-164.
    [58]陈广生,曾德慧,陈伏生,等.干旱半干旱地区灌木下土壤“肥岛”研究进展[J]应用生态学报,2003,14(12):2295-2300.
    [59]E. Durant McArthur, Daniel J. Fairbanks, Compilers. Shrubland ecosystem genetics and biodiversity:Proceedings[M]. Provo, Ogden, UT,2000, Rocky Mountain Research Station, Forest Service, USDA.
    [60]陈云明,刘国彬,侯喜录.黄土丘陵半干旱区人工沙棘林水土保持和土壤水分生态效益分析[J].应用生态学报,2002,13(11):1389-1393.
    [61]王卫卫,胡正海.几种生态因素对西北干旱地区豆科植物结瘤固氮的影响[J].西北植物学报,2003,23(7):1163-1168.
    [62]Vincetnt J M. A Manual for the Practical Study of Root Nodule Bacteria[M].Oxford: Blackwell scientific,1970.
    [63]Gonzalez V, Santamaria R I, Bustos P I et al. The partitioned Rhizobium etli genome:genetic and metabolic redundancy in seven interacting replicons[J]. Proc NatlAcad. Sci USA,2006,103:3834-3839.
    [64]Dobrindt U B, Hochhut U, Hentschel J, et al[J]. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol,2004,2:414-424.
    [65]Finan T M. Evolving insights:symbiosis islands and horizontal genetransfer[J]. J Bacteriol,2002,184:2855-2856.
    [66]Minamisawa K, Itakura M, Suzuki M et al. Horizontal transfer of nodulation genes in soils andmicrocosms from Bradyrhizobium japonicum to B. elkanii[J].Microbes Environ,2002,2:82-90.
    [67]Fernando G B, Pamela M, Jesiane S, et al. Evidence of Horizontal Transfer of Symbiotic Genes from a Bradyrhizobium japonicum Inoculant Strain to Indigenous Diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah Soil[J]. Appl Environ Microbiol,2007,73(8):2635-2640.
    [68]Dobrindt U B, Hochhut U, Hentschel J, et al. Genomic islands in pathogenic and environmental microorganisms [J]. Nat. Rev. Microbiol,2004,2:414-424.
    [69]Gao J L, Sun J G, Li Y et al. Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China[J]. International Journal of Systematic Bacteriology,1994,44:151-158.
    [70]李颖,白雨,陈文新.沙坡头地区根瘤菌DNA同源性及16S rDNA全序列[J].微生物学报,1999,39:95-99.
    [71]Chen W X, Wang E T, Wang S Y et al. Characteristics of Rhizobium tianshanense sp. nov. moderately and slowly growing nodule bacterium isolated from an acid saline environment in Xinjiang, People's Republic of China. International Journal of Systematic Bacteriology,1995,45:153-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700