马铃薯StERF3转录因子的功能分析及其启动子的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯应答因子(Ethylene Responsive Factors,ERFs)是植物特有的转录因子,在植物生长发育和环境胁迫应答中起重要作用。ERF转录因子通过与病程相关基因(PR)启动子中GCC-box的结合来调控PR基因来提高植物对病害的抗性。ERF转录因子还可结合非GCC-box顺式作用元件参与植物对低温、干旱和ABA等非生物胁迫相关的应答过程。
     StERF3是本实验室克隆的与晚疫病抗性相关的抑制型(含有EAR-motif)转录调控基因。能够被SA、MJ和ETH诱导表达,该基因可能作为SA、JA和ET信号传导途径节点调控基因来调控PR基因表达,从而引起马铃薯对晚疫病菌的防卫反应。本研究进一步利用基因超量表达和干涉技术、启动子顺式作用元件分析以及下游调控基因分析,较系统地研究了StERF3在马铃薯抗晚疫病和非生物胁迫中的作用。主要结果如下:
     1.构建了StERF3超量表达载体,转化了E3(垂直抗性)和Jx(感病)两个马铃薯品种,分别获得E3超量表达株系34个,Jx超量表达株系18个。构建了特异干涉和非特异干涉表达载体,转化并获得E3特异干涉株系26个、非特异干涉株系21个,Jx特异干涉株系5个、非特异干涉株系4个。Southern杂交分析显示大部分株系呈阳性,拷贝数1-4。
     2.转基因植株RT-PCR基因表达分析显示,超量表达株系中StERF3的表达量高于E3和Jx对照;特异干涉和非特异干涉转基因株系中的表达量低于对照中的表达量。特异干涉转基因株系中,下游PR1、PR1b、PR4b、CHIB基因的表达量增强。在非特异干涉转基因植株中,StERF3被沉默的同时,与之同源的StEREBP1、CIP353和STWAAEIRD AP2/EREBP ERF类家族基因也被沉默。
     3.超量表达和干涉E3转化株系晚疫病原菌接种结果表明,9个超量表达株系的病斑扩展速率明显大于对照病斑扩展速率,占E3超量表达株系总接种株系数的36%;12个特异干涉株系的病斑扩展速率明显小于对照的病斑扩展速率,占E3特异干涉接种株系数的46.2%。
     4.150 mM NaCl盐胁迫条件下,Jx超量表达和特异干涉株系生长均受到明显抑制,但超量表达株系比干涉株系更为严重;4℃低温处理的E3超量表达株系顶端出现坏死、萎蔫,而特异干涉株系生长正常。表明干涉株系抗逆性有一定程度的提高。
     5.通过hiTAIL-PCR方法,在3个马铃薯品种中克隆了4条StERF3启动子序列,并对长度为1214 bp的启动子进行详细分析。除存在多个启动子结构元件之外,该启动子中存在多种与生物和非生物胁迫有关的顺式作用元件,如:应答ABA和干旱胁迫的pyrimidine-box,应答低温胁迫的LTRE-1,应答病程和盐诱导的GT-1及ABRE、MYBCORE、MYC、W-box、GCC-box等。
     综上所述,特异干涉StERF3转基因株系的晚疫病抗性增强,同时对盐胁迫和低温的耐受性有一定程度的提高。StERF3作为转录抑制子,可能通过负调控抗病和逆境相关基因的表达,从而调节马铃薯对生物和非生物胁迫的应答。
The ERFs (Ethylene-Responsive Factors), are unique transcript factor of plants, play an important role in plant growth and stress response. It can improve plant resistance to diseases through interaction with GCC box which present in promoters of many pathogenesis-related (PR) genes. In addition, ERFs can response to abiotic stress, such as cold, drought, ABA signaling pathway through interaction with non GCC box containing genes.
     StERF3 is an EAR-motif containing suppress transcription regulation gene associated with late blight resistance which was cloned by our lab previously. It could be induced by SA, JA and ETH, and was conferred that it may act as an important element among the network of signal pathways to modulate PR genes expression which lead to the defense response to Phytophthora infestans. In this study we further investigated its functions against late blight resistance and abiotic stress through the overexpression and RNA interference methods, promoter cis elements and downstream regulated genes analysis. The main findings are as follows:
     1. Overexpression vector of StERF3 was constructed and transformed into two potato varieties E3 and Jx. Thirty four E3 and 18 Jx overexpression transgenic lines was obtained separately. At the same time, RNA specific interference and RNA family interference vectors was also constructed. We got 26 RNA specific interference transgenic lines and 21 family interference transgenic lines of E3, 5 specific interference and 4 family interference transgenic lines of Jx. Southern blot analysis indicated that most transgenic lines are positive and gene copy number ranged frome 1 to 4.
     2. RT-PCR analysis of transgenic plant showed that the expression of StERF3 in over-expression transgenic lines are higher than that in E3 and Jx control, but with lower level in RNA specific interference and RNA family interference transgenic lines compared with control. Expression of PR1、PR1b、PR4b、CHIB, the downstream gene of StERF3 with GCC-box containing in their promoters, were increased in RNA specific interference transgenic lines. In RNA family interference transgenic lines, besides StERF3 interference, the AP2/EREBP family homologous gene StEREBP1, CIP353 and STWAAEIRD shown silenced in different degree.
     3. Detached leaves inoculation of P. infestans showed that the lesion growth rate of 9 overexpression transgenic lines are significantly higher than that of control which hold 36% of the total inoculated overexpression transgenic lines. The lesion growth rate of 12 RNA specific interference transgenic lines are lower than that of control which stand 46.2% of the total inoculated RNA specific interference transgenic lines.
     4. Under 150 mM NaCl salt stress condition, the growth of overexpression and RNA specific interference transgenic lines were both inhibited, but the former is more serious than that of latter. After 4℃cold treatment, the top of E3 overexpression transgenic lines are necrosis and wilting, while specific interference transgenic lines grows well as normal. This indicated that resistance of specific interference transgenic lines increased in a certain degree.
     5. Using hiTAIL-PCR, 4 StERF3 promoter sequences were cloned, and one of 1214 bp in length sequence was analyzed in detail. In addition to a number of basal promoter structural elements, there are a wide range of biotic and abiotic stress-related cis elements in it, such as pyrimidine-box response to ABA and drought stress, LTRE-1 response to cold, GT-1,ABRE、MYBCORE、MYC、W-box、GCC-box response to disease and salt stress.
     To sum up, the late blight resistance level of StERF3 specific interference transgenic lines are increased; at the same time salt stress and low-temperature tolerance are raised at a certain extent. Thus, it can be inferred that StERF3, as a transcription inhibitor, regulated biotic resistant and abiotic stress response in potato mainly by negativly regulate disease-resistant and stress-related genes.
引文
1.陈俊,王宗阳,植物MYB类转录因子研究进展.植物生理学与分子生物学学报,2002,28(2):81-88
    2.黄泽军.番茄JERFs基因在GCC-Box介导的基因表达调控中的作用.[硕士学位论文].2003
    3.李洁.植物转录因子与基因调控.生物学通报,2004,39(3):9-11
    4.刘强,张友贵,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45(14):1465-1474.
    5.柳俊,谢从华,黄大恩.马铃薯杂志马铃薯试管块茎形成机制的研究暗处理与光照时间对试管块茎形成的影响.马铃薯杂志,1994,8:138-141
    6.彭昊,翟英,张芊,张治国,宛淑艳,郭玉朋,吴金霞,孙学辉,孙颖,孙大业,路铁刚.水稻高效RNA干涉体系的建立及其功能分析.中国农业科学,2006,39(9):1729-1735
    7.桑新华,吴忠义,黄丛林,张潞生.植物逆境抗性相关转录因子的研究进展.植物学通报.2004,21(6):700-708
    8.司怀军,谢从华,柳俊.根癌农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义Class Ⅰ patatin基因的导入.作物学报,2003,29:801-805
    9.王冰林.马铃薯晚疫病水平抗性相关基因诱导表达谱及水平抗性机制初探.[博士学位论文].武汉:华中农业大学图书馆,2005
    10.许庆芬.马铃薯NAC和ERF基因的克隆与功能分析.[博士学位论文].东北农业大学,2007.
    11.张海文,谢丙炎,卢向阳,杨宇红,陈琪,黄荣峰.拟南芥防卫基因PDF1.2启动子中GCC盒是应答茉莉素反应必要的顺式作用元件.科学通报.2004,49(23):2444-2448
    12.Abe H,Yamaguchi-Shinozaki K,Urao T,Iwasaki T,Hosokawa D,Shinozaki K.Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression.Plant Cell,1997,9(10):1859-1868.
    13.Aharoni A,Dixit S,Jetter R,Thoenes E,van Arkel G,Pereira A.The SHINE Glade of AP2 domain transcription factors activates wax biosynthesis,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis.Plant Cell,2004,16:2463-2480.
    14.Allen RD,Bernier F,Lessard PA,Beachy RN.Nuclear factors interact with a soybean beta-conglycinin enhancer.Plant Cell.1998,1:623-631
    15.Anna N S,Joseph R E.Ethylene signaling from mutants to moleculers.Curr Opin Plant Biol,2000,3:353-360
    16.Banno H,Ikeda Y,Niu QW.and Chua NH.Overexpression of Arabidopsis ESRI induces initiation of shoot regeneration.Plant Cell,2001,13:2609-2618.
    17.Bate N,Twell D.Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements.Plant Mol Biol.1998,37:859-869
    18.Broun P,Poindexter P,Osborne E,Jiang CZ,Riechmann JL.WIN1,a transcriptional activator of epidermal wax accumulation in Arabidopsis.Proc.Natl.Acad.Sci.U.S A, 2004,101:4706-4711
    19. Brown R L, Kazan K, McGrath K C, Maclean D J, Manners J M. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 2003,132: 1020-1032
    20. Buttner M, Singh KB. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. U.S.A., 1997, 94: 5961-5966.
    21. Chakravarthy S, Tuori RP, D'Ascenzo MD, Fobert PR, Despres C, Martin GB. The tomato transcription factor Pti4 regulates defense-related genes expression via GCC box and non-GCC box cis elements. Plant Cell, 2003,15: 3033-3050.
    22. Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol. 2002, 129:706-716.
    23. Chen W, Singh KB. The auxin peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J, 1999, 19: 667- 677
    24. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961-1972.
    25. Chern M S, Bobb A J, Bustos M M. The regulator of MAT2 (R0M2) protein binds to early maturation promoters and repressors PvALF activated transcription. Plant Cell, 1996,8:305-321
    26. Chern MS, Fitzgerald HA, Yadav RC, Camas PE, Dong X, Ronald PC. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J, 2001, 27: 101-113
    27. Chem M, Canlas PE, Fitzgerald HA, Ronald PC. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NHL Plant J, 2005, 43: 623-635
    28. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt PJ. The control of spikelet meristem identity by the branched silklessl gene in maize. Science, 2002, 298: 1238-1241.
    29. Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol, 2005, 139: 847-856
    30. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza saliva L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751- 763.
    31. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5: 199-206.
    32. Fernando Novillo, Jose M. Alonso, Joseph R. Ecker, Julio Salinas. CBF2DREB1C is a negative regulator of CBF1_DREB1B and CBF3_DREB1A expression and plays a central role in stress tolerance in Arabidopsis. PNAS, 2004,101 (11): 3985-3990
    33. Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance. Trends Genet, 2000, 16: 449-455
    34. Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393- 404
    35. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang CM, He XH, Han Y, Martin GB. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14: 817-831.
    36. Gu, Yong-Qiang; Yang, Caimei; Thara, Venkatappa K.; Zhou, Jianmin; Martin, Gregory B. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell, 2000, 12: 771-786.
    37. Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 2004, 7: 465-471.
    38. Hao D, Ohme-Takagi, M, Sarai, A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plants. J. Biol. Chem., 1998, 273: 26857-26861.
    39. He, Ping; Warren, Randall F.; Zhao, Tiehan; Shan, Libo; Zhu, Lihuang; Tang, Xiaoyan; Zhou, Jian-Min. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact, 2001, 14: 1453-1457.
    40. Heim M A, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey P C. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 2003, 20: 735—747
    41. Horiguchi G. RNA silencing in plants: a shortcut to functional analysis. Differentiation, 2004, 72: 65-73.
    42. Hye Eun Lee, Dongjin Shin, Sang Ryeol Park, Sang-Eun Han, Mi-Jeong Jeong, Tack-Ryun Kwon, Seong-Kon Lee, Soo-Chul Park, Bu Young Yi, Hawk-Bin Kwon, Myung-Ok Byun. Ethylene responsive element binding protein 1 (StEREBPl) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochemical and Biophysical Research Communications, 2007, 353: 863- 868.
    43. Jaglo-Ottosen, K R; Gilmour, S J; Zarka, D G; Schabenberger, O; Thomashow, M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106.
    44. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7: 106-111.
    45. Jin, Hailing; Cominelli, Eleonora; Bailey, Paul; Parr, Adrian; Mehrtens, Frank; Jones, Jonathon; Tonelli, Chiara; Weisshaar, Bernd; Martin, Cathie. Transcriptional repression by AtMYB4 controls production of UV protecting sunscreens in Arabidopsis. EMBO J, 2000, 19: 6150- 6161
    46. Kalde M, Barth M, Somssich I E, Lippok B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact. 2003,16 (4): 295—305
    47. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999,17:287-291
    48. Kazan. Negative regulation of defence and stress genes by EAR-motif-containing repressors. TRENDS in Plant Science, 2006,11 (3): 109-112
    49. Kizis D, Lumbreras V, Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters, 2001,498: 187-189
    50. Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell, 1997, 9(9):1607-1619.
    51. Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem, 1999, 262:247-257
    52. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Shinozaki K Y, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406.
    53. Liu YG, N. Mitsukawa, T. Oosumi, R.F. Whittier. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995,8:457-463.
    54. Liu Y, Zhao TJ, Liu JM, Liu WQ, Liu Q, Yan YB, Zhou HM. The conserved Ala37 in the ERF/AP2 domain is essential for, binding with the DRE element and the GCC box. FEBS LETTERS, 2006, 580(5): 1303-1308.
    55. Liu Y. G and Chen Y. L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Bio Techniques, 2007, 43: 649-656
    56. Lyck R, Harmening U, Hohfeld I, Treuter E, Seharf K D, Nover L. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997, 202:117-125
    57. Martin C, Paz-ares J. MYB transcription factors in plants. Trends Genet, 1997, 13(2): 67- 73.
    58. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor- activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol, 2005, 139: 949-959
    59. Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P. A Role for the DOF Transcription Factor BPBF in the Regulation of Gibberellin-Responsive Genes in Barley Aleurone Plant Physiol. 2002, 130: 111-119.
    60. Mine T, Hiyoshi T, Kasaoka K, Ohyama A. CIP353 encodes an AP2/ERF omain protein in potato (Solarium tuberosum L) and responds slowly to cold stress. Plant Cell Physiol, 2003, 44: 10-15.
    61. Nakano T, Suzuki K, Fujimura T, Shinshi T. Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432.
    62. Nasir KHB, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R. High-throughput in planter expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J, 2005, 43: 491-505
    63. Nishiuchi T, Shinshi H, Suzuki. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves possible involvement of NtWRKYs and autorepression. J. Biol. Chem, 2004, 279:55355-55361
    64. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an
    65. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plan Cell. 1995, 7: 173 —182
    66. Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001,13: 1959-1968
    67. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003, 10: 239-247
    68. Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13: 1035-1046
    69. Pauw B, Hilliou FAO, Martin VS, Chatel G, de Wolf CJF, Champion A, Pre M, van Duijn B, Kijne JW, van der Fits L, Memelink . Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem, 2004, 279: 52940-52948
    70. Riechmann J L, Meyerowitz E M. The AP2/EREBP family of Plant transcription factors. Biol Chem, 2000, 379: 633- 646
    71. Ristaino J B, Groves C T, Parra G R. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature, 2001, 411: 695-697
    72. Sainz M B, Golf S A, Chandler V L. Extensive mutagenesis of a transcriptional activation domain identifics single hydrophobic and acidic amino acids important for activation in vivo. Mol Cell Biol, 1997, 17: 115-122.
    73. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cyst/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746
    74. Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998- 1009
    75. Shin R, Park JM, An JM, Paek KH. Ectopic expression of Tsil in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. Mol Plant Microbe Interact, 2002, 15: 983- 989.
    76. Singh K, Foley R C, Orate-Sanchez L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol, 2002, 5: 43-436.
    77. Song, C-P, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 2005,17: 2384-2396
    78. Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U.S.A., 1997,94: 1035-1040.
    79. Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J, 2003,36: 830-841
    80. Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retro transposon Tto1 and defense-related genes. Plant Cell, 2000,12: 2511-2528
    81. Thara VK, Tang X, Gu YQ. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes pti4 and pti5 independent of ethylene, salicylate and jasmonate. Plant J, 1999,20: 475-483.
    82. Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571- 599
    83. Tiwari S B, Hagen G, Guilfoyle T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16: 533-543
    84. Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004,16: 533-543
    85. Toshiki Mine, Toru Hiyoshi,, Keisuke Kasaoka, Akio Ohyama. CIP353 encodes an AP2/ERF-Domain protein in potato (Solanum tuberosum L.) and responds slowly to cold stress. Plant Cell Physiology. 2003, 44(1): 10-15
    86. Tsukagoshi H, Saijo T, Shibata D, Morikami A, Nakamura K. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiol, 2005, 138: 675-685
    87. Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K, Ohme-Takagi M, Saitoh H, Terauchi R, Kusano T. Tobacco ZFT1, a transcriptional repressor with a Cys(2)/His(2) type zinc finger motif that functions in spermine-signaling pathway. Plant Mol. Biol., 2005, 59: 435-448
    88. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529-1539
    89. van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 2000, 289: 295-297.
    90. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabi-dopsis. Plant J, 2005, 41: 195-211
    91. Weigel RR, Pfitzner UM, Gatz C. Interaction of NIMIN1 withNPR1 modulates PR gene expression in Arabidopsis. Plant Cell, 2005, 17: 1279-1291
    92. Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137: 176-189
    93. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol, 2005,59:191-203
    94. Xue GP, Loveridge CW. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J, 2004, 37:326-339.
    95. Yamamoto S, Suzuki K, Shinshi H. Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J, 1999, 20: 571-579.
    96. Yang Z, Tian LN, Latoszek-Green M, Brown D, Wu KQ. Arabidopsis ERF4 is a transcriptional represser capable of modulating ethylene and abscisic acid responses. Plant Mol Bio, 2005, 58: 585-596.
    97. Zhou J, Tang X., Martin GB. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207-3218
    98. Zou X, Seemann JR, Neuman D, Shen QJ. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J. Biol Chem, 2004, 279: 55770-55779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700