电子封装用Si-Al系列合金组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用熔炼铸造和粉末热压的方法制备了Si质量分数为13%、27%、33%、50%、60%、70%、90%的一系列Si-Al合金,利用扫描电镜(SEM)、光学金相显微镜(OM)、差热分析(DSC)等分析手段和和多种检测方法,分析了Si-Al系列合金的力学性能、热物理性能,评价了Si-Al系列合金的应用性能,研究了Si-Al系列合金的显微形貌和成形机理,研究结果表明:
     1.Si-Al系列合金的三点抗弯强度,随着Si相含量的增加,呈现先增加后减小的趋势。Al相为连续相时,随着Si含量增加,合金的抗弯强度增加;Si相为连续相时,形成的骨架使合金的脆性增大,导致合金抗弯强度减小。
     2.Si-Al系列合金的热导率,随着Si相含量的增加,呈现逐渐减小的趋势。随着Si相含量的增加,电导率逐渐减小。
     3.Si-Al系列合金的热膨胀率,随着Si相含量的增加而减小,随着温度的升高而增大。在温度较低时,热膨胀率的增大速率较大,随着温度的升高,增加的速率逐渐减慢,温度到达300℃以上时,热膨胀率的增大速率已经很小。
     4.Si-Al合金金属化镀镍后,镀镍层与样品基体之间结合紧密,镀镍层厚度约为5μm。
     5.熔炼铸造法制备的13%、27%、33%Si-Al合金,熔体过热处理改善了Si-Al合金的凝固组织。当过热温度为850℃时,13%Si-Al合金的组织中同时存在初晶Si颗粒,共晶和α(Al)枝晶,当过热温度达到1000℃时,初晶Si相得到显著细化,共晶基体的针状硅细小,α(Al)枝晶完全消失。27%、33%Si-Al合金经过熔体过热处理,初生硅相数量和尺寸及共晶硅形貌发生了变化,初晶硅呈现五瓣星形状。
     6.粉末冶金法制备的50%、60%、70%、90%Si-Al合金的组织,都由硅相和富铝相组成。50%和60%Si-Al合金的铝相为连通相,硅相弥散分布其中。前者的硅相与原始硅粉末的形态、大小基本吻合,后者的硅相呈现扁平颗粒状,并有明显的方向性。70%和90%Si-Al合金的硅相已经练成骨架,铝相弥散分布其中,90%Si-Al合金的组织中有少量的闭合气孔存在。
In this work, the Si-Al alloys with the mass fraction of 13%,27%,33%, 50%,60%,70%,90% Si content were prepared by casting and powder metallic methods. The experiments had been done by using scanning electron microscopy (SEM), optical metallographic microscope (OM) and differential thermal analysis (DSC). The mechanical performance, thermophysical performance and apply performance of Si-Al alloys were studied. and the relationship between morphology and deformation mechanism of Si-Al series alloys were analyzed. The results showed that:
     1. Si-Al series alloy three-point bending strength, with the Si phase content increases, showing the trend of increased and then decreased. Al phase, when the continuous phase, With the high-strength Si-phase increase, the bending strength of alloy increases; Si phase as continuous phase, the formation of the skeleton increases the brittleness of the alloy, resulting in reduced bending strength.
     2. Si-Al series alloy thermal conductivity, with the Si content increases, showing a gradual decrease trend. With the Si phase content increases, the conductivity decreases.
     3. The coefficient of thermal expansion(CTE) of Si-Al series alloy, With the Si phase content increases, showing the trend decreases, and increases with increasing temperature. At lower temperatures, the increase of thermal expansion is faste, as the temperature rises, the rate of increase gradually slow down, the temperature reaches above 300℃, the increase of thermal expansion is very small.
     4. Si-Al alloy after plating, binding between the coating and the matrix are close, coating thickness of about 5μm.
     5. Melt overheating can improve the Si-Al alloy solidification structure. When the temperature is 800℃13% Si-Al alloy, co-exsit primary Si particles, eutectic andα(Al) dendrite. when dealing with temperature reaches 1000℃,the primary Si phase has been significantly refined, eutectic silicon is small needle-like,α(Al) dendrites disappeared completely.27%,33% Si-Al alloy after hot melt processing, the number and size of primary Si phase and morphology of eutectic silicon changes, the shape of silicon presents five stars.
     6. The microstructures of 50%,60%,70% and 90% Si-Al alloy by powder metallic methods are composed by Si phase and Al-rich phase. Al phase is connect phase in 50%,60% Si-Al alloy. The shapes and sizes of Si phases in 50% Si-Al alloy are basically consistent with the original silicon powder, and in 60% Si-Al alloy show flat granular and power like. The Si phases in 70%,90% Si-Al alloy have been connected into a skeleton, and the microstructures of 90% Si-Al alloy have a small amount of closed pores
引文
[1]Carl Zweben, Advances in composite materials for thermal management in electronic packaging[J]. JOM,1998,50(6):47-51
    [2]A.L. Geiger, Michael Jackson. Low-expansion MMCs boost avionics[J]. Advanced Materials& Process,1989,136(7):23-28
    [3]M.K. Premkumar, W.H. Hunt, R.R. Sawtell. Aluminum composite materials for multichip modules[J], JOM,1992,(7):24-28
    [4]武全有,电子技术领域的金属基复合材料[J].电子工艺技术,1992,13(4):21-25
    [5]GMitic, H.P. Degischer, G.Lefranc, etc.Al/SiC composite material in IGBT power modules[J]. Industry Applications Conference 2000,5:3021-3027
    [6]Shy-Wen Lai, D.D. Chung. Super high-temperature resistance of aluninum nitride particle reinfored aluminum compared to silicon carbide or alunmina particle reinforced aluminum[J]. Journal of Material Science,1994,24:6181-6198
    [7]张迎久,王志法,吕维洁,等.金属基低膨胀高导热复合材料[J].材料导报,1997,11(3):52-56
    [8]Carl Zweben. Metal-Matrix Conposites for Electronic Packaging[J]. JOM,1992, 44(7):15-23
    [9]Dave Saums. Developments and applications for engineered themal materials[J]. Advancing Microelectronics,2004,31(6):6-7
    [10]Carl Zweben. Advanced conposites and other advanced materials for electronic packaging thermal management[J]. Proceedings of 2001 international symposium on advanced packaging materals. Braselton, Georgis,2001, (3):360-365
    [11]黄强,顾明元,金燕萍.电子封装材料的研究现状[J].材料导报,2000,14(9):28-32
    [12]喻学斌,吴人洁,张国定.金属基电子封装复合材料的研究现状及发展[J].材料导报,1994,8(3):64-66
    [13]武高辉,张强,姜龙涛.SiC/Al复合材料在电子封装应用中的基础研究[J].材料导报,2003,22(6):27-29
    [14]刘正春,王志华,姜国圣,等.金属基电子封装材料进展[J].兵器材料科学与工程,2001,24:49-52
    [15]阳范文,赵耀明.21世纪我国电子封装行业的发展机遇与挑战[J].半导体情报,2001,38(4):15-18
    [16]田民波,林金堵,祝大同.高密度封装基板[M].2003
    [17]D.K. White, I.S.Smith, A.Silzars.New Ground in Hybrid Packaging[J].Hybrid Cercuit Technology,1990,12(1):14-19
    [18]Amagai Masazumi. Microelectronics and Releability[J],1999,39(9):1365
    [19]范景莲,彭石高,刘涛,成会朝.钨铜复合材料的应用与研究现状[J].稀有金属与硬质合金2006,34(3):31
    [20]李志民.高密度电子封装的最新进展及发展趋势[J].世界电子元器件。2004,6:28-32
    [21]郑小红,胡明,周国柱.新型电子封装材料的研究现状及展望[J].佳木斯大学学报(自然科学版),2005,23(3):460-464
    [22]ZHANG Fan, SUN Pengfei.A comparative study on microplastic deformation behavior in a SiCp/2024 Al Conposite and its unreinforced matrix alloy[J]. Materials Letters, 2001,49:69-74
    [23]王长春.电子封装用SiCp-Cu复合材料的微观组织与性能研究[J].2007,4
    [24]WEI Cheng, JIANG Xiaolin. Study on the Themal Failure of metal Substrates in Electronic Packaging[J]. Journal of experimental mechanics,200318(1):17-22
    [25]周贤良,吴江晖,张建云,等.电子封装用金属基复合材料的研究现状[J].南昌航空工业学报,2001,15(1):11-15
    [26]L.J Ronald.High Thermal Conductivity Metal Matrix Composites.Proceedings of 1999 SAE Aerospace Power System Conferende,Mesa, AZ,1999:15-18
    [27]C.R.Sharp,A.L.Timothy. Applications of High Thermal Conductivity Conposites to Electronics and Spacecraft Thermal Design[J]. NASA Tech. Memo, NASA TM-102434, 1990:1-6
    [28]A. Dasgupta. Conposite Materials in Electronic Packaging[J]. Proceedings of 6th International Sanple Electronic Materials and Precesser Conference, Baltimore, MD, USA,1992:782-794
    [29]M.Ocdhionero, R. Adams, K.. Fennessy. A New Substrate for Electronic Packaging: Aluninum-Silicon Carbide(AlSiC) Composites[J]. Proceedings of the Fourth Annual Portable by Design,1997:398-403
    [30]D.Miracle. Metallic Conposites in space:A Status Report[J]. JOM,2001,(4):12-13
    [31]孙宝德,李克,王俊,周尧和.镧、钇稀土在过共晶铝硅合金中的作用[J].上海交通大学学报,1999,33(7):795-798.
    [32]张忠华,张宝荣.新型高效PM磷变质剂[J].特种铸造及有色合金,2000,2:13-15.
    [33]张卫文,尹志民,赵阳,陈红生.过共晶高硅铸造铝合金磷-稀土双重变质处理[J].中国有色金属学报,1995.5(1):59-62.
    [34]杨朝聪.过共晶铝硅合金的细化变质[J].云南冶金,1997,26(1):40-42.
    [35]李小平,陈振华,曹标,傅定发.高硅铝合金悬浮铸造的组织细化[J].特种铸造及 有色冶金,1999,6:20-22.
    [36]赵浩峰,韩世平.特种铸造技术在金属基复合材料制造中的应用及发展[J].材料工程,1999,2:30-34.
    [37]陈存中.有色金属熔炼与铸锭[M].北京:冶金工业出版社,1988:147-150.
    [38]彭超群.喷射成形技术[M].长沙:中南大学出版社,2004:101
    [39]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004:49-50.
    [40]陈志钢,陈振华,陈鼎.喷射沉积及其制品的后续致密化研究[J].材料导报,2008,22(5):92-95.
    [41]张永安,熊柏青,韦强,石力开,马鸣图.喷射成形制备高性能铝合金材料[J].机械工程材料,2001,25(4):22-25.
    [42]Jacobson D M, Ogilvy A J W, Leatham A G. Applications of lightweight CE alloys, Joint Capital Chapter IMAPS-SMTA,2007, (7):4.
    [43]古秀莲.共晶铝硅合金的变质处理[J].铝加工,1998,21(5):1-2.
    [44]Chen Yuyong, Chung D D L. Silicon-aluminum network composites fabricated by liquid metal infiltration [J]. Journal of Materials Science,1994,29:6069-6074.
    [45]关振锋,张中大,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992:125-132.
    [46]耿林,温丙先,姚忠凯.压铸SiC/Al复合材料的热物理性能研究[J].复合材料学报.1998,13(3):48-51.
    [47]Hwang K S, Yang S C, Wang W S. Mo-Cu Heat sinks made by cosintering and infiltration techniques [J]. Advances in Powder Metallurgy and Particulate Materials, 1995,1:251-257
    [48]Chen C W. Effects of Si size and volume faction on properties of Al/Sip composities[J]. Materials letters,2002,52:334-341.
    [49]张济山.新型喷射成形轻质、高导热、低膨胀Si-Al电子封装材料[J].材料导报,2002,16(9):1-4.
    [50]冯曦,郑子樵,李世晨,杨培勇.热压法制备Si-Al电子封装材料及其性能[J].稀有金属,2005,29(1):11-15.
    [51]杨培勇,郑子樵,蔡杨,李世晨,冯曦.Si-Al电子封装材料粉末冶金制备工艺研究[J].稀有金属,2004,28(1):160-165.
    [52]王小锋.三维网络结构Si/Al复合材料的制备工艺与性能研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [53]Swartz E T, Pohl R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989,61(3):605-667.
    [54]Every A G, Tzou Y, Hasselman D P H, Raj R. The effect of particle size on the thermal conductivity of ZnS/Diamond composites[J]. Acta Metall Mater1992,40(1):123-129.
    [55]Hasselman D P H, Kimberly Y D, Alan L G. Effect of reinforcement particle size on the thermal conductivity of particulate silicon carbide-reinforced Al matrix composite[J]. Journal of American Ceramic,1992,75(11):3137-3140.
    [56]修子扬.Sip/Al复合材料的显微组织与导热导电性能研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2005.
    [57]高陇桥.21世纪陶瓷-金属封接技术展望[J].真空电子技术,2001(6):11-16.
    [58]Jacobson D M, Ogilvy A J W, Leatham A G. Applications of osprey lightweight controlled expansion (CE) alloys[M]. UK:Sandvik Osprey Ltd,2004:1-12.
    [59]D. M. Jacobson, A.J.W. Ogilvy. Spray-Deposited Al-Si (Osprey CE) Alloys and their properties[J]. Mat.-wiss. u. Werkstofftech.2003,34:381-384.
    [60]S.C.Hogg, A.Lambourne, A.Ogilvy and P.S.Grant. Microstructural characterisation of spray formed Si-30Al for thermal management app lications [J]. Scripta Materialia, 2006,55:111-114.
    [61]李宁主编.化学镀实用技术[M].化学工业出版社,2004
    [62]范天佑.断裂理论基础[M].北京:科学出版社,2003
    [63]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学,1998
    [64]于家康,梁建芳,王涛.高导热金属基复合材料的热物理性能[J].功能材料,2004,35:1668-1671.
    [65]王敬欣,张永安.应用于电子封装材料的新型硅铝合金的研究与开发[J].材料导报.2001,15(6):18-21
    [66]Nan Ce-wen, Li Xiao-ping, Birringer R. Inverse problem for composites with imperfect interface. Determination of interfacial thermal resistance, thermal conductivity of constituents, and microstructural parameters[J]. Am CeramSoc,2000,83:848-54.
    [67]Molina JM, Narciso J, Weber L, Mortensen A, Louis E. Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution J]. Mater Sci Eng A, 2008; 58:393-6.
    [68]Ke Chu, Chengchang Jia, Xuebing Liang et al. The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions:Experimental study and modeling[J]. Materials and Design,2009:1-7.
    [69]杨新圆,孙建平,张金涛.材料线热膨胀系数测量的近代发展与方法比对介绍[J].测量与设备.2008:33-36
    [70]L.Z.Zhao, M.J.Zhao, X.M.Cao,er al. Thermal expansion of a novel hybrid SiC foam-SiC particles-Al composites[J]. Composites Science and Technology.2007:1-5
    [71]T. Huber,H.P.Degischer,G.Lefranc,et al. Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles[J]. Composites Science and Technology,2006,66:2206-2217.
    [72]张启运,庄鸿寿等.钎焊手册[M].机械工业出版社,1999
    [73]叶人龙等.镀覆前表面处理[M].化学工业出版社,2006
    [74]章葆澄.电镀工艺学[M].北京航空航天大学出版社,1993
    [75]边秀房,刘相法,马家骥.铸造金属遗传学[M].山东科学技术出版社,1999
    [76J何树先,王俊,孙宝德等.熔体温度处理细化亚共晶Al-5i合金组织[[1J.上海交通大学学报,200236(1):51-54
    [77J Nikitin, E.C, Kandalova, K.V Nikitin. Effect of Melt Overheating, Cooling and Solidification Rates on Al-16wt.%Si Alloy Structure [J]. Materials Science and Engineering,2002, (A332):371-374
    [78]Kurz K, Fisher D J著,毛协民,包冠乾,介万奇,刘林,刘家钧译.凝固原理[M].西北工业大学出版社,1989
    [79]胡汉起.金属凝固[M].冶金工业出版社.1985:294
    [80]王寿彭编.铸件形成理论及工艺基础[M].西北工业大学出版社,1994
    [81]李顺朴,陈熙深.Al-Si合金的共晶共生区及组织形成规律[M].金属学报,1995,31(2):A47-A55
    [82]Izmailov V A, Vertman A A, State of silicon in aluminum[J]. Metail,1971, (6):217
    [83]Singh M. Structure of liquid aluminum silicon alloys[J]. Mat Sci,1973, (8):317
    [84]Kobayashi K, Hogan L M. Fivefold twinned silicon crystal in an Al-16% Si melt[J]. Phil. 1979,40:399-407
    [85]Kobayashi K, Hogan L M. The crystal growth of silicon in Al-Si alloys[J]. Mat. Sci,1985,20:1961—1975
    [86]桂满昌.五瓣星状初晶硅形核机制[J].金属学报.1996,32(11):1177-1183
    [87]Gui C, Boer M de, Gardeniers J G E, et al. Fabrication of multi-layer substrates for high aspect ratio single crystalline microstructures[J]. Sensors and Actuators A,1998, 70:61~66
    [88]韩伟华,余金中,王启明.直接键合硅片界面键合能的理论分析[J].半导体学报,2001,22(2):40-44
    [89]Kissinger G, Kissinger W.Hydrophylicity of silicon wafers for direct bonding[J]. Phys. 1991,123:185-192
    [90]Backlund Y, Hermansson K, Smith L.Bond-strength measurements related to silicon surface hydrophilicity[J]. Electrochem.soc.1992,139(8):2299-2301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700