骨髓间充质干细胞调控肝星状细胞RhoA、p27的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究体外大鼠骨髓间充质干细胞(MSCs)对肝星状细胞(HSCs)RhoA信号因子及其细胞周期调控因子p27表达的影响,探讨MSCs调控HSCs细胞周期G1/S转换机制。
     方法贴壁筛选法培养、纯化SD大鼠MSCs,传代至第4代使用;大鼠肝星状细胞(HSC-T6)系及纤维原细胞系冻融后传代使用。应用6孔塑料细胞培养盒,每孔使用半透膜(transwell insert)建立上下双层细胞共培养体系,常规培养。实验分3组:空白对照组;阴性对照组;MSCs实验组.用WST-8法对肝星状细胞增殖率进行测定;流式细胞仪检测细胞周期;RT-PCR、Western blot检测MSCs与HSCs共培养后HSCs内RhoA,p27 mRNA和蛋白的表达。
     结果(1) HSCs与MSCs共培养24h后,HSCs表现明显增殖抑制(P<0.01),且呈现时间依赖性.MSCs试验组与空白对照组、阴性对照组比较均有显著性差异(P<0.01;P<0.01)。(2)共培养12h后,MSCs可阻滞HSCs由G0/G1期向S期转换,使G0/G1期细胞增多,S期细胞减少,与空白对照组、阴性对照组比较差异均有统计学意义(P<0.01)。(3)共培养12h后,MSCs实验组RhoA mRNA表达与空白对照组、阴性对照组比较均有统计学差异(P<0.05;P<0.01),随时间的延长呈递减趋势;共培养后,MSCs实验组p27 mRNA表达与空白对照组、阴性对照组比较均无统计学差异。(4)共培养12h后,MSCs实验组RhoA蛋白表达与空白对照组、阴性对照组比较均有统计学差异(P<0.01,P<0.01),随时间的延长呈递减趋势;共培养12h后, MSCs实验组p27蛋白与空白对照组、阴性对照组比较均有统计学差异(P<0.01;P<0.01),随时间的延长呈递增趋势。(5)相关性分析显示: RhoA与p27 mRNA的表达无明显相关( r=-0.105);RhoA与p27蛋白的表达呈显著负相关( r=-0.943, P<0.01)。
     结论骨髓间充质干细胞抑制肝星状细胞增殖的机制可能是通过RhoA-p27通路调控HSCs细胞周期改变;RhoA活性的下调可能是引起HSCs内p27蛋白表达增加的原因。
OBJECTIVE To investigate the effects of Bone marrow mesenchymal stem cells (MSCs) on the mRNA and protein expression of RhoA and p27 in hepatic stellate cells (HSCs) by co-cultured, and explore the underlying mechanism of cell cycle regulation of MSCs on the HSCs.
     METHODS MSCs were isolated from bone marrow in rats and grown, propagated in culture flask. HSCs and fiberblast cells were recoveried and activated morphologically. An indirect coculture system between MSCs/fiberblast cells and HSCs were established using Transwell membrane systems(24mm diameter, 0.4μm pore size). Three groups were divided randomly:①HSCs control group②fiberblast control group③MSCs group. The inhibitory rate of HSCs proliferation with MSCs coculture were tested by the method of WST-8 and cell cycle was determined by flow cytometry, the mRNA and protein expressions of RhoA, p27 in HSCs were determined by reverse transcription-polymerase chain reaction(RT- PCR)and Western blot respectinvely.
     RESULTS The inhibitory rate of HSCs proliferation with MSCs coculture were significant higher than that of HSCs control group and Fiberoblast control group at times 24h,48h and 72h(P < 0.01). Flow cytometry showed that MSCs blocked the HSCs from G0/G1 period convert to the S phase as compared with the control group, and the percentage of G0/G1 phase cells becomed large and the S phase cells small (P<0.01). Furthermore, the mRNA expression of RhoA in MSCs group were significantly reduced at time 12h(P<0.01)as compared with the controls, and the same effects existed at the following times; but p27 expression in MSCs group was not changed during the whole cocultrue process. Finally, the protein expression of RhoA in MSCs group were significantly reduced at time 12h(P<0.01),and the same effects were taken place at the following times; whereas p27 expression in MSCs group was increased at time 12h(P<0.05), and significantly increased at time 24h and the following times(P<0.01). There were not relationship between the mRNA expression of RhoA and p27(r=0.105);However, there were negative relationship between the protein expression of RhoA and p27(r=-0.943, P<0.01).
     CONCLUSIONS The mechanism of MSCs inhibit the proliferation of HSCs may modulate the cell cycle process of HSCs through regulating the RhoA-p27 pathway. The underlying reason for the increased expression of p27 protein may be the down-regulated RhoA activity inhibited by MSCs.
引文
1 Polyak K,Lee MH,Erdjument-Bromage H,Koff A,Robert JM,Tempst P,Massague J.Clone of p27kip1,a cyclin dependent kinase inhibitor and potential mediator of extracellular antimitogenic signals. J.Cell.1994,78: 59–66.
    2 Toyoshima H,and Hunter T.p27,a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21.J.Cell.1994,78:67–74.
    3 Slingerland J and Pagano M. Regulation of the CDK inhibitor p27 and its deregulation in cancer.J.Cell Physiol,2000,183:10–17.
    4 Weber JD,Hu W,Raben DM,Jefcoat S,and Baldassare JJ.Ras-stimulated ERK and RhoA activities coordinate PDGF-induced G1 progression through the independent regulation of cyclin D1 and p27Kip1.J Biological Chem. 1997,272: 32966-32971.
    5 Weimin Hu,Clifford J.Bellone,and Joseph J.Baldassare.RhoA Stimulates p27Kip Degradation through Its Regulation of Cyclin E/CDK2 Activity. J Biol. Chem.1999,274:3396–3401.
    6 Tammy M.Seasholtz,Tong Zhang,Michael R.Increased Expression and Activity of RhoA Are Associated With Increased DNA Synthesis and Reduced p27Kip1 Expression in the Vasculature of Hypertensive Rats. Circ. Res. 2001,89:88-495.
    7 Vidal A,Millard SS,Miller JP,and Andrew Koff. Rho Activity Can Alter the Translation of p27 mRNA and Is Important for RasV12-inducedTransformation in a Manner Dependent on p27 Status.J Biological Chem.2002,277: 16433–16440.
    8 Mammoto A, Huang S, Moore K,Oh P,Ingber DE.Role of RhoA, mDia, and ROCK in Cell Shape-dependent Control of the Skp2-p27kip1 Pathway and the G1/S Transition.J Biol.Chem.2004,279:26323–26330.
    9 Besson A,Gurian-West M,Schmidt A,Hall A,Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation.Genes Dev.2004,18: 862-876.
    10梁昌宇,覃山羽,姜海行,王东旭,苏思标,梁梓宇.骨髓间充质干细胞对大鼠急性肝损伤修复的影响.世界华人消化杂志,2009,17(12): 1178-1184.
    11 Shiotani S,Shimada M,Suehiro T,Soejima Y,Yosizumi T,Shimokawa H,Maehara Y.Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats.Transplantation,2004,78: 375-382.
    12穆丽雅,韩明子,祁金锋.门静脉和尾静脉注入小鼠骨髓干细胞向肝脏迁移的比较.世界华人消化杂志,2007,14: 1408-1411.
    13 Parekkadan B,Poll D,Megeed Z,Kobayashi N,Tilles AW,Berthiaume F,Yarmush ML.Immunomodulation of activated hepatic stellate cells by mesenchumal stem cells. Biochem Biophys Res Commun,2007,363: 247–252.
    14 Shi L,Li G,Wang J,Sun B,Yang L,Wang D,Mu L,Chen H,Jin L,Kostulas N,Li H.Bone marrow stromal cells control the growth of hepatic stellatecell in vitro.Dig Dis Sci.2008,53:2969-2974.
    15 Ohgushi H,Caplan A.Sterm cell technology and biocramies;from cell to gene engineering.J Biomed Mater Res, 1999,48:913-927.
    16 Conget PA, Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J Cell Physiol, 1999,18: 67-73.
    17 Zohar R,Sodek J,Culloch CA.Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 1997, 90:3471-3481.
    18 Nuttall ME, Patton AJ, Olivera DJ, et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype:implications for osteopenic disorders. J Bone Miner Res, 1998, 13:371-382.
    19 Fortier LA,Nixon AJ,Williams J, et al.Isolation and chondrocytic differentiation of equine bone marrow derived mesenchymal stem cells.Am J Vet Res, 1998, 59:1182-1187.
    20 Ghilzon R, Mc Culloch CA, Zohar R. Stromal mesenchymal progenitor cells in processcitation. Leuk Lymphoma, 1999, 32:211-221.
    21 Friedenstein AJ, Chailaklyan RK, Gerasimov UV.Bone marrow osteogenic stem cell: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987, 20:263-272.
    22李明辉,田丁,刘聪燕,等.人骨髓间充质干细胞的培养及研究.首都医科大学学报, 2005, 26:183-186.
    23赵东长,陈蕊,项鹏,等.骨髓间质干细胞抑制肝星状细胞增殖与活化的体外研究.中国病理生理杂志, 2005,21:1139-1142.
    24 Friedman SL.Molecular regulation of hepatic fibrosis, an integratedcellular response to tissue injury.J Biol Chem.2000,275:2247-2250.
    25 Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reves M, Verfaillie CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol.2002,30: 896-904.
    26 Herzog EL,Chai L,Krause DS.Plasticity of marrow-derived stem cells. Blood 2003,102:3483-3493.
    27 Oh SH,Witek RP,Bae SH,Zhang D,Jung Y,Piscaglia AC,Petersen BE.Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology,2007,132: 1077–1087.
    28 Oyagi S, Hirose M, Kojima M, Okuyama M, Kawase M, Nakamura T, Ohgushi H, Yaqi K. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats.J.Hepatol,2006,44: 742–748.
    29 Sakaida I,Terai S,Yamamoto N,Aoyama K,Ishikawa T,Nishia H,Okita K.Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology,2004,40: 1304–1311.
    30 ZhaoDC,Lei JX,Chen R,Yu WH,Zhang XM,Li SN,Xiang P.Bone marrowderived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J. Gastroenterol,2005,11: 3431–3440.
    31 Ueno T, Nakamura T, Torimura T, Sata M. Angiogenic cell therapy forhepatic fibrosis. Med. Mol. Morphol.2006,39: 16–21.
    32 Matsuda-Hashii Y,Takai K,Ohta H,Fujisaki H,Tokimasa S,Osugi Y,Ozono K,Matsumoto K,Nakamura T.Hepatocyte growth factor plays roles in the induction and autocrine maintenance of bone marrow stromal cell IL-11, SDF-1 alpha and stem cell factor. Exp Hematol,2004,32: 955- 961.
    33 Zhang S,Tang Q,Xu F,Xue Y,Zhen Z,Deng Y,Liu M,Chen J,Liu S,Qiu M,Liao Z,Li Z,Luo D,Shi F,Zheng Y.RhoA Regulates G1-S Progression of Gastric Cancer Cells by Modulation of Multiple INK4 Family Tumor Suppressors. Mol Cancer Res ,2009,7: 570–580.
    34 Nourse J,Firpo E,Flanagan WM,Coats S,Polyak K,Lee MH,Massague J,Crabtree GR,Roberts JM.Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature,1994,372: 570–573.
    35 Reynisdottir I,Polyak K,Iavarone A,Massague J.Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta.J. Genes Dev,1995,9: 1831–1845.
    36 Coats S,Flanagan WM,Nourse J,and Roberts JM.Requirement of p27kip1 for restriction point control of the fibroblast cell cycle. Science,1996,272: 877–880.
    37 SinghSP,Lipman J,Goldman H,Ellis FH,Aizenman L,Cangi MG,Signortetti S,Chiaur DS,Pagano M,Loda M.Loss or altered subcellular locatization ofp27 in Barrett’s associated adenocarcinoma.Cancer Res,1998,58: 1730-1735.
    38王小中,冯文莉,刘兴,等.SKP2反义寡核苷酸对K562细胞生长和增殖的影响.癌症,2003,22(9):948-952.
    39 Pagano M,Tam SW,Theodoras AM,Beer-Romero P,Del Sal G,Chau V,Yew PR,Draetta GF,Rolfe M.Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27.Science,1995,269: 682–685.
    40 Nakayama KI,Hatakeyama S,Nakayama K.Regulation of the cell cyclin at the G1-S transition by proteolysis of cyclinE and p27kip1.Biochem Biophys Res Commun,2001,282:853-857.
    41 Carrano AC,Eytan E,Hershko A,and Pagano M.SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol.1999,1: 193–199.
    42 Montagnoli A,Fiore F,Eytan E,Carrano AC,Draetta GF,Hershko A,Pagano M.Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation.Genes Dev.1999,13: 1181–1189.
    43 Sutterluty H,Chatelain E,Marti A,Wirbelauer C,Senften M,Muller U,Krek W.p45SKP2 promotes p27Kipl degradation and induces S phase in quiescent cells. Nat. Cell Biol.1999,1: 207–214.
    44 Nakayama K,Nagahama H,Minamishima YA,Matsumoto M,NakamichiI,Kitagawa K,Shirane M,Tsunematsu R,Tsukiyama T,Ishida N,Kitagawa M,Nakayama K,Hatakeyama S.Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J .2000,19: 2069–2081.
    45 Ganoth D,Bornstein G,Ko TK,Larsen B,Tyers M,Pagano M,Hershko A.The cell-cycle regulatory protein CKS1 is required for SCF SKP2-mediated ubiquitinylation of p27. Nat.Cell.Biol.2001,3: 321–324.
    46 Spruck C, Strohmaier H, Watson M, Smith AP,Ryan A,Krek TW,Reed SI. A CDK-independent function of mammalian Cks1: targeting of SCF (SKP2) to the CDK inhibitor p27kip1. Mol.Cell.2001,7:639–650.
    47 Yannaki E,Athanasiou E,Xagorari A,Constantinou V,Batsis I,Kaloyannidis P,Proya E,Anagnostopoulos A,Fassas A. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol,2005,33: 108-119.
    48 Li Y, Chen J, Chen XG,Wang L,Gautam SC,Xu YX,Katakowski M,Zhang LJ,Lu M,Janakiraman N,Chopp M. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology,2002,59: 514-523.
    1韦伟,龚建平,裘法祖.细胞周期调控与肿瘤的发生发展.癌症,1999,18(1): 95-96.
    2 Morgan DO. Molecular Mechanism of Adaphostin-mediated G1 Arrest in Prostate Cancer (PC-3) Cells . Nature ,1995,374: 131–134.
    3 Sherr CJ. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene .Science ,1996,274: 1672–1677.
    4邹向阳,李连宏.细胞周期调控与肿瘤.国际遗传学杂志,2006,29(1):70-73.
    5 Polyak K, Lee MH, Erdjument-Bromage H, et al.Clone of p27kip1, a cyclin dependent kinase inhibitor and potential mediator of extracellular antimitogenic signals. J. Cell,1994, 78: 59–66
    6 Toyoshima H, and Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. J.Cell ,1994,78: 67–74.
    7 Paduch M, Jelen F, Otlewski J. Structure of small G proteins and their regulators .Acta Biochim Pol,2001,48: 829-850.
    8 Ron D, Zannini M, Lewis M ,et al. A region of proto2dbl essential for its t ransforming activity shows sequence similarity to a yeast cell cycle gene, CDC24,and the human breakpoint cluster gene,bcr.New Biol, 1991, 3: 372 -379.
    9 Paradis V, Mathurin P, Laurent A.et al. Histological features. Predietive ofliver fibrosis in chronic hepatitis infeetion. J Clin Pathol, 1996, 49: 998 -1004.
    10 Eghbali-Fatourechi G, Sieek GC, Prakash YS, et al. Type 1 Proeollagen production and cell proliferation is mediated by transforming growth factor beta in a model of hepatie fibrosis. Endoerinology,1996,137: 1894-1903.
    11 Bissell DM, Wang SS, Jarnagin WR, et al.Cell specifie expression of transforming growth factor-beta in rat liver.Evidence for autoerine regulation of hepatoeyte, Proliferation. J Clin Invest,1995,96: 447-455.
    12 Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell, 2000, 103: 227-238
    13 Ridley AJ. Rho family proteins: coordinting cell rsponses. Trends in Cell Biology, 2001,11: 471-477
    14 Hall A. G proteins and small GTPases: distant reltives keep in touch. Science, 1998,279: 509-514.
    15 Van Aelst L , D’Souza-Sehorey C. RhoGTPase and signaling networks. Genes Dev, 1997,11: 2295-2322.
    16 Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology.J Mol Med,2002,80: 629-638.
    17 Ishizaki T,Naito M,Fujisawa K,et al.p160ROCK,a Rho-associated coiled-coil forming protein kinase,works downstream of Rho and induces focal adhesions. FEBS Lett,1997,404: 118-124.
    18 Narumiya S. The small GTPase Rho: cellular functions and signal transduction.J Biochem,1996,120: 215-228.
    19 Sah VP, Seasholtz TM, Sagil SA,et al. The role of Rho in G protein couple recepter signal transduction. Annu Rev Pharmacol Toxicol,2000, 40: 459-489.
    20 Mackay DJ, Hall A. Rho GTPases. J Biol Chem,1998, 273: 20685-20688.
    21 Nobes CD,Hall A.Rho GTPases control polarity, protrusion, and adhesion duing cell movement. J Cell Biol, 1999,144: 1235-1244.
    22 Meriane M, Mary S, Communale F,et al.Cdc42Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network. J Biol Chem, 2000,275: 33046-33052.
    23 Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem, 1999,68: 459-486.
    24 Aspenstrom P. Effeetors for the RhoGTPase.Curr OPin Cell Biol, 1999, 11: 95-102.
    25 Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol, 1999, 144: 1235 -1244.
    26 Takai Y, Sasaki T, Matozaki T. Small GTP-binding pro-teins.Physiol Rev, 2001,81: 153-208.
    27 Hall A. Rho GTPases and the conrtol of cell behaviour.Biochem Soc Trans,2005,33: 891-895.
    28 Terai S,Ishikawa T,Omori K,et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cell, 2006, 24: 2292-2298.
    29 Shi MN,Huang YH,Zheng WD,et al.Relationship between transforming growth fator betal and anti-fibrotic effect of interleukin-10.World J Gastroenterol, 2006, 12: 2357-2362 .
    30 Fang B, Shi M, Liao L,et al. Systemic infusion of FLK1(+) mesenchymalstem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice.Transplantation, 2004,78: 83-88.
    31 Polyak K,Kato JK,Solomon MJ,et al.P27kipl,a cyclin-CDK inhibitor ,links transforming growth factor–beta and contact inhibition to cell cycle arrest. Genes Dev, 1994, 8(1): 9-22.
    32 Nourse J, Firpo E, Flanagan WM,et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature,1994, 372: 570–573.
    33 Reynisdottir I, Polyak K, Iavarone A, and Massague. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta.J. Genes Dev,1995, 9: 1831–1845.
    34 Coats S, Flanagan WM, Nourse J, and Roberts JM. Requirement of p27kip1 for restriction point control of the fibroblast cell cycle.Science,1996, 272: 877–880.
    35 Singh SP,Linpman P,Goldman H,et al.Loss or altered subcellular locatization of p27 in Barrett’s associated adenocarcinoma.Cancer Res.1998,58: 1730-1735.
    36王小中,冯文莉,刘兴,等.SKP2反义寡核苷酸对K562细胞生长和增殖的影响.癌症,2003,22(9):948-952.
    37 Hengst L, and Reed SI. Translation contral of p27kip1 accumulation during the cell cycle . Science, 1996,271: 1861–1864.
    38 Medema RH, Kops GJ, Bos JL, and Burgering BM. AFX-like forkhead transcription factors mediate cell-cycle regulation by ras and PKB through p27kip1. Nature ,2000 ,404: 782–787.
    39 Pagano M, Tam SW, Theodoras AM,et al.Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27 . Science ,1995,269: 682–685.
    40 Shirane M, Harumiya Y, et al.Down-regulation of p27kipl by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem,1999, 274: 13886–13893.
    41 Tomoda K,Kubota Y,andKato J.Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature, 1999,398: 160–165.
    42 Nakayma KI,Hatakeyma S,Nakayama K,et al.Regulation of the cell cyclin at the G1-S transition by proteolysis of cyclinE and p27kip1.BiochemBiophys.2001,282:853-857.
    43 Carrano AC, Eytan E, Hershko A, and Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol,1999,1:193–199.
    44 Montagnoli A, Fiore F, Eytan E,et al.Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev, 1999,13: 1181–1189.
    45 Sutterluty H, Chatelain E, Marti A,et al. p45SKP2 promotes p27Kipl degradation and induces S phase in quiescent cells. Nat. Cell Biol, 1999, 1: 207–214.
    46 Nakayama K, Nagahama H, Minamishima YA, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J ,2000,19: 2069–2081.
    47 Ganoth D, Bornstein G, Ko TK, et al. The cell-cycle regulatory protein CKS1 is required for SCF SKP2-mediated ubiquitinylation of p27. Nat. Cell Biol, 2001,3: 321–324.
    48 Spruck C, Strohmaier H, Watson M,et al. A CDK-independent function of mammalian Cks1: targeting of SCF (SKP2) to the CDK inhibitor p27kip1. Mol. Cell , 2001,7: 639–650.
    49 Yojiro Kotake, Keiko Nakayama,et al. Role of Serine 10 Phosphorylation in p27 Stabilization Revealed by Analysis of p27 Knock-in MiceHarboring a Serine 10 Mutation. J. Biol. Chem. 2005, 280: 1095–1102.
    50 Hara T, Kamura T, Nakayama K, et al. Degradation of p27Kip1 at the G0-G1 transition mediated by a Skp2-independent ubiquitination pathway . J. Biol. Chem. 2001,276: 48937–48943.
    51 Weber JD, Hu W, Raben DM, Jefcoat S, and Baldassare JJ .Ras-stimulated ERK and RhoA activities coordinate PDGF-induced G1 progression through the independent regulation of cyclin D1 and p27Kip1. J Biological Chem ,1997,272:32966-32971.
    52 Weimin Hu, Clifford J. Bellone, and Joseph J.Baldassare. RhoA Stimulates p27Kip Degradation through Its Regulation of Cyclin E/CDK2 Activity. J Biological Chem,1999,274:3396–3401.
    53 Tammy M, Seasholtz, Tong Zhang, Michael R. Increased Expression and Activity of RhoA Are Associated With Increased DNA Synthesis and Reduced p27Kip1 Expression in the Vasculature of Hypertensive Rats. Circ. Res,2001,89:488-495.
    54 Vidal A, Millard SS, Miller JP, and Andrew Koff. Rho Activity Can Alter the Translation of p27 mRNA and Is Important for RasV12-induced Transformation in a Manner Dependent on p27 Status.J Biological Chem,2002, 277: 16433–16440.
    55 Akiko Mammoto, Sui Huang, Kimberly Moore, et al. Role of RhoA, mDia, and ROCK in Cell Shape-dependent Control of the Skp2-p27kip1 Pathwayand the G1/S Transition.J Biological Chem ,2004,279:26323–26330.
    56 Arnaud Besson,Mark Gurian-West, Anja Schmidt, et al.p27Kip1 modulates cell migration through the regulation of RhoA activation.Genes Dev,2004,18: 862-876.
    57 Zhiping Li,Xuanmao Jiao,Chenguang Wang.Cyclin D1 Induction of Cellular Migration Requires p27KIP1. Cancer Res,2006, 66: 9986-9994.
    58 Wang XQ,Lui EL,Cai Q, et al.p27Kip1 promotes migration of metastatic hepatocellular carcinoma cells.Tumour Biol,2008,29: 217-223.
    59 Siyuan zhang, qiulin Tang,feng Xu,et al.RhoA Regulates G1-S Progression of Gastric Cancer Cells by Modulation of Multiple INK4 Family Tumor Suppressors. Mol Cancer Res ,2009,7: 570–580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700