图像引导下的宫颈癌自适应调强放射治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究宫颈癌调强放射治疗计划的最佳参数。利用图像引导设备测量宫颈癌放射治疗的摆位误差。研究治疗过程中的反馈信息对计划剂量分布的影响,讨论自适应放射治疗的必要性和可行性。
     16例术后宫颈癌,以95%PTV体积获得5000cGy处方剂量进行归一,进行不同参数的IMRT计划设计,讨论其对计划质量的影响。不同野数的计划中,7野计划在靶区、危及器官参数及治疗时间等方面的综合优势优于5野及9野计划;5野计划中,同心圆结构的设置改善靶区适形度,减少照射体积,非均匀布野减少照射体积的同时增加了小肠低剂量的照射体积;优化强度级数为8的计划质量最接近原计划,且子野数减少19.32%。
     使用加速器自带的千伏级锥形束断层扫描系统扫描16例宫颈癌患者共305次,对患者左右(X)方向、头脚(Y)方向和前后(Z)方向的误差进行测量和统计。将结果应用到原始计划(PLAN1),通过改变射野中心模拟实际治疗,而射野角度、形状、权重、MU数等条件不变,重新计算,得到新计划(PLAN2及PLAN3)。将原计划中的PTV分别回缩成CTVx10-CTVx3,找出满足处方剂量条件的CTVx,则CTVx和PTV之间的距离即CTVx到PTV的外扩是足够的。再从所找到的外扩中取最小值,即为PTV回缩法得出CTV外扩范围。
     (1)16例患者在X、Y、Z方向的系统误差和随机误差分别为(1.13±2.94) mm、(-1.63±7.13)mm、(-0.65±2.25)mm。(2)根据公式2.5∑_总+0.7σ_总计算X、Y、Z三个方向上CTV到PTV的外放应分别为5、9、3mm。(3)摆位误差不明显增加直肠、小肠、股骨头的受量,但影响膀胱的受量。(4)剂量回归结果显示, CTVx10- CTVx7均满足临床99%的CTV接受95%处方剂量的要求,为更好地保护正常组织,在CTVx10- CTVx7中,选择保证靶区剂量的最小外放即7mm。(5)根据公式计算和剂量回归两种方法得到从CTV到PTV的外放差异比较大,相对而言,根据剂量回归结果所得出的外放值更能反应具体医院患者实际情况,故选择均匀7mm为我院从CTV到PTV的外放值。
The article is to investigate optimized IMRT plan of cervical cancer;to measure setup errors for patient of cervical cancer in radiotherapy. It was investigated the feedback in treatment effects and the dose distribution for IMRT plan.And to discuss the feasibility of adaptive radiation therapy.
     Sixteen patients with postoperative cervical cancer were investigated. All the plans were normalized so that 95% of planning target volume (PTV) at least received 50 Gy. Different IMRT plans were generated for each patient and the parameters of plans were discussed for the quality of plans. A seven-field technique was best for dose of PTV and protection of organ at risks (OARs), moreover reduced treatment time than a five-field technique and a nine-field technique.Concentric ring technique improved comfortable of PTV and reduced irradiation volume.And no uniform set up of beams technique reduced irradiation volume but to increases the volume of low dose for intestine.The quality of the plan for the intension level 8 was to get close the intension level 10,and to further reduced the number of segments by 19.32%.
     The 16 patients of cervical cancer were received a total of 305 kilo-volt cone-beam computed tomography (kv-CBCT) scans, which evaluated the setup errors in left-to-right (X), in superior-to-inferir (Y) and in anterior-to-posterior (Z) .The isocenter of the initial plan (PLAN1) was changed according to the setup errors to simulate radiotherapy and then recalculated the dose distribution without changing the direction, shape and weight of fields,we would had the new plans (PLAN2 and PLAN3) .Then retracted the PTV from the original plan to get CTVx10, CTVx9, CTVx8, CTVx7, CTVx6, CTVx5, CTVx4, CTVx3, selected CTVx that agree with prescription dose , confirm the distance between CTVx and PTV, the minimum value was the margin from CTV to PTV.
     (1)The setup errors of 16 patients in X, Y and Z directions were(1.13±2.94) mm (,-1.63±7.13) mm(,-0.65±2.25) mm.(2) The distance between CTVx and PTV was 5,9 and 3mm in X, Y and Z directions According to 2.5∑+0.7σ.(3)Setup errors was not to increase obviously dose of rectum, intestine and femoral head, but bladder.(4) Transplantation plans displayed 99% of CTVx10- CTVx7 and received 95% of prescription dose, departed from standard of clinic.In order to protect normal tissues,we selected 7mm that was the minimum value of the margin from CTV to PTV.(5) The margin from CTV to PTV, that be to calculated by formula and Transplantation plans was difference.In fact, the margin from the result of transplantating plans would be confidence,because it represented practice of treatment.So that we selected the margin of 7mm for CTV to PTV.
引文
[1].谷铣之,主编.肿瘤放射治疗学.北京:中国协和医科大学出版社, 2008.
    [2].崔念基,主编.实用临床放射肿瘤学.广州:中山大学出版社, 2005.
    [3].曹泽毅,妇科常见肿瘤诊治指南.第2版.北京:人民卫生出版社,2007:23—40.
    [4]. Hong JH,Tsai CS,Lai CH,et a1. Recurrent squamous cell carcinoma of cervix after definitive radiotherapy.In J Radiat Oncol Biol Phys.,2004,60(1):249-257.
    [5]. Rein DT,Kurbacher CM,Breidenbach M,et al. Weekly carboplatin and docetaxel for locally advanced primary and recurrent cervical cancer:a phase I study .Gynecol Oncol.,2002,87(1):98-103.
    [6].蔡树模.子宫颈癌放射治疗的几个问题.肿瘤2001,2l(6):403-405.
    [7]. Fujikawa K,Miyamoto T,Ihara Y,et a1.High incidence of serve urologic complications following radiotherapy for cervical cancer in Japanese women.Gynecol Oncol.,2001,80(1):21-23.
    [8]. Gellrich J, Hakenberg OW , Oehlschlager S, et a1.Manifestation, latency and management of late urological complications after curative radiotherapy for cervicaI carcinoma.Onkologie,2003,26(4):334—340.
    [9].张荣荣,廖洪,张国楠等.宫颈癌放射治疗后泌尿系统并发症46例临床分析.四川大学学报(医学版),2OO8,39(4):69O-692.
    [10].胡逸民,主编.肿瘤放射物理学.北京:原子能出版社,1999:537.
    [11]. Xing L, Thorndyke B , Schreibmann E,et al.Overview of image—guided radiation therapy。Med Dosimetry,2006,31(2):91-l12.
    [12]. Catherine AM,Ann MH,Jonathan S,et a1.X-ray volumetric imaing in image—guided radiotherapy:the new standard in on-treatment imaging.Int J nadiat Oncol Biol Phys.,2006,64:625-634.
    [13]. Mackie TR,Kapatoes J,Ruchala K,et a1.Image guidance for precise conformal radiotherapy.Int J Radiat Oncol Biol Phys.,2003,56(1):89—105.
    [14]. Yan D, Wong J, Vicini F, et al.Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors Int J Radiat. Oncol. Biol.Phys.,1997,38(1):197–206.
    [15]. Weiguo Lu, Gustavo H Olivera, Quan Chen,et al. Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy. Phys. Med. Biol.,2006, 51 :4357–4374.
    [16].刘咏梅.图像引导的自适应放疗研究进展.中国肿瘤临床,2008,35(22):1314-1316,1320.
    [17].孙帅,张福泉.宫颈癌的调强放射治疗.肿瘤学杂志,2006,12(5):377-381.
    [18].孔蕾,于甬华,黄伟等.宫颈癌调强放疗新进展。中华放射肿瘤学杂志,2006,15(5):426-428.
    [19].黄曼妮,章众,安菊生等.复发性子宫颈癌调强放射治疗的临床观察.癌症进展杂志,2008,6(5):449-453.
    [20].周琦,唐郑,舒小蕾等.调强放疗治疗复发性子宫颈癌的初步报告.中华妇产科杂志,2O07,42(1):730.
    [21].张书旭,王光武,沈国辉等.宫颈癌三维适形调强放疗剂量分布特性研究.现代肿瘤医学,2006,14(7):882-884.
    [22]. Mundt AJ,Lujan AE,Rotmensch J,et a1.Intensity—modulated whole pelvic radiotherapy in women with gynecologic malignancies.Int J Radiat Oncol Biol Phys.,2002,52(5):1330一l337.
    [23]. Mundt AJ ,MeU LK,Roeske JC. Preliminary analysis of chronic gastro—intestinal toxicity in gynecology patients treated with intensity—modulated whole pelvic radiation therapy.Int J Radiat Oncol Biol Phys,2003,56:1354—1360.
    [24]. Lorraine portelance, k. S. Clifford chao, Perry w. Grigsby,et al. Intensity-modulated radiation therapy (imrt) reduces small Bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiation Oncology Biol. Phys., 2001,51(1):261–266.
    [25]. Lujan AE,Mundt AJ,Yamada SD,et a1.Intensity—moduLated radiotherapy as a means of reducing dose to bone marow in gynecologic patients receiving whole pelvic radiotherapy.Int J Radiat Oncol Biol Phys.,2003,57:516-521.
    [26]. Linda Van De Bunt, Uulke A. Van Der Heide, Martijn Ketelaars,et al. Conventional, conformal, and intensity-modulated radiation Therapy treatment planning of external beam radiotherapy For cervical cancer: the impact of tumor regression. Int J Radiation Oncology Biol. Phys., 2006,64(1):189–196.
    [27]. Adli M,Mayr NA,Kaiser HS,et a1.Does prone positioning reduce small bowel dose in pelvic radiation with intensity—modulated radiotherapy for gynecologic cancer?Int J Radiat Oncol Biol Phys.,2003,57(1):230—238.
    [28]. Michael Pinkawa, Bernd Gagel, Cengiz Demirel,et al. Dose-volume histogram evaluation of prone and supine patient position in external beam radiotherapy for cervical and endometrial cancer.Radiotherapy and Oncology,2003, 69: 99–105.
    [29]. Perez CA,Grigsby PW,Castro—Vita H,et a1.Carcinoma of the uterine cervix.Impact of prolongation of overall treatment time and timing of brachytherapy on outeome of radiatherapy.Int J Radiat Oncol Biol Phys.,1995,32(5):1275一l288.
    [30]. D’Souza WD,Ahamad AA,Iyer RB,et a1 . Feasibility of dose escalation using intensity—modulated radiotherapy in posthysterectomy cervical carcinoma.Int J Radiat Oncol Biol Phys.,2005,61(4):1062—1070.
    [31]. Youngyih Han , Eun Hyuk Shin , Seung Jae Huh, et al.Interfractional dose variation during Intensity-Modulated radiation therapy for cervical cancer assessed by weekly CT evaluation.Int J Radiation Oncology Biol. Phys.,2006,65(2): 617–623.
    [32]. Jacqueline esthappan, Imran zoberi,Farrokh dehdashti,et al. treatment planning guidelines regarding the use of ct/pet-guided imrt for cervical carcinoma with positive Paraaortic lymph nodes.Int J Radiation oncology biol. Phys., 2004,58(4):1289–1297.
    [33]. van Herk M.Errors and margins in radiotherapy.Semin Radiat Oncol,2004,l4:52-64.
    [34]. Ahamad A ,D’Souza W,Salehpour M,et a1.Intensity—modulated radiation therapy after hysterectomy ; comparison with conventional treatment and sensitivity of the normal—tissue—sparing effect to margin size.Int J Radiat Oncol Biol Phys.,2005,62(4):1117—1124.
    [35]. Mock U, Dieckman K, Wolff U, et al. Portal imaging based definition of the planning target volume during pelvic irradiation for gynecological malignancies. Int J Radiat Oncol Biol Phys., 1999,45:227–232.
    [36]. Kaatee RS, Olofsen MJ, Verstraate MB, et al. Detection of organ movement in cervix cancer patients using a fluoroscopic electronic portal imaging device and radiopaque markers. Int J Radiat Oncol Biol Phys., 2002,54:576–583.
    [37]. Kim TH, Chie EK, Kim DY, et al. Comparison of the belly Board device method and the distended bladder method for Reducing irradiated small bowel volumes in preoperative radiotherapy Of rectal cancer patients. Int J Radiat Oncol Biol Phys., 2005,62:769–775.
    [38]. Buchali A, Koswig S, Dinges S, et al. Impact of the filling status Of the bladder and rectum on their integral dose distribution And the movement of the uterus in the treatment planning of Gynecological cancer. Radiother Oncol, 1999,52:29–34.
    [39]. .Ellen M. Kerkhof, Bas W. Raaymakers, Uulke A.van der Heide,et al.Online MRI guidance for healthy tissue sparing in patients with cervical cancer: An IMRT planning study.Radiotherapy and Oncology, 2008,88 : 241–249.
    [40]. Daniel létourneau,Alvaro Aa. Martinez, david lockman,et al. Assessment of residual error for online cone-beam ct-guided treatment of prostate cancer patients. Int. J.Radiation Oncology Biol.Phys.,2005, 62(4): 1239–1246.
    [41].岳金波,于金明,刘菁等.锥形束CT测量鼻咽癌放疗靶区外放研究.中华放射肿瘤学杂志,2007,16(3):223-224.
    [42].许峰,柏森,王瑾等.用锥形束CT图像测量放疗摆位误差.中华放射肿瘤学杂志,2007,6(6):461-464.
    [43]. Peter Metcalfe,Tomas Kron,The physics of radiotherapy x-rays and electrons,madison,medical physics publishing ,2007.
    [44]. Byrne T, Ramsey C, Mahan S and Scaperoth D. Daily image-guided adaptive radiotherapy for prostate cancer using helical tomotherapy Int J Radiat. Oncol. Biol. Phys.,2004,60: S613–614.
    [45]. Q Jackie Wu, Danthai Thongphiew,Zhiheng Wang,et al. On-line re-optimization of prostate IMRT plans for adaptive radiation therapy.Phys. Med. Biol., 2008,53 : 673–691.
    [46]. Jasper Nijkamp, Floris J.Pos,Tonnis T.Nuver,et al. Adaptive radiotherapy for prostate cancer using kilovoltage Cone-beam computed tomography: first clinical results.Int J Radiation Oncology Biol. Phys., 2008, 70(1):75–82.
    [47]. Wu Qiuwen, Liang Jian , Yan D,et al.Application of dose compensation in image-guided radiotherapy of prostate cancer.Phys. Med. Biol. ,2006,51: 1405–1419.
    [48].黄曼妮,徐英杰,吴令英等.宫颈癌调强放射治疗靶区设计的临床研究.癌症进展杂志,2008,6(5):523-527..
    [49]. Van’t Riet A, Mak ACA, Moerland MA, et al. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Rad Oncol Biol Phys, 1997, 37(3): 731~736.
    [50]. Bragg CM, Conway J, Robinson MH. The role of intensity-modulated radiotherapy in the treatment of parotid tumors. Int J Rad Oncol Biol Phys, 2002, 52(3): 729~738
    [51]. Wu VW, Sham JS, Kwong DL. Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer. Br J Radiol. 2004 ,77(19):568~572.
    [52]. Robert A. Price, JR, Scott Murphy, et al. A method for increased dose conformity and segment reduction for sMLC delivered IMRT treatment of the Prostate. Int J. Radiation Oncology Biol. Phys, 2003,57(3):843~852.
    [53]. Roeske JC,Lujan A,Rotmensch J,et a1.Intensity—modu—lated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys,2000,48:1613—1621.
    [54]. Roche et al.The correlation ratio as a new similarity measure for multimodal image registration,in wells et al(eds).medical image computing and computer-assisted intervention(MICCA”98”)lecture notes in computer science ,1998,vol,1496,PP.1115-1124.
    [55]. Bijhold J, van Herk M, Vijlbrief R, et al. Fast evaluation of patient set-up during radiotherapy by aligning features in portal and simulator images. Phys Med Biol. 1991, 36(12):1665-1679.
    [56]. Stroom JC, Boer JC, Huizenga H, et al. Inclusion of geometrical uncertainties in radiotherapy treatment planning bymeans of coverage probability. Int J Radiat Oncol BiolPhys, 1999, 43(4): 905-919.
    [57].高超.食管癌及肺癌放疗中摆位误差对剂量学影响的研究.河北医科大学硕士论文,2008.
    [58]. Jeffrey VS, Paul JK, Wu QW, et al. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans. Int J Radiat Oncol Biol Phy, 2005, 63(2):422~4337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700