间充质干细胞在肝纤维化形成中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景及目的】
     肝纤维化(hepatic fibrosis)是肝脏对慢性损伤的一种修复反应,以细胞外基质(extracellular matrix, ECM)在肝内过多沉积为特征。肝纤维化为一动态过程,属可逆性病变,因此,阻断、抑制或逆转肝纤维化是治疗慢性肝病的一个重要目标。既往认为,肝纤维化发生的中心环节是肝星状细胞(hepatic stellate cells,HSCs)激活并向肌成纤维样细胞(myofibroblasts, MFs)转化,抑制HSC激活、增殖与迁移、诱导凋亡是肝纤维化治疗的重要策略。近年来研究发现,在体内环境中通过单纯抑制HSCs来治疗肝纤维化的效果并不理想。而更多的研究者也逐渐认识到HSC也不是唯一重要的影响肝纤维化形成的细胞。那么探索其他参与肝纤维化形成的细胞亚群,并深入研究其作用机制想法就越来越受到研究者的重视。
     肝纤维化的发生、发展始终伴随着慢性炎症反应。其过程中受损的肝脏会分泌大量的细胞因子,生长因子,趋化因子参与纤维化的形成。与此同时多种肝外细胞群也会向受损部位趋化,发挥其作用。已有研究显示骨髓间充质干细胞(mesenchymal stem cells, MSCs)也是这些肝外细胞种群之一,在肝脏损伤的过程中它们会趋化到受损部位参与了肝纤维化的形成。MSCs是一种多潜能分化的非造血干细胞,主要存在于骨髓中。以往对MSCs的了解主要集中在它有向损伤部位趋化并修复损伤的功能,因此将其作为基因治疗药物进行开发,并在某些疾病,如结缔组织类疾病以及骨损伤的治疗中取得了良好的效果。但随着研究的深入,研究者又发现MSCs在某些疾病的发生、发展中还可能发挥了某些不利的作用,如它可以促进多种肿瘤的生长。对很多疾病特别是慢性疾病来说MSCs可能是一把双刃剑。这些结果提示研究者应该重新严格的审视MSCs在疾病当中起到的作用。对于肝脏损伤来说,MSCs在纤维化形成中的作用目前也存在着较大的争议。MSCs到底是促进还是抑制纤维化的发展是我们研究的目的之一。
     肝纤维化形成的一个重要的特点是肝脉管系统被大肆重建。血管系统重建伴随着肝纤维化发展的始终。在此过程中肝脏必然分泌大量的与血管生成有关的细胞因子,如VEGF,IL-6,IL-8等。而某些研究者也证实在体外实验中VEGF,PDGF等某些细胞因子或生长因子可以促进MSCs的增殖。MSCs向受损部位趋化是一个持续的过程,只要病因存在,炎症环境充分的建立起来,MSCs就会源源不断向受损部位募集。为了满足大量的、持续不断的细胞需要,就必然有某种原因或机制促使骨髓中的MSCs自我增殖补充。在此基础上我们提出假设,肝纤维化形成过程中分泌的大量的促血管生成的细胞因子如VEGF可能就是体内骨髓MSCs不断增殖的重要原因之一。当然,体内MSCs的趋化动员,不单单需要骨髓中MSCs的不断增殖,还需要有某些机制调节BM-MSCs转移出骨髓,进而随着外周血趋化募集到受损的部位。目前研究显示MSCs的迁移与趋化因子家族成员及其受体密切相关,其中最为重要的是CC-趋化家族和CXC-趋化家族的成员。但也有研究证明不同器官或组织损伤时,影响MSCs的迁移的趋化因子及其受体是不尽相同的,因此明确何种趋化因子在肝脏损伤,肝纤维化形成过程中影响BM-MSCs向肝脏的趋化募集,就可以为控制纤维化的发展寻找新的治疗靶点。
     本课题在建立多种小鼠动物模型的基础上,使用了荧光染色,免疫组化,PCR等多种分子生物学技术,探讨MSCs在肝纤维化形成过程中发挥的作用及其对肝功能的影响。并同时深入的探讨了BM-MSCs在体内增殖、迁移的主要原因及其作用机制。同时结合肝硬化临床标本的检测,以期进一步深入了解肝纤维化的发病机制,为肝纤维化的治疗提供新的思路。
     【实验方法】
     一、骨髓间充质干细胞的分离、培养和鉴定
     1.分别使用雄性WT-BALB/c小鼠和EGFP-BALB/c小鼠分离培养WT-MSCs和EGFP-MSCs细胞。采用密度梯度离心与贴壁培养相结合的方法来分离MSCs,但此时也混有少量的单核或局势细胞以及成纤维细胞。利用这些细胞与MSCs对塑料培养瓶的贴壁性强弱不同,细胞传代时用0.05%胰蛋白酶+0.02%EDTA静止消化2-3min后,反复多次的消化传代后可逐渐剔除其它种类细胞。
     2. MSCs的鉴定
     倒置相差显微镜动态观察小鼠WT-MSCs原代培养的生长过程;荧光显微镜下观察小鼠EGFP-MSCs细胞的生长过程。流式细胞仪技术、以及细胞免疫荧光染色技术检测小鼠MSCs上表面标记物CD34,CD90,CD45,CD90,CD105的表达情况。成骨诱导分化Von Kossa染色,以及ALP活性定量,检测MSCs成骨定向分化的能力,成脂诱导分化Oil Red O染色检测MSCs成脂定向分化的能力。
     二、间充质干细胞在肝纤维化形成中的作用
     构建小鼠CCL4肝损伤模型(模型1),以及小鼠骨髓移植模型+CCL4肝损伤模型(模型2)。确定骨髓移植模型构建成功后受体wt小鼠骨髓内有供体小鼠的EGFP-MSCs存在。通过尾静脉注射外源性的EGFP-MSCs给模型1的小鼠,3d后,冰冻切片免疫荧光显微镜下观察外源性的MSCs的趋化部位,以及肝纤维化的程度;通过模型2示踪内源性的EGFP-MSCs在肝脏损伤后的趋化部位;同时检测不同时间点AST,ALT的含量,检测肝纤维化形成过程中肝功能的情况。
     三、纤维化形成过程中骨髓间充质干细胞的动员
     使用模型1和模型2的小鼠,每周末处死部分小鼠,连续5周。模型1的每周处死的小鼠,于处死前3天注射外源性的EGFP-MSCs进行示踪。冰冻切片后荧光显微镜下观察,确定内、外源性的MSCs在小鼠动物模型中向肝脏趋化募集的时间。Realtime-PCR法筛选MSCs表面重要的趋化因子受体,以及对应的损伤肝脏中主要的发挥作用的趋化因子。然后观察此趋化因子在小鼠肝脏以及骨髓中的表达情况,以及体内外试验中对BM-MSCs的趋化能力。
     四、肝纤维化形成过程中VEGF促进骨髓间充质干细胞增殖的机制研究
     用免疫组化,realtime-PCR,ELISA等方法检测小鼠肝脏,血清中VEGF mRNA和/或蛋白质的表达情况。体外细胞增殖试验和单克隆形成试验检测VEGF对MSCs的增殖的影响,流式细胞仪技术检测小鼠体内VEGF对BM-MSCs增殖的影响,以及使用Avastin是否可以逆转这种影响。同时运用Transwell实验及划痕试验检测VEGF是否具有促进MSCs趋化迁移的能力。
     五、统计学处理
     数据采用SPSS 11.0以及Prism GraphPad5统计软件包进行分析、作图。P<0.05为具有显著性差异,P<0.01为具有非常显著性差异。
     【实验结果】
     一、骨髓间充质干细胞的分离、培养和鉴定
     1. MSCs的分离培养:小鼠BM-MSCs原代细胞进行培养后,24h后出现较多贴壁细胞,48-72h后成纺锤丝形或梭形生长,第4-5天开始形成典型的均匀分布的簇状增生灶,7-10天非贴壁细胞经反复换液而消失,细胞80%以上融合。再经过多次传代培养,细胞都呈梭形。人MSCs细胞系的培养从形态学上观察细胞呈典型的长梭形,细胞形态趋于一致,紧密排列类似旋涡状。
     2.小鼠BM-MSCs表面抗原的鉴定:运用流式细胞仪技术记忆细胞免疫荧光染色技术,检测上述分离培养的MSCs的表面标记物的表达情况,结果显示其表面表达粘附分子CD29,CD105,CD90的阳性率在95%以上,而造血干细胞的表面标志CD34,CD45几乎不表达。表明这些分离培养的细胞具有MSCs特征的比例非常高。
     3.小鼠MSCs的多向分化潜能:成骨诱导分化后14d,我们对细胞进行ALP阳性的检测,发现与对照组相比,诱导组ALP活性定量增高。第21d,Von Kossa染色,细胞表现为黑色的致密结节。成脂诱导分化后8d,光镜下可见细胞形态发生改变,胞内不乏圆形透亮脂质空泡,应用Oil Red-O原位染色检测脂质沉积,染色后可见红色深染的脂滴
     二、间充质干细胞在肝纤维化形成中的作用
     1. MSCs参与肝纤维化的形成:野生型小鼠尾静脉注射外源性的EGFP-MSCs随血液循环来到受损的肝脏,冰冻切片免疫荧光图显示有大量的绿色荧光蛋白分布于纤维间隔的附近。内源性的EGFP-MSCs在肝脏损伤后也趋化到受损伤的部位参与肝纤维化的形成。以SSEA4为人MSCs的标记物,检测MSCs在人肝纤维化组织中的表达,结果显示其主要表达的部位在纤维间隔与肝实质区的交界处,以此标记物流式细胞仪分离而得到的细胞,其中大部分的细胞仍然有成骨、成脂肪分化的能力,为MSCs细胞。这说明MSCs细胞也同样参与人肝纤维化的形成。
     2.小鼠骨髓间充质干细胞促进纤维化的形成
     天狼猩红染色,及Masson染色观察,以及羟脯氨酸定量检测发现注射大量的MSCs的小鼠其纤维化程度明显重于三个对照组(P<0.05)。但其肝功能(主要是AST)却有一定的改善,这说明MSC来到肝脏中加速纤维化的形成,是对损伤的一种修复反应,可以在一定程度上可以改善肝功能。
     三、纤维化形成过程中骨髓间充质干细胞的动员
     1.肝损过程MSCs向肝脏动员募集的时间
     想了解BM-MSCs向肝脏趋化的具体机制,首先要知道MSCs趋化的时间,从两种动物模型冰冻切片的结果看,MSCs动员的时间在第3周左右。而随着时间的推移这种动员程度也在增加。
     2.筛选肝纤维化形成过程中起主要作用的趋化因子及其受体。
     realtime-PCR法检测到小鼠MSCs细胞主要表达CCR1,CCR2,CCR5,CCR7,CXCR4,CXCR6等6中趋化因子受体,而对应这些趋化因子受体,我们检测到肝损后肝脏主要分泌的趋化因子有CCR1的配体MIP1α,MIP1β;CCR5的配体RANTES,但升高最为明显的是CXCR4的配体SDF-1α,因此我们认为在肝纤维形成过程中促使MSCs趋化最为重要的是SDF-1α/CXCR4趋化轴。
     3.验证SDF-1α/CXCR4趋化轴对MSCs的趋化募集作用
     结果显示肝损过程中小鼠肝脏的SDF-1α的表达逐渐增高,而骨髓SDF-1α的表达略有降低,当肝脏中SDF-1α浓度高于骨髓形成浓度梯度时,才能从骨髓中动员出大量的MSCs细胞,这也解释了为什么到第3周时,才能看到大量的绿色荧光蛋白出现于肝脏中。而Transwell的结果也显示在体外SDF-1α的确对MSCs有很强的趋化作用。
     四、肝纤维化形成过程中VEGF促进骨髓间充质干细胞增殖的机制研究
     结果显示在肝损过程中,肝脏有大量的VEGF的产生和分泌,其可以随血液分布于全身各处。外源性注射VEGF可以增加受体小鼠骨髓中EGFP-MSCs的含量,而这种效应可以被VEGF的单克隆抗体Avastin逆转。Transwell试验和划痕试验的结果显示VEGF影响MSC的迁移趋化的能力不强(P>0.05)。这说明VEGF在MSC的动员中主要的作用是促进MSCs的增殖,而不是MSCs的迁移。
     【结论】
     1.肝损过程中,间充质干细胞促进纤维化的形成,至少是促进早期肝纤维化的形成。
     2.早期的肝纤维化形成主要原因是肝损伤的修复,因此如果人为的加速肝脏修复促进早期肝纤维化的形成,可以相应改善肝功能。
     3.肝损过程中,骨髓间充质干细胞的动员,主要依赖于SDF1α/CXCR4趋化轴,肝脏和骨髓SDF1α浓度的变化决定着MSCs的走向。此趋化轴是MSCs转移出骨随进入循环,向受损部位趋化,募集的主要影响因素之一。
     4.肝纤维化中MSCs向受损部位趋化是一个持续的过程,在人肝硬化组织中也依然可以检测到MSCs的存在。VEGF是纤维化形成过程中骨髓MSCs增殖的主要影响因素之一。
Background and Objective】
     Hepatic fibrosis, characterized by deposition of extracellular matrix (ECM) in the Disse’s space, is a pathological response to a variety of chronic liver diseases, which is recognized as a dynamic and reversal process. Therefore, blocking, inhibition or even reversal of hepatic fibrosis is a major target for the treatment of chronic liver disease. Generally, it has been accepted that activated hepatic stellate cells (HSC), accompanying phenotypic transformation into myofibroblast-like cells, play the pivotal role in hepatic fibrogenesis. In the past decades, it is an important target on hepatic fibrosis therapy by repressing activation, proliferation and migration of HSC as well as inducing its apoptosis. Recently, several studies reported that in vivo environment by simply inhibiting the effect of the treatment of liver fibrosis is not ideal. And more researchers have come to realize that HSC is not the only important influence on the cells of liver fibrosis. So researchers take more attention to find other cell subsets that involve in hepatic fibrogenesis, and study the mechanism of these cells.
     The development of Liver fibrosis is always accompanied with chronic inflammation. The cells in liver will secrete a large number of cytokines, growth factors, chemokines involved in fibrosis during liver damage. At the same time a variety of extrahepatic cells will also chemotactic to the injured parts to involve in fibrogenesis. Has been shown that mesenchymal stem cells (MSCs) are one of these extrahepatic cell populations, during liver injury they also chemotaxis to the site of injury involved in hepatic fibrogenesis. MSCs is a pluripotent differential non-hematopoietic stem cells, generally located in the bone marrow. The understanding to MSCs in the past mainly focused on the capability of chemotaxis to the injuried site and the function of repairing damage, so as to develop its as a gene drug. In some diseases, such as connective tissue diseases and bone injury, MSCs therapy achieved good results. But with further research, the investigators found that MSCs in some diseases, also may play some adverse effects, such as it can promote the growth and development of various tumors. For many diseases, MSCs may be play a role of double-edged sword. These results suggested that the researchers should be re-examine strictly the role of MSCs in the disease.Currently, there is a big controvery to the role of MSCs in hepatic fibrogenesis. The purposes of our study is to explore the effect of MSCs to fibrogenesis is whether promoting or inhibiting.
     Hepatic fibrosis and other parts of the fibrosis is that the biggest difference between the vascular system reconstruction. Reconstruction of the vascular system associated with the development of liver fibrosis has always been. In this process must secrete large amounts of liver and angiogenesis-related cytokines, such as VEGF, IL-6, IL-8 and so on. And some researchers also confirmed in vitro VEGF, PDGF and other angiogenic some cytokines or growth factors can promote the proliferation of MSCs. MSCs to the damaged parts of the chemokine is a continuous process, as long as the cause of the existence of fully established inflammatory environment, MSCs will be a steady stream of chemotaxis to the liver, bone marrow, MSCs therefore have to supplement self-proliferation. On this basis, we hypothesize, the secretion of hepatic fibrosis in a large number of angiogenesis-promoting cytokines such as VEGF in vivo bone marrow MSCs may be a major reason for continued proliferation.
     Of course, MSCs migrate from extrahepatic tissues to the liver, in addition to the proliferation of MSCs been added, but also the ability of MSCs with directional migration. Studies have shown that MSCs migration and chemokine receptor family members and their closely related, the most important is CC-chemokine family and CXC-chemokine family. But there are also studies have shown that different organs or tissue damage, the impact of the migration of MSCs chemokine and its receptor is not the same, so clear which chemokines in liver injury, liver fibrosis in the liver of MSCs the chemotactic recruitment, we can control the development of fibrosis to find new therapeutic targets. The issue in the establishment of a variety of animal models based on the mouse, using fluorescent staining, immunohistochemistry, PCR and other molecular biology techniques to explore the formation of MSCs in the liver (at least the early fiber formation) played the and its effect on liver function. While in-depth discussion of the BM-MSCs in vivo proliferation, migration, raising the main reason for its mechanism. Combined with the detection of liver cirrhosis clinical samples to further understand the pathogenesis of hepatic fibrosis, hepatic fibrosis is to provide a new way of thinking.
     In this study ,we used a variety of animal models in mice, based on a clear process of liver fibrosis in MSCs in the presence of liver tissue and the formation of fiber (at least the early fiber formation) and liver function. And through a number of experiments in vivo testing, described BM-MSCs in the process of liver fibrosis in the liver migrate to the transfer of the bone marrow, raising the main factors, while exploring the causes of liver damage after the proliferation of BM-MSCs in vivo the main factors and mechanisms to the pathogenesis of hepatic fibrosis research and treatment of new ideas.
     【Methods】
     1. Isolation, culture and identification of mesenchymal stem cells
     1.1 Isolation and culture of MSCs
     Respectively male WT-BALB / c mice and EGFP-BALB / c mice were isolated and cultured WT-MSCs and EGFP-MSCs cells. By density gradient centrifugation and adherent culture methods to separate the combination of MSCs, but this time also mixed with a small amount of mononuclear cells or the situation, and fibroblasts. Use of these cells and MSCs cultured on plastic bottles of different strength of adherent cells when subcultured with 0.05% trypsin +0.02% EDTA digestion and 2-3min rest after repeated digestion can be gradually removed after the passage of other types of cells.
     1.2 MSCs Identification
     Dynamic inverted microscope WT-MSCs in mice the growth process of primary culture; fluorescence microscope mice EGFP-MSCs cell growth process. Flow cytometry, and immunofluorescence staining to detect surface markers on mouse MSCs CD34, CD90, CD45, CD90, CD105 expression. Osteogenic differentiation Von Kossa staining and ALP activity quantification, detection of directional differentiation of MSCs into the bone ability to adipogenic differentiation Oil Red O staining directional differentiation of MSCs into fat capacity.
     2. Effects of MSCs on liver fibrogenesis
     Construction of mouse CCL4 liver injury model (model 1), and bone marrow transplantation model + CCL4 liver injury model (model 2). Model determined after successful bone marrow transplant bone marrow receptor wt donor mice within the EGFP-MSCs exist. By tail vein injection of exogenous EGFP-MSCs in mice to model 1, 3d, the frozen section was observed under immunofluorescence microscopy exogenous chemotactic parts of MSCs, as well as the degree of liver fibrosis; trace through the model 2 Endogenous EGFP-MSCs in the liver after injury chemotactic parts; also detected at different time points AST, ALT levels, detection of liver fibrosis in the liver function of the situation
     3. Mobilization of MSCs during hepatic fibrogenesis
     Model 1 and Model 2 using mice, some mice were sacrificed every week for 5 weeks. Model mice were sacrificed 1 week, 3 days before injection in the death of the EGFP-MSCs exogenous tracer. Frozen sections were observed under fluorescence microscope to determine the intrinsic and extrinsic of MSCs in the mouse liver in animal models of chemotaxis to raise the time. Realtime-PCR Screening MSCs important chemokine surface receptors, and the corresponding damage the liver play a role in the major chemokines. Then observe this chemokine in the mouse liver and the expression of bone marrow and in vivo experiments on BM-MSCs of chemotaxis.
     4. The proliferative effect and mechanism of VEGF on MSCs during liver fibrogenesis
     By immunohistochemistry, realtime-PCR, ELISA used to detect liver and serum VEGF mRNA and / or protein expression. Vitro cell proliferation assay and monoclonal VEGF formation test the impact of the proliferation of MSCs, flow cytometry, mice, VEGF was detected on the proliferation of BM-MSCs, and the use of Avastin can reverse this effect. Transwell experiments and also the use of scratch test whether VEGF can promote the ability of MSCs chemotactic migration.
     5. Statistical Analysis
     Statistical analysis of values was performed with SPSS (11.0 version) and Prism GraphPad5 software, with a P value <0.05 considered significant and P <0.01 as very significant.
     【Results】
     1. Isolation, culture and identification of mesenchymal stem cells
     (1) MSCs isolation and culture of: mouse BM-MSCs were cultured primary cells, 24h after more adherent cells ,48-72h after the spindle into spindle-shaped or growth, the first form of a typical 4-5 day proliferation of uniform distribution of clusters of lesions, 7-10 days non-adherent cells disappeared after repeated medium change, cell fusion more than 80%. After several passages and then cultured spindle cells were tested. MSCs cultured human cell lines cells were observed from the morphology typical spindle cell morphology consistent, tightly arranged similar to the whirlpool.
     (2) Murine BM-MSCs Identification of surface antigen: memory cells by flow cytometry using immunofluorescence staining to detect the isolated and cultured MSCs, the expression of surface markers showed that the surface expression of adhesion molecules CD29, CD105 , CD90 positive rate of 95% or more, almost no expression of blood cell surface markers CD34, CD45. That these cells were isolated and cultured MSCs characteristics with a very high proportion.
     (3) A number of differentiation potential of MSCs in mice: induction of differentiation into bone 14d, our ALP-positive cells were detected, compared with the control group found that the induction group quantitative ALP activity increased. Section 21d, Von Kossa staining, cells showed dense black nodules. Adipogenic differentiation 8d, light microscope, morphological changes, intracellular lipid vacuoles lack circular translucent, applied in situ Oil Red-O lipid staining results seen after staining of lipid droplets stained red
     2. Effects of MSCs on liver fibrogenesis
     (1) MSCs participate in the formation of hepatic fibrosis: wt mice were injected with exogenous EGFP-MSCs with the blood circulation to the damaged liver, frozen section immunofluorescence figure shows a large number of green fluorescent protein distribution in the fiber spacing nearby. Endogenous EGFP-MSCs in the liver after injury by chemotaxis to the site of injury in liver fibrosis. Human MSCs to SSEA4 markers to detect liver fibrosis in human MSCs tissue showed the expression of the main parts of the fiber spacing and the junction of the liver parenchyma, as markers by flow cytometry, cell separation , most of which are still successful bone cells, the ability to differentiate into fat, the MSCs cells. This indicates that MSCs cells are also involved in the formation of liver fibrosis.
     (2) Murine bone marrow mesenchymal stem cells promote fibrosis: Sirius red staining, and Masson staining, and quantitative analysis of hydroxyproline found in mice injected with a large number of MSCs was more severe fibrosis in the three control groups (P <0.05). However, liver function (mainly AST) there is some improvement, indicating that MSC to accelerate liver fibrosis is a repair response to injury, to a certain extent, can improve liver function.
     3. Mobilization of MSCs during hepatic fibrogenesis
     (1) MSCs to the liver, liver damage during the time of mobilization to raise Want to know BM-MSCs to specific mechanisms of liver chemokine, the first time that MSCs chemotaxis, frozen sections from both the results of animal models to see, MSCs mobilization time in 3 weeks. With this mobilization level over time is also increasing.
     (2) The process of liver fibrosis screening play a major role of chemokines and their receptors.
     realtime-PCR assay to the mouse MSCs cells mainly expressed CCR1, CCR2, CCR5, CCR7, CXCR4, CXCR6 and other chemokine receptor 6, and the corresponding receptors of these chemokines, we detected the secretion of liver damage after major liver There CCR1 chemokine ligand MIP1α, MIP1β; CCR5 ligands RANTES, but increased the most obvious is the CXCR4 ligand SDF-1α, we consider the process of fibril formation in the liver to promote the most important chemokine MSCs is SDF-1α/CXCR4 chemotactic axis.
     (3) Verify SDF-1α/CXCR4 chemotactic chemotactic axis raised on the role of MSCs
     The results showed that liver damage the liver of mice during the expression of SDF-1αincreased gradually, while the expression of bone marrow SDF-1αdecreased slightly, when the liver was higher than in the bone marrow SDF-1αconcentration gradient formed only when a large number of mobilized from the bone marrow of the MSCs cells, which explains why the first 3 weeks, to see the large number of green fluorescent protein found in the liver. The Transwell The results also show that SDF-1αin vitro on MSCs do have a strong chemotactic effect.
     4. The proliferative effect and mechanism of VEGF on MSCs during liver fibrogenesis
     The results showed that the process of liver damage, liver and a large number of VEGF production and secretion, which can be distributed with the blood throughout the body. Exogenous VEGF can increase the recipient mice injected with bone marrow content of EGFP-MSCs, and this effect can be reversed VEGF monoclonal antibody Avastin. Transwell test and scratch test results showed that VEGF chemotactic migration of MSC's capability is not strong (P> 0.05). This shows that the mobilization of VEGF in the MSC is to promote a major role in the proliferation of MSCs, rather than the migration of MSCs.
     【Conclusion】
     All of our results revealed that:
     1. The process of liver damage, mesenchymal stem cells promote the formation of fibrosis, at least for early liver fibrosis.
     2. The early hepatic fibrosis is mainly due to the repair of liver injury, so if the acceleration of liver repair man for the formation of early stage of liver fibrosis, liver function can be improved correspondingly.
     3. The process of liver damage, bone marrow mesenchymal stem cells mobilization, mainly depends on the SDF1α/CXCR4 chemotactic axis, the concentration of liver and bone marrow SDF1αMSCs determines the direction of change. This chemotactic axis is moved out of bone with MSCs into the circulation, to the damaged parts of the chemokines, raising one of the main factors.
     4. MSCs liver fibrosis in chemotaxis to the site of injury is an ongoing process, but also in human liver tissue is still able to detect the presence of MSCs. VEGF is the formation of bone marrow fibrosis and proliferation of MSCs one of the main factors.
引文
[1] Chen C, Wei Y, Hummel M, Hoffmann TK, Gross M, Kaufmann AM, Albers AE: Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One 2011, 6(1):e16466.
    [2] Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG et al: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011, 71(2):614-624.
    [3] Bolanos-Meade J, Vogelsang GB: Mesenchymal stem cells and organ transplantation: current status and promising future. Transplantation 2006, 81(10):1388-1389.
    [4] Zhang X, Jiao C, Zhao S: Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Rev 2009, 5(4):402-409.
    [5] El-Badri NS, Maheshwari A, Sanberg PR: Mesenchymal stem cells in autoimmune disease. Stem cells and development 2004, 13(5):463-472.
    [6] Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD: Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther 2001, 3(6):857-866.
    [7] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284(5411):143-147.
    [8] Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L: Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem cells (Dayton, Ohio) 2005, 23(8):1105-1112.
    [9] Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP: Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem cells (Dayton, Ohio) 2006, 24(6):1613-1619.
    [10] Kang JH, Lee CK, Kim JR, Yu SJ, Jo JH, Do BR, Kim HK, Kang SG: Estrogen stimulates the neuronal differentiation of human umbilical cord blood mesenchymal stem cells (CD34-). Neuroreport 2007, 18(1):35-38.
    [11] Martin-Rendon E, Hale SJ, Ryan D, Baban D, Forde SP, Roubelakis M, Sweeney D, Moukayed M, Harris AL, Davies K et al: Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem cells (Dayton, Ohio) 2007, 25(4):1003-1012.
    [12] Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K: Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem cells (Dayton, Ohio) 2004, 22(5):649-658.
    [13] Steigman SA, Fauza DO: Isolation of mesenchymal stem cells from amniotic fluid and placenta. Curr Protoc Stem Cell Biol 2007, Chapter 1:Unit 1E 2.
    [14] Tsai MS, Lee JL, Chang YJ, Hwang SM: Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human reproduction (Oxford, England) 2004, 19(6):1450-1456.
    [15] Warejcka DJ, Harvey R, Taylor BJ, Young HE, Lucas PA: A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. The Journal of surgical research 1996, 62(2):233-242.
    [16] Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Jr., Reagan CR, Lucas PA: Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 1995, 202(2):137-144.
    [17] Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC: Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem cells (Dayton, Ohio) 2005, 23(3):412-423.
    [18] Fickert S, Fiedler J, Brenner RE: Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 2003, 11(11):790-800.
    [19] Liu XD, Liu B, Li XS, Mao N: [Isolation and identification of mesenchymal stem cells from perfusion of human umbilical cord vein]. Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = Journal of experimental hematology / Chinese Association of Pathophysiology 2007, 15(5):1019-1022.
    [20] Baksh D, Song L, Tuan RS: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of cellular and molecular medicine 2004, 8(3):301-316.
    [21] Lisignoli G, Remiddi G, Cattini L, Cocchini B, Zini N, Fini M, Grassi F, Piacentini A, Facchini A: An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connective tissue research 2001, 42(1):49-58.
    [22] Tian X, Fu R, Deng L: [Method and conditions of isolation and proliferation of multipotent mesenchymal stem cells]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery 2007, 21(1):81-85.
    [23] Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(14):7841-7845.
    [24] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8(4):315-317.
    [25] Javazon EH, Beggs KJ, Flake AW: Mesenchymal stem cells: paradoxes of passaging. Experimental hematology 2004, 32(5):414-425.
    [26] Deans RJ, Moseley AB: Mesenchymal stem cells: biology and potential clinical uses. Experimental hematology 2000, 28(8):875-884.
    [27] Lange C, Schroeder J, Stute N, Lioznov MV, Zander AR: High-potential human mesenchymal stem cells. Stem cells and development 2005, 14(1):70-80.
    [28] Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA: Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 2001, 7(11):581-588.
    [29] Nuttall ME, Gimble JM: Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 2000, 27(2):177-184.
    [30] Ye CP, Yamaguchi T, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM: Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone 2000, 27(1):21-27.
    [31] Coelho MJ, Fernandes MH: Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000, 21(11):1095-1102.
    [32] Otsuka E, Yamaguchi A, Hirose S, Hagiwara H: Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. The American journal of physiology 1999, 277(1 Pt 1):C132-138.
    [33] Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry 1997, 64(2):295-312.
    [34] Wu Z, Bucher NL, Farmer SR: Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Molecular and cellular biology 1996, 16(8):4128-4136.
    [35] Cui Q, Wang GJ, Balian G: Steroid-induced adipogenesis in a pluripotential cell line from bone marrow. The Journal of bone and joint surgery 1997, 79(7):1054-1063.
    [36] Li L, Beauchamp MC, Renier G: Peroxisome proliferator-activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 2002, 165(1):101-110.
    [37] Tang QQ, Jiang MS, Lane MD: Repressive effect of Sp1 on the C/EBPalpha gene promoter: role in adipocyte differentiation. Molecular and cellular biology 1999, 19(7):4855-4865.
    [38] Klemm DJ, Roesler WJ, Boras T, Colton LA, Felder K, Reusch JE: Insulin stimulates cAMP-response element binding protein activity in HepG2 and 3T3-L1 cell lines. The Journal of biological chemistry 1998, 273(2):917-923.
    [1] Bataller R, Brenner DA: Liver fibrosis. The Journal of clinical investigation 2005, 115(2):209-218.
    [2] Iredale JP: Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ (Clinical research ed 2003, 327(7407):143-147.
    [3] Cheng K, Mahato RI: Gene modulation for treating liver fibrosis. Critical reviews in therapeutic drug carrier systems 2007, 24(2):93-146.
    [4] Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H: New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. Journal of hepatology 2010, 53(1):132-144.
    [5] Wu J, Zern MA: Hepatic stellate cells: a target for the treatment of liver fibrosis. Journal of gastroenterology 2000, 35(9):665-672.
    [6] Fickert P, Fuchsbichler A, Moustafa T, Wagner M, Zollner G, Halilbasic E, Stoger U, Arrese M, Pizarro M, Solis N et al: Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. The American journal of pathology 2009, 175(6):2392-2405.
    [7] Larsson O, Diebold D, Fan D, Peterson M, Nho RS, Bitterman PB, Henke CA: Fibrotic myofibroblasts manifest genome-wide derangements of translational control. PloS one 2008, 3(9):e3220.
    [8] Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG: Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology (Baltimore, Md 2007, 46(4):1246-1256.
    [9] Abdel Aziz MT, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Ahmed HH, Rashed LA, Sabry D, Hassouna AA, Hasan NM: Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical biochemistry 2007, 40(12):893-899.
    [10] Chang YJ, Liu JW, Lin PC, Sun LY, Peng CW, Luo GH, Chen TM, Lee RP, Lin SZ, Harn HJ et al: Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life sciences 2009, 85(13-14):517-525.
    [11] Li C, Kong Y, Wang H, Wang S, Yu H, Liu X, Yang L, Jiang X, Li L, Li L: Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. Journal of hepatology 2009, 50(6):1174-1183.
    [12] Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K: Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 2006, 14(12):1307-1314.
    [13] Cheng Z, Liu X, Ou L, Zhou X, Liu Y, Jia X, Zhang J, Li Y, Kong D: Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy 2008, 22(5):363-371.
    [14] Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W: Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem cells (Dayton, Ohio) 2004, 22(3):405-414.
    [15] Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S, Abele H, Schewe B, Just L, Skutella T et al: Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation; research in biological diversity 2007, 75(4):279-291.
    [16] Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC: SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007, 109(4):1743-1751.
    [17] Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M: Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Experimental and molecular pathology 2003, 75(3):248-255.
    [18] Crisostomo PR, Markel TA, Wang M, Lahm T, Lillemoe KD, Meldrum DR: In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 2007, 142(2):215-221.
    [19] Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC: Gastric cancer originating from bone marrow-derived cells. Science (New York, NY 2004, 306(5701):1568-1571.
    [20] Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y: Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and molecular pathology 2006, 80(3):267-274.
    [1] Schall TJ, Mak JY, DiGregorio D, Neote K: Receptor/ligand interactions in the C-C chemokine family. Advances in experimental medicine and biology 1993, 351:29-37.
    [2] Buc M, Bucova M: [Chemokines]. Bratislavske lekarske listy 2000, 101(9):507-511.
    [3] Djouad F, Delorme B, Maurice M, Bony C, Apparailly F, Louis-Plence P, Canovas F, Charbord P, Noel D, Jorgensen C: Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis research & therapy 2007, 9(2):R33.
    [4] Cristino S, Piacentini A, Manferdini C, Codeluppi K, Grassi F, Facchini A, Lisignoli G: Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: evidence in native cartilage. Tissue engineering 2008, 14(1):97-105.
    [5] Younossi ZM, Afendy A, Stepanova M, Hossain N, Younossi I, Ankrah K, Gramlich T, Baranova A: Gene expression profile associated with superimposed non-alcoholic fatty liver disease and hepatic fibrosis in patients with chronic hepatitis C. Liver Int 2009, 29(9):1403-1412.
    [6] Iejima D, Sumita Y, Kagami H, Ando Y, Ueda M: Odontoblast marker gene expression is enhanced by a CC-chemokine family protein MIP-3alpha in human mesenchymal stem cells. Archives of oral biology 2007, 52(10):924-931.
    [7] Berres ML, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H, Schmitz P, Streetz KL, Berg T, Gassler N et al: Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. The Journal of clinical investigation 2010, 120(11):4129-4140.
    [8] Heymann F, Trautwein C, Tacke F: Monocytes and macrophages as cellular targets in liver fibrosis. Inflammation & allergy drug targets 2009, 8(4):307-318.
    [9] Tacke F, Trautwein C, Yagmur E, Hellerbrand C, Wiest R, Brenner DA, Schnabl B: Up-regulated eotaxin plasma levels in chronic liver disease patients indicate hepatic inflammation, advanced fibrosis and adverse clinical course. Journal of gastroenterology and hepatology 2007, 22(8):1256-1264.
    [10] Zeremski M, Petrovic LM, Chiriboga L, Brown QB, Yee HT, Kinkhabwala M, Jacobson IM, Dimova R, Markatou M, Talal AH: Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology (Baltimore, Md 2008, 48(5):1440-1450.
    [11] Aoyama T, Inokuchi S, Brenner DA, Seki E: CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology (Baltimore, Md 2010, 52(4):1390-1400.
    [12] Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ: Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circulation research 2010, 106(11):1753-1762.
    [13] Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, Renia L, Pol S, Mallet V, Gilgenkrantz H: Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. The American journal of pathology 2009, 174(5):1766-1775.
    [14] Ji JF, He BP, Dheen ST, Tay SS: Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem cells (Dayton, Ohio) 2004, 22(3):415-427.
    [15] Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F et al: Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005, 106(2):419-427.
    [16] Chamberlain G, Wright K, Rot A, Ashton B, Middleton J: Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PloS one 2008, 3(8):e2934.
    [17] Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, Kaps C, Sittinger M: Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. Journal of cellular biochemistry 2007, 101(1):135-146.
    [1] Shi H, Dong L, Zhang Y, Bai Y, Zhao J, Zhang L: Protective effect of a coffee preparation (Nescafe pure) against carbon tetrachloride-induced liver fibrosis in rats. Clinical nutrition (Edinburgh, Scotland) 2010, 29(3):399-405.
    [2] Geier A, Dietrich CG, Voigt S, Kim SK, Gerloff T, Kullak-Ublick GA, Lorenzen J, Matern S, Gartung C: Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology (Baltimore, Md 2003, 38(2):345-354.
    [3] Forooghian F, Das B: Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha. American journal of ophthalmology 2007, 144(5):761-768.
    [4] Lin H, Shabbir A, Molnar M, Yang J, Marion S, Canty JM, Jr., Lee T: Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. Journal of cellular physiology 2008, 216(2):458-468.
    [5] Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM: Differential mobilization of subsets of progenitor cells from the bone marrow. Cell stem cell 2009, 4(1):62-72.
    [6] Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F et al: Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC developmental biology 2007, 7:11.
    [7] Brachvogel B, Moch H, Pausch F, Schlotzer-Schrehardt U, Hofmann C, Hallmann R, von der Mark K, Winkler T, Poschl E: Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development (Cambridge, England) 2005, 132(11):2657-2668.
    [8] Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, Muguruma Y, Tsuboi K, Itabashi Y, Ikeda Y et al: Nonhematopoietic mesenchymal stem cellscan be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004, 104(12):3581-3587.
    [9] Li Y, Yu J, Li M, Qu Z, Ruan Q: Mouse mesenchymal stem cells from bone marrow differentiate into smooth muscle cells by induction of plaque-derived smooth muscle cells. Life sciences 2010, 88(3-4):130-140.
    [10] Kong X, Zheng F, Guo LY, Yang JY, Zhang L, Tang JM, Huang YZ, Wang JN: [VEGF promotes the proliferation of bone marrow derived mesenchymal stem cells through ERK1/2 signal pathway]. Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = Journal of experimental hematology / Chinese Association of Pathophysiology, 18(5):1292-1296.
    [11] Pountos I, Georgouli T, Henshaw K, Bird H, Jones E, Giannoudis PV: The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. Journal of orthopaedic trauma 2010, 24(9):552-556.
    [12] Kang YJ, Jeon ES, Song HY, Woo JS, Jung JS, Kim YK, Kim JH: Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. Journal of cellular biochemistry 2005, 95(6):1135-1145.
    [13] Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF: Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue engineering 2010, 16(3):1009-1019.
    [14] Dombrowski C, Song SJ, Chuan P, Lim X, Susanto E, Sawyer AA, Woodruff MA, Hutmacher DW, Nurcombe V, Cool SM: Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem cells and development 2009, 18(4):661-670.
    [15] Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117(3):524–529.
    [16] Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3(5):349–363.
    [17] Friedman SL. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004;1(2):98–105.
    [18] Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2001;21(3):351–372.
    [19] Kumar V, Abbas AK, Fausto N. Tissue renewal and repair: regeneration, healing, and fibrosis. In Pathologic Basis of Disease, Kumar V, Abbas AK, Fausto N (eds). Elsevier Saunders: Philadelphia, PA, 2005; 87–118.
    [20] Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006;24:99–146.
    [21] Wynn TA. IL-13 effector functions. Annu Rev Immunol 2003;21:425–456.
    [22] Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol 2007;22(suppl 1):S79–84.
    [23] Pardo A, Selman M. Matrix metalloproteases in aberrant fibrotic tissue remodelling. Proc Am Thorac Soc 2006;3(4):383–388.
    [24] Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 2006;8(2):145–150.
    [25] Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 2007;13(8):952–961. Epub: 29 July 2007.
    [26] Willis BC, du Bois RM, Borok Z. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 2006;3(4):377–382.
    [27] Kalluri R, Neilson EG. Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112(12):1776–1784.
    [28] Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994;1(1):71–81.
    [29] Ebihara Y, Masuya M, Larue AC, Fleming PA, Visconti RP, Minamiguchi H, et al. Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp Hematol 2006;34(2):219–229.
    [30] Brittan M, Hunt T, Jeffery R, Poulsom R, Forbes SJ, Hodivala- Dilke K, et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut 2002;50(6):752–757.
    [31] Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, et al. Multiple organ engraftment by bone-marrowderived myofibroblasts and fibroblasts in bone-marrowtransplanted mice. Stem Cells 2003;21(5):514–520.
    [32] Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004;126(4):955–963.
    [33] Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006;130(6):1807–1821.
    [34] Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 2004;114(3):438–446.
    [35] Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 2005;166(3):675–684.
    [36] Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 2006;103(48):18284–18289. Epub: 17 November 2006.
    [37] Meneghin MD, Hogaboam C. Infectious disease, the innate immune response, and fibrosis. J Clin Invest 2007;117(3):530–538.
    [38] Otte JM, Rosenberg IM, Podolsky DK. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 2003;124(7):1866–1878.
    [39] Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4(7):499–511.
    [40] Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev 2005;16(6):553–560. Epub: 20 June 2005.
    [41] Strehlow D, Korn JH. Biology of the scleroderma fibroblast. Curr Opin Rheumatol 1998;10(6):572–578.
    [42] Abraham DJ, Varga J. Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol 2005;26(11):587–595. Epub: 15 September 2005.
    [43] Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007;117(3):557–567.
    [44] Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ, McKerrow JH, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGFβ-independent. J Immunol 2004;173(6):4020–4029.
    [45] Moustakas A, Heldin CH. Non-Smad TGFβsignals. J Cell Sci 2005;118(16):3573–3584.
    [46] Markiewicz M, Smith EA, Rubinchik S, Dong JY, Trojanowska M, LeRoy EC. The 72-kDa IE-1 protein of human cytomegalovirus (HCMV) is a potent inducer of connective tissue growth factor (CTGF) in human dermal fibroblasts. Clin Exp Rheumatol 2004;22(3, suppl 33):S31–34.
    [47] Wang Y, Fan PS, Kahaleh B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 2006;54(7):2271–2279.
    [48] Hasegawa M, Fujimoto M, Takehara K, Sato S. Pathogenesis of systemic sclerosis: altered B cell function is the key linking systemic autoimmunity and tissue fibrosis. J Dermatol Sci 2005;39(1):1–7.
    [49] Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004;4(8):583–594.
    [50] Ong CJ, Ip S, Teh SJ, Wong C, Jirik FR, Grusby MJ, et al. A role for T helper 2 cells in mediating skin fibrosis in tight-skin mice. Cell Immunol 1999;196(1):60–68.
    [51] Lakos G, Melichian D, Wu M, Varga J. Increased bleomycininduced skin fibrosis in mice lacking the Th1-specific transcription factor T-bet. Pathobiology 2006;73(5):224–237.
    [52] Aliprantis AO, Wang J, Fathman JW, Lemaire R, Dorfman DM, Lafyatis R, et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-Proc Natl Acad Sci USA 2007;104(8):2827–2830. Epub: 16 February 2007.
    [53] Smith RE, Strieter RM, Phan SH, Lukacs NW, Huffnagle GB, Wilke CA, et al. Production and function of murine macrophage inflammatory protein-1αin bleomycin-induced lung injury. J Immunol 1994;153(10):4704–4712.
    [54] Smith RE, Strieter RM, Zhang K, Phan SH, Standiford TJ, Lukacs NW, et al. A role for C–C chemokines in fibrotic lung disease. J Leukoc Biol 1995;57(5):782–787.
    [55] Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997;185(7):1371–1380.
    [56] Belperio JA, Keane MP, Burdick MD, Lynch JP III, Xue YY, Berlin A, et al. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J Clin Invest 2001;108(4):547–556.
    [57] Tokuda A, Itakura M, Onai N, Kimura H, Kuriyama T, Matsushima K. Pivotal role of CCR1-positive leukocytes in bleomycin-induced lung fibrosis in mice. J Immunol 2000;164(5):2745–2751.
    [58] Blease K, Mehrad B, Standiford TJ, Lukacs NW, Kunkel SL, Chensue SW, et al. Airway remodelling is absent in CCR1?/? mice during chronic fungal allergic airway disease. J Immunol 2000;165(3):1564–1572.
    [59] Anders HJ, Vielhauer V, Frink M, Linde Y, Cohen CD, Blattner SM, et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 2002;109(2):251–259.
    [60] Moore BB, Paine R III, Christensen PJ, Moore TA, Sitterding S, Ngan R, et al. Protection from pulmonary fibrosis in the absence of CCR2 signalling. J Immunol 2001;167(8):4368–4377.
    [61] Zhu Z, Ma B, Zheng T, Homer RJ, Lee CG, Charo IF, et al. IL-13-induced chemokine responses in the lung: role of CCR2 in the pathogenesis of IL-13-induced inflammation and remodelling. J Immunol 2002;168(6):2953–2962.
    [62] Gao JL, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE, Cooper S, et al. Impaired host defence, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 1997;185(11):1959–1968.
    [63] Belperio JA, Dy M, Burdick MD, Xue YY, Li K, Elias JA, et al. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2002;27(4):419–427.
    [64] Ma B, Zhu Z, Homer RJ, Gerard C, Strieter R, Elias JA. The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-induced inflammation and remodelling. J Immunol 2004;172(3):1872–1881.
    [65] Wynn TA, Cheever AW, Jankovic D, Poindexter RW, Caspar P, Lewis FA, et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 1995;376(6541):594–596.
    [66] Cheever AW, Williams ME, Wynn TA, Finkelman FD, Seder RA, Cox TM, et al. Anti-IL-4 treatment of Schistosoma mansoniinfected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 1994;153(2):753–759.
    [67] Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 1999;104(6):777–785.
    [68] Pesce J, Kaviratne M, Ramalingam TR, Thompson RW, Urban JF Jr, Cheever AW, et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest 2006;116(7):2044–2055. Epub: 15 June 2006.
    [69] Reiman RM, Thompson RW, Feng CG, Hari D, Knight R, Cheever AW, et al. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun 2006;74(3):1471–1479.
    [70] Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon-γin bleomycin-mouse model of lung fibrosis: downregulation of TGFβand procollagen I and III gene expression. Exp Lung Res 1995;21(5):791–808.
    [71] Keane MP, Belperio JA, Burdick MD, Strieter RM. IL-12 attenuates bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2001;281(1):L92–97.
    [72] Oldroyd SD, Thomas GL, Gabbiani G, El Nahas AM. Interferon-γinhibits experimental renal fibrosis. Kidney Int 1999;56(6):2116–2127.
    [73] Poynard T, Yuen MF, Ratziu V, Lai CL. Viral hepatitis C. Lancet 2003;362(9401):2095–2100.
    [74] Hesse M, Cheever AW, Jankovic D, Wynn TA. NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease. Am J Pathol 2000;157(3):945–955.
    [75] Hessel EM, Chu M, Lizcano JO, Chang B, Herman N, Kell SA, et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med 2005;202(11):1563–1573. Epub: 28 November 2005.
    [76] Hoffmann KF, McCarty TC, Segal DH, Chiaramonte M, Hesse M, Davis EM, et al. Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions. FASEB J 2001;15(13):2545–2547.
    [77] Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 2003;171(7):3655–3667.
    [78] Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, Kane DW, et al. High-throughput GoMiner, an‘industrialstrength’integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of common variable immune deficiency (CVID). BMC Bioinformat 2005;6:168.
    [79] Walker LS, Abbas AK. The enemy within: keeping selfreactive T cells at bay in the periphery. Nat Rev Immunol 2002;2(1):11–19.
    [80] Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 2001;167(11):6533–6544.
    [81] Decitre M, Gleyzal C, Raccurt M, Peyrol S, Aubert-Foucher E, Csiszar K, et al. Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab Invest 1998;78(2):143–151.
    [82] Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N, et al. Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 2003;63(7):1657–1666.
    [83] Wang S, Hirschberg R. BMP7 antagonizes TGFβ-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 2003;284(5):F1006–1013.
    [84] Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial–mesenchymal transformation. Am J Pathol 2003;162(6):1937–1949.
    [85] Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 2000;279(5):L895–902.
    [86] Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, et al. Loss or inhibition of uPA or MMP-9 attenuates LV remodelling and dysfunction after acute pressure overload in mice. Am J Pathol 2005;166(1):15–25.
    [87] Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, et al. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2001;12(4):736–748.
    [88] Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA. Regulation of hepatic fibrosis and extracellular matrix genes by the Th response: New insight into the role of tissue inhibitors of matrix metalloproteinases. J Immunol 2001;167(12):7017–7026.
    [89] Kaminski N, Allard JD, Pittet JF, Zuo F, Griffiths MJ, Morris D, et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc Natl Acad Sci USA 2000;97(4):1778–1783.
    [90] Kristensen DB, Kawada N, Imamura K, Miyamoto Y, Tateno C, Seki S, et al. Proteome analysis of rat hepatic stellate cells. Hepatology 2000;32(2):268–277.
    [91] Emura M, Nagai S, Takeuchi M, Kitaichi M, Izumi T, Nishimura K, et al. In vitro production of B cell growth factor and B cell differentiation factor by peripheral blood mononuclear cells and bronchoalveolar lavage T lymphocytes from patients with idiopathic pulmonary fibrosis. Clin Exp Immunol 1990;82(1):133–139.
    [92] Wallace WA, Ramage EA, Lamb D, Howie SE. A type 2 (Th2-like) pattern of immune response predominates in the pulmonary interstitium of patients with cryptogenic fibrosing alveolitis (CFA). Clin Exp Immunol 1995;101(3):436–441.
    [93] Booth M, Mwatha JK, Joseph S, Jones FM, Kadzo H, Ireri E, et al. Periportal fibrosis in human Schistosoma mansoni infection is associated with low IL-10, low IFNγ, high TNFα, or low RANTES, depending on age and gender. J Immunol 2004;172(2):1295–1303.
    [94] Buttner C, Skupin A, Reimann T, Rieber EP, Unteregger G, Geyer P, et al. Local production of interleukin-4 during radiationinduced pneumonitis and pulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4. Am J Respir Cell Mol Biol 1997;17(3):315–325.
    [95] Fertin C, Nicolas JF, Gillery P, Kalis B, Banchereau J, Maquart FX. Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol 1991;37(8):823–829.
    [96] Letterio JJ, Roberts AB. Regulation of immune responses by TGFβ. Annu Rev Immunol 1998;16:137–161.
    [97] Sempowski GD, Beckmann MP, Derdak S, Phipps RP. Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 inenhancing fibroblast proliferation and collagen synthesis. J Immunol 1994;152(7):3606–3614.
    [98] Doucet C, Brouty-Boye D, Pottin-Clemenceau C, Canonica GW, Jasmin C, Azzarone B. Interleukin (IL)-4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest 1998;101(10):2129–2139.
    [99] Ong C, Wong C, Roberts CR, Teh HS, Jirik FR. Anti-IL-4 treatment prevents dermal collagen deposition in the tight-skin mouse model of scleroderma. Eur J Immunol 1998;28(9):2619–2629.
    [100] Le Moine A, Flamand V, Demoor FX, Noel JC, Surquin M, Kiss R, et al. Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 1999; 103(12): 1659– 1667.
    [101] Zurawski SM, Vega F Jr, Huyghe B, Zurawski G. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 1993;12(7):2663–2670.
    [102] McKenzie GJ, Emson CL, Bell SE, Anderson S, Fallon P, Zurawski G, et al. Impaired development of Th2 cells in IL-13-deficient mice. Immunity 1998;9(3):423–432.
    [103] Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999;103(6):779–788.
    [104] Donaldson DD, Whitters MJ, Fitz LJ, Neben TY, Finnerty H, Henderson SL, et al. The murine IL-13 receptorα2: molecular cloning, characterization, and comparison with murine IL-13 receptorα1. J Immunol 1998;161(5):2317–2324.
    [105] Blease K, Jakubzick C, Westwick J, Lukacs N, Kunkel SL, Hogaboam CM. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J Immunol 2001; 166(8) :5219–5224.
    [106] Kumar RK, Herbert C, Yang M, Koskinen AM, McKenzie AN, Foster PS. Role of interleukin-13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma. Clin Exp Allergy 2002;32(7):1104–1111.
    [107] Keane MP, Gomperts BN, Weigt S, Xue YY, Burdick MD, Nakamura H, et al. IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol 2007; 178(1):511–519.
    [108] Kolodsick JE, Toews GB, Jakubzick C, Hogaboam C, Moore TA, McKenzie A, et al. Protection from fluorescein isothiocyanateinduced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J Immunol 2004; 172(7) :4068–4076.
    [109] Chiaramonte MG, Cheever AW, Malley JD, Donaldson DD, Wynn TA. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology 2001;34(2):273–282.
    [110] Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol 2000;164(5):2585–2591.
    [111] Rankin JA, Picarella DE, Geba GP, Temann UA, Prasad B, DiCosmo B, et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci USA 1996;93(15):7821–7825.
    [112] Webb DC, Mahalingam S, Cai Y, Matthaei KI, Donaldson DD, Foster PS. Antigen-specific production of interleukin (IL)-13 and IL-5 cooperate to mediate IL-4Rα-independent airway hyperreactivity. Eur J Immunol 2003;33(12):3377–3385.
    [113] Blease K, Schuh JM, Jakubzick C, Lukacs NW, Kunkel SL, Joshi BH, et al. Stat6-deficient mice develop airway hyperresponsiveness and peribronchial fibrosis during chronic fungal asthma. Am J Pathol 2002;160(2):481–490.
    [114] Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signalling through the IL-13α2 receptor is involved in induction of TGFβ1 production and fibrosis. Nat Med 2006; 12(1): 99–106. Epub: 4 December 2005.
    [115] Wood N, Whitters MJ, Jacobson BA, Witek J, Sypek JP, Kasaian M, et al. Enhanced interleukin (IL)-13 responses in mice lacking IL-13 receptorα2. J Exp Med 2003; 197(6) :703–709.
    [116] Gharaee-Kermani M, Phan SH. Lung interleukin-5 expression in murine bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 1997;16(4):438–447.
    [117] Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS, McGarry MP, et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependentmodel of respiratory inflammation with characteristics of severe asthma. J Immunol 2007;178(12):7879–7889.
    [118] Williams TJ. The eosinophil enigma. J Clin Invest 2004;113(4):507–509.
    [119] Sher A, Coffman RL, Heiny S, Scott P, Cheever AW. Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci USA 1990;87:61–64.
    [120] Hao H, Cohen DA, Jennings CD, Bryson JS, Kaplan AM. Bleomycin-induced pulmonary fibrosis is independent of eosinophils. J Leukoc Biol 2000;68(4):515–521.
    [121] Gharaee-Kermani M, McGarry B, Lukacs N, Huffnagle G, Egan RW, Phan SH. The role of IL-5 in bleomycin-induced pulmonary fibrosis. J Leukoc Biol 1998;64(5):657–666.
    [122] Blyth DI, Wharton TF, Pedrick MS, Savage TJ, Sanjar S. Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am J Respir Cell Mol Biol 2000;23(2):241–246.
    [123] Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, et al. Inhibition of airway remodelling in IL-5-deficient mice. J Clin Invest 2004;113(4):551–560.
    [124] Trifilieff A, Fujitani Y, Coyle AJ, Kopf M, Bertrand C. IL-5 deficiency abolishes aspects of airway remodelling in a murine model of lung inflammation. Clin Exp Allergy 2001; 31(6) :934–942.
    [125] Huaux F, Liu T, McGarry B, Ullenbruch M, Xing Z, Phan SH. Eosinophils and T lymphocytes possess distinct roles in bleomycin-induced lung injury and fibrosis. J Immunol 2003; 171(10) :5470–5481.
    [126] Mattes J, Yang M, Mahalingam S, Kuehr J, Webb DC, Simson L, et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med 2002; 195(11):1433–1444.
    [127] Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, et al. Role of IL-5 and eosinophils in allergeninduced airway remodelling in mice. Am J Respir Cell Mol Biol 2004;19:19.
    [128] Frohlich A, Marsland BJ, Sonderegger I, Kurrer M, Hodge MR, Harris NL, et al. IL-21 receptor signalling is integral to the development of Th2 effector responses in vivo. Blood 2007; 109(5) :2023–2031. Epub: 31 October 2006.
    [129] Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115(1):56–65.
    [130] Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGFβ1/Smad3 signalling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112(10):1486–1494.
    [131] Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, et al. Natural inhibitor of transforming growth factor-βprotects against scarring in experimental kidney disease. Nature 1992;360(6402):361–364.
    [132] Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGFβ1 transgenic mice. J Clin Invest 1997; 100(11): 2697– 2713.
    [133] Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997;100(4):768–776.
    [134] Gorelik L, Flavell RA. Transforming growth factor-βin T-cell biology. Nat Rev Immunol 2002;2(1):46–53.
    [135] Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrinαvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96(3):319–328.
    [136] Roberts AB, Russo A, Felici A, Flanders KC. Smad3: a key player in pathogenetic mechanisms dependent on TGFβ. Ann NY Acad Sci 2003;995:1–10.
    [137] Flanders KC, Sullivan CD, Fujii M, Sowers A, Anzano MA, Arabshahi A, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002; 160(3): 1057–1068.
    [138] Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGFβsignalling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303(5659): 848–851.
    [139] Khalil N, Corne S, Whitman C, Yacyshyn H. Plasmin regulates the activation of cell-associated latent TGFβ1 secreted by rat alveolar macrophages after in vivo bleomycin injury. Am J Respir Cell Mol Biol 1996;15(2):252–259.
    [140] Ma LJ, Yang H, Gaspert A, Carlesso G, Barty MM, Davidson JM, et al. Transforming growth factor-β-dependent and-independent pathways of induction of tubulointerstitial fibrosis inβ6?/? mice. Am J Pathol 2003;163(4):1261–1273.
    [141] Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1999;1(5):260–266.
    [142] Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor-β1. J Exp Med 2001;194(6):809–821.
    [143] Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodelling. J Clin Invest 2002;110(4):463–474.
    [144] Elias JA, Zhu Z, Chupp G, Homer RJ. Airway remodelling in asthma. J Clin Invest 1999;104(8):1001–1006.
    [145] Nakao A, Miike S, Hatano M, Okumura K, Tokuhisa T, Ra C, et al. Blockade of transforming growth factor beta/Smad signalling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J Exp Med 2000;192(2):151–158.
    [146] Hansen G, McIntire JJ, Yeung VP, Berry G, Thorbecke GJ, Chen L, et al. CD4+ T helper cells engineered to produce latent TGFβ1 reverse allergen-induced airway hyperreactivity and inflammation. J Clin Invest 2000;105(1):61–70.
    [147] Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-β1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGFβ1-mediated fibrosis. J Exp Med 2003;198(8):1179–1188. Epub: 13 October 2003.
    [148] Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, et al. Imatinib mesylate inhibits the profibrogenic activity of TGFβand prevents bleomycin-mediated lung fibrosis. J Clin Invest 2004;114(9):1308–1316.
    [149] Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther 2000;292(3):988–994.
    [150] Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, Borsotti C, et al. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 2006; 54(8): 2605– 2615.
    [151] Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol 2006;38(5–6):752–765. Epub: 1 September 2005.
    [152] Rattner A, Nathans J. Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 2006;7(11):860–872. Epub: 11 October 2006.
    [153] Friedlander M. Fibrosis and diseases of the eye. J Clin Invest 2007;117(3):576–586.
    [154] Strieter RM, Gomperts BN, Keane MP. The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 2007;117(3):549–556.
    [155] Watanabe T, Barker TA, Berk BC. Angiotensin II and the endothelium: diverse signals and effects. Hypertension 2005;45(2):163–169. Epub: 3 January 2005.
    [156] Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension 2001;38(3, Pt 2):635–638.
    [157] Rosenkranz S. TGFβ1 and angiotensin networking in cardiac remodelling. Cardiovasc Res 2004;63(3):423–432.
    [158] Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003;112(9):1383–1394.
    [159] Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, et al. Alterations ofβ-adrenergic signalling and cardiac hypertrophy in transgenic mice overexpressing TGFβ1. Am J Physiol Heart Circ Physiol 2002;283(3):H1253–1262.
    [160] Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, et al. Overexpression of transforming growth factor-β1 and insulinlike growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 1997;96(3):874–881.
    [161] Berk BC, Fujiwara K, Lehoux S. ECM remodelling in hypertensive heart disease. J Clin Invest 2007;117(3):568–575.
    [162] Iwano M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 2004;13(3):279–284.
    [163] Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.
    [164] Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H, Sheron N. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 1998;28(6):1597–1606.
    [165] Louis H, Van Laethem JL, Wu W, Quertinmont E, Degraef C, Van den Berg K, et al. Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology 1998;28(6):1607–1615.
    [166] Arai T, Abe K, Matsuoka H, Yoshida M, Mori M, Goya S, et al. Introduction of the interleukin-10 gene into mice inhibited bleomycin-induced lung injury in vivo. Am J Physiol Lung Cell Mol Physiol 2000;278(5):L914–922.
    [167] Demols A, Van Laethem JL, Quertinmont E, Degraef C, Delhaye M, Geerts A, et al. Endogenous interleukin-10 modulates fibrosis and regeneration in experimental chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2002;282(6):G1105–1112.
    [168] Wangoo A, Laban C, Cook HT, Glenville B, Shaw RJ. Interleukin-10- and corticosteroid-induced reduction in type I procollagen in a human ex vivo scar culture. Int J Exp Pathol 1997;78(1):33–41.
    [169] Wang SC, Ohata M, Schrum L, Rippe RA, Tsukamoto H. Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem 1998;273(1):302–308.
    [170] Nelson DR, Tu Z, Soldevila-Pico C, Abdelmalek M, Zhu H, Xu YL, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 2003;38(4):859–868.
    [171] Wynn TA, Cheever AW, Williams ME, Hieny S, Caspar P, K¨uhn R, et al. IL-10 regulates liver pathology in acute murine schistosomiasis mansoni but is not required for immune downmodulation of chronic disease. J Immunol 1998;160:5000–5008.
    [172] Hoffmann KF, Cheever AW, Wynn TA. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J Immunol 2000;164(12):6406–6416.
    [173] Wilson MS, Elnekave E, Mentink-Kane M, Hodges MG, Pesce JT, Ramalingam TR, et al. IL-13Ra2 and IL-10 coordinately suppresss airway inflammation, airway-hyperreactivity, and fibrosis in mice. J Clin Invest 2007;117:2941–2951.
    [174] Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, et al. The role of IL-13 in established allergic airway disease. J Immunol 2002;169(11):6482–6489.
    [175] Mattes J, Yang M, Siqueira A, Clark K, MacKenzie J, McKenzie AN, et al. IL-13 induces airways hyperreactivity independently of the IL-4Rαchain in the allergic lung. J Immunol 2001; 167(3):1683–1692.
    [176] Feng N, Lugli SM, Schnyder B, Gauchat JF, Graber P, Schlagenhauf E, et al. The interleukin-4/interleukin-13 receptor of human synovial fibroblasts: overexpression of the nonsignalling interleukin-13 receptorα2. Lab Invest 1998;78(5):591–602.
    [177] Chiaramonte MG,Mentink-Kane M, Jacobson BA, Cheever AW, Whitters MJ, Goad ME, et al. Regulation and function of the interleukin 13 receptorα2 during a T helper cell type 2-dominant immune response. J Exp Med 2003;197(6):687–701.
    [178] Mentink-Kane MM, Cheever AW, Thompson RW, Hari DM, Kabatereine NB, Vennervald BJ, et al. IL-13 receptorα2 down-modulates granulomatous inflammation and prolongs host survival in schistosomiasis. Proc Natl Acad Sci USA 2004;101(2):90–586. Epub: 29 December 2003.
    [179] Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward- Sadler H, Gaca MD, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004;126(7):808–1795.
    [180] Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007;117(3):539–548.
    [181] Fallowfield JA, Kendall TJ, Iredale JP. Reversal of fibrosis: no longer a pipe dream? Clin Liver Dis 2006;10(3):481–497.
    [182] Vennervald BJ, Dunne DW. Morbidity in schistosomiasis: an update. Curr Opin Infect Dis 2004;17(5):439–447.
    [183] Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 2006;8(3):189–199.
    [184] Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998;102(3):538–549.
    [185] Thannickal VJ, Toews GB, White ES, Lynch JP, 3rd, Martinez FJ. Mechanisms of pulmonary fibrosis. Annu Rev Med 2004;55:395–417.
    [186] Wright MC, Issa R, Smart DE, Trim N, Murray GI, Primrose JN, et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 2001;121(3):685–698.
    [187] Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98(5):1076–1084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700