光照改变对大鼠抑郁相关行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症是一种严重影响身心健康、造成巨大社会损失的精神障碍性疾病。然而,抑郁症的发病机制仍不明确,抗抑郁治疗并无实质性的远期疗效。统计学资料证明,社会活动包括体育运动的减少是抑郁症形成的重要危险因素之一。大量事实显示抑郁症患者5-HT能神经元功能不足。多数抗抑郁症药物的抗抑郁作用多是通过抑制5-HT的重摄取或者抑制它的分解酶(例如单胺氧化酶抑制剂)来延长5-HT的功能来实现的。最近发现神经元内的亚细胞信息传递系统在抑郁症中起着重要作用。神经元内的亚细胞信息传递系统包括脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号传递系统、钙离子信号传递系统以及神经元的再生在抑郁症发病和康复中都起着非常重要的作用。MAPK信号传递系统缺陷可能是极端情绪障碍诸如躁狂抑郁症和内源性抑郁症的一个分子生物学标记(Biomarker)。在抑郁症自杀者的额皮质(frontal cortex,FC)以及海马(hippocampus,HIP)均发现这一信号系统中的一个最常见蛋白细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)磷酸化减少。这一变化在大鼠抑郁症模型中也已得到证实。
     此外,我们在预实验中发现,连续光照可抑制大鼠的随意运动。长时间随意运动的增加可以增加脑中隐钙素2(calsequestrin2,CASQ2)的含量,改善抑郁。而ERK磷酸化的水平是否会发生改变尚不知晓。因此本实验拟研究改变每日光照时间对多种行为和脑内ERK磷酸化(extracellular signal-regulated kinasephosphorylation,pERK),以及CASQ2水平的影响。
     目的:
     对生长发育期的大鼠实行不同时长的光照,观察其在强迫游泳实验(forcedswimming test,FST)和Y-迷宫实验(Y-maze test)中的行为改变,并检测脑内pERK和CASQ2蛋白表达水平的变化,从而分析光照改变对情绪的影响,并探讨光照法在抗抑郁中可能的机制。
     方法:
     1.动物制备:对5wSD大鼠实行不同时程的光照处理(对照组、短时光照组、长时光照组、短光恢复组、长光恢复组)8w,短时光照组和长时光照组在处理结束即刻进行行为实验,短光恢复组和长光恢复组处理后恢复1w再行实验。
     2.行为测试:在FST中记录大鼠前5min的行为,分析其攀爬、游泳和不动时间,以测定其心理抑郁程度;在Y-迷宫实验中记录大鼠在学习和记忆中的各种判断次数和时间,测定其学习记忆能力。
     3.pERK和CASQ2蛋白表达水平:FST和Y-迷宫实验结束后第2d,断头处死全部大鼠,取海马(hippocampus,HIP)、额前皮质(prefrontal cortex,PFC)、下丘脑(hypothalamus,HT)和额皮质(frontal cortex,FC)组织,提取脑组织蛋白,用Western blot的方法分析各个脑区中pERK与CASQ2含量。所有的实验均在8am-12am之间进行。
     4.统计分析:采用单因素方差分析比较各组间均数差异,采用卡方检验比较各组间百分率差异。
     结果:
     1.强迫游泳实验结果
     各实验组大鼠在FST中的运动(攀爬+游泳)和不动时间与对照组大鼠的相比均有显著性差异,且差异均具有统计学意义。其中,短时光照组大鼠与对照组相比,无论光照恢复前后,其运动(攀爬+游泳)时间均延长,不动时间均缩短;而光照恢复前后的长时光照组大鼠与对照组相比则与短时光照组大鼠的相反。
     2.Y-迷宫实验结果
     各实验组大鼠在Y-迷宫学习和记忆中的表现与对照组大鼠的相比差异均有统计学意义。其中,短时光照组大鼠与对照组相比,无论光照恢复前后,其学习和记忆的总次数、错误次数以及所花的总时间均显著减少;而光照恢复前后的长时光照组大鼠与对照组相比则与短时光照组大鼠的相反。
     3.pERK和CASQ2蛋白表达水平实验结果
     与对照组相比,实验组大鼠HIP、PFC、HT和FC等4个脑区中pERK1/2蛋白表达水平均有差异,但此差异不具有统计学意义。其中,短时光照组大鼠与对照组相比,无论光照恢复前后,4部分脑区中的pERK1/2蛋白的表达水平均有所增加;而光照恢复前后的长时光照组大鼠与对照组的相比则与短时光照组大鼠的相反。但是,短时光照组大鼠与长时光照组大鼠相比,4部分脑区中pERK1/2蛋白的表达水平均显著增加,差异具有统计学意义(P<0.05)。
     光照恢复前后各实验组大鼠HIP、PFC、HT和FC等4个脑区中CASQ2蛋白表达水平与对照组的相比差异均有统计学意义(P<0.001)。其中,短时光照组大鼠与对照组相比,无论光照恢复前后,4部分脑区中CASQ2蛋白的表达均显著增加;而光照恢复前后的长时光照组大鼠与对照组的相比则与短时光照组大鼠的相反。
     结论:
     1.改变光照时间使大鼠在FST中的行为、在Y-迷宫中的学习认知能力以及脑内pERK1/2发生相应变化,表明光照改变是影响大鼠情绪的重要因素之一。
     2.改变光照时间使大鼠脑内CASQ2水平发生相应变化,表明光照改变是影响大鼠自主运动的重要因素之一。
     3.在生长期发育期给予不同时程的光照对成年大鼠抑郁相关的行为和脑内物质造成的影响不会因短期的正常光照而恢复。
     4.改变光照时间可能是通过改变运动来影响大鼠情绪的。
Introduction
     Depression is a public health problem affecting large adult population and results in huge social loss.However,the cause,the pathology of depression remains to be understood.The efficacy of long term treatment remains to be achieved. Epidemiologic research has revealed that the insufficient of social activity is one of the major risk factors.It is believed that serotonergic deficiency is the key in the pathology of depression and most antidepressants are affecting on 5-HT ergic system by either extending the acting time of 5-HT or increasing extracellular concentration of 5-HT.These include drugs that act through both 5-HT reuptake inhibition,known as selective serotonin receptor inhibitors(SSRI),and monoamine oxidase inhibitors (MOI).More and more literature reported that deficiency in multiple cells signaling pathway,including brain derived neurotrophic factors(BDNF),MAPK signaling pathway and calcium signaling pathway,and neuronal growth are also critically involved in the pathology and the treatment of depression.Deficiency in multiple components of MAPK signaling pathway including phosphorylation of Ras, extracellular signal-regulated kinase1/2(ERK1/2) and Creb has been confirmed in human depressive suicide victims and in our rat model of depression.In human, running exercise significantly increased ERK phosphorylation in skeletal muscles and improves depressive symptoms.This evidence supports that deficiency in MAPK signaling pathway is a biomarker of depression and suicide.In addition,we found that rats chronically expose to running wheel highly induced brain level ofcalsequestrin 2, one of the most abundant calcium binding proteins,in the frontal cortex and hippocampus.Surprisingly,we also found that rats stopped wheel running in days that lights were accidently kept on 24 hr/day for a week.This evidence implicated that constant lighting or extended lighting time may promote depressive pathology by affecting on locomotors activities.In the following studies,we report results from multiple behavior testing and brain levels of pERK and calsequestrin in rats exposed to normal,extended and reduced daily lighting time.
     Objectives
     The objectives were to determine how shorter daily lighting time and longer lighting time affect depressive measurements in behavioral test and brain levels of biomarkers associated with depression.
     Methods
     1.Experimental design:5 weeks old male Sprague Dawley rats were divided as five groups:control group,short time light group,long time light group,short time light reversal group,long time light reversal group.These groups were treated with different daily lighting hours for eight weeks.The control group was treated with 12 hours light on and 12 hours light off,the short time light group was treated with 8 hours light on and 16 hours light off and the long time light group was treated with 16 hours light on and 8 hours light off.Behavioral tests in short time light group and long time light group began immediately after the end of the treatment,while tests in short time light reversal group and long time light reversal group were conducted after one week after recovery from a lighting phase reversal at the end of the lighting treatment.
     2.Behavioral test:Recording first 5 minutes behavior in rats' forced swimming test (FST),analyzing their climbing,swimming and immobility time,in order to determine their depression degree.Recording different judgment frequency and time of rats' learning and memory in Y-maze test,so that we can determine their learning and memory ability.
     3.Protein immunoblotting:Rats were sacrificed in the next day of FST and Y-maze test.Brain tissue of HIP,PFC,FC,HT were dissected.Tissue contains of pERK and calsequestrin2(CASQ2) in multiple brain regions were determined by Western blot. All tests were done between 8:00 am and 12:00 am.
     4.Statistic analysis:One-way ANOVA analysis was used to analyze each interclass mean difference,and chi square test was used to analyze each interelass percentage difference.
     Results
     1.The results of FST
     Before light reverted,compared with control group rats,each experimental group rats was different in locomotery and immobility in FST and the difference was statistical significant,so did after light reverted.Among them,whenever before or after light reverted,compared with control group rats,the movement time was longer and the immobility time was shorter in short time light group;whereas,the long time light group had the opposite results.
     2.The results of Y-maze test
     Before light reverted,compared with control group rats,each experimental group rats was different in learning and memory in Y-maze test and the difference was statistical significant,so did after light reverted.Among them,whenever before or after light reverted,compared with control group rats,the total frequency,the error frequency and the cumulative time in learning and memory all reduced significantly in short time light group;whereas,the long time light group had the opposite results.
     3.The results of Western blot
     Before light reverted,compared with control group rats,experimental group rats were different in pERK1/2 level of the four brain regions,but the difference had no statistical significance,nor did after light reverted.Among them,whenever before or after light reverted,compared with control group rats,the pERK1/2 level of the four brain regions increased in short time light group;whereas,the long time light group had the opposite results.But compared with the long time light group,the protein level of pERK1/2 in the short time light group increased significantly and the difference had statistical significance.
     Before light reverted,compared with control group rats,each experimental group rats was different in CASQ2 level of the four brain regions,and the difference had statistical significance,so did after light reverted.Among them,whenever before or after light reverted,compared with control group rats,the protein level of CASQ2 increased significantly in short time light group;whereas,the long time light group had the opposite results.
     Conclusion
     1.To alter lighting hours would have an effect on the behaviors in FST and in Y-maze test and the protein levels of pERK1/2,which suggests that altered lighting hours is an important factor to affect rats' emotion.
     2.Treated with different lighting hours would affect the protein levels CASQ2,which imply that to alert lighting hours is an important factor to affect rats' basic activity.
     3.To change lighting hours would have an effect on behaviors and biomarkers in brain of rats,furthermore,the effect would not be reverted by given normal lighting hours.
     4.Altered lighting hours might change rats' emotion by changing their basic activity.
引文
1.Kessler RC,McGonagle KA,Zhao S,Nelson CB,Hughes M,Eshleman S,Wittchen HU,Kendler KS.Lifetime and 12-month prevalence of DSM-Ⅲ-R psychiatric disorders in the United States.Results from the National Comorbidity Survey.Arch Gen Psychiatry.1994Jan;51(1):8-19.
    2.Kessler RC,Merikangass KR.The National Comorbidity Survey Replication (NCS-R):background and aims.Int J Methods Psychiatr Res.2004;13(2):60-8.
    3.Wilson S,Argyropoulos S.Antidepressants and sleep:a qualitative review of the literature.Drugs.2005;65(7):927-47.
    4.Arango V,Ernsberger P,Marzuk PM,Chen JS,Tiemey H,Stanley M,Reis DJ,Mann JJ.Autoradiographic demonstration of increased serotonin 5-HT2 and beta-adrenergic receptor binding sites in the brain of suicide victims.Arch Gen Psychiatry.1990 Nov;47(11):1038-47.
    5.Hrdina PD,Demeter E,Vu TB,Sotonyi P,Palkovits M.5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives:increase in 5-HT2 sites in cortex and amygdala.Brain Res.1993 Jun 18;614(1-2):37-44.
    6.Arango V,Underwood MD,Gubbi AV,Mann JJ.Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims.Brain Res.1995 Aug 7;688(1-2):121-33.
    7.Mann JJ,Huang YY,Underwood MD,Kassir SA,Oppenheim S,Kelly TM,Dwork AJ,Arango V.A serotonin transporter gene promoter polymorphism(5-HTTLPR) and prefrontal cortical binding in major depression and suicide.Arch Gen Psychiatry.2000 Aug;57(8):729-38.
    8.Pandey GN,Dwivedi Y,Rizavi HS,Ren X,Pandey SC,Pesold C,Roberts RC,Conley RR,Tamminga CA.Higher expression of serotonin 5-HT(2A) receptors in the postmortem brains of teenage suicide victims.Am J Psychiatry.2002 Mar;159(3):419-29.
    9.Boldrini M,Underwood MD,Mann JJ,Arango V.More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides.Brain Res.2005 Apr 11;1041(1):19-28.
    10.Dwivedi Y,Agrawal AK,Rizavi HS,Pandey GN.Antidepressants reduce phosphoinositide-specific phospholipase C(PI-PLC) activity and the mRNA and protein expression of selective PLC beta(1) isozyme in rat brain.Neuropharmacology.2002Dec;43(8):1269-79.
    11.Einat H,Yuan P,Gould TD,Li J,Du J,Zhang L,Manji HK,Chen G.The role of the extracellular signal-regulated kinase signaling pathway in mood modulation.J Neurosci.2003Aug 13;23(19):7311-6.
    12.Hao Y,Creson T,Zhang L,Li P,Du F,Yuan P,Gould TD,Manji HK,Chen G.Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis.J Neurosci.2004 Jul 21;24(29):6590-9.
    13.Dwivedi Y,Rizavi HS,Conley RR,Pandey GN.ERK MAP kinase signaling in post-mortem brain of suicide subjects:differential regulation of upstream Raf kinases Raf-1 and B-Raf.Mol Psychiatry.2006 Jan;11(1):86-98.
    14.Feng P,Guan Z,Yang X,Fang J.Impairments of ERK signal transduction in the brain in a rat model of depression induced by neonatal exposure of clomipramine.Brain Res.2003 Nov 21;991(1-2):195-205.
    15.Suzuki T,Okumura-Noji K,Nishida E.ERK2-type mitogen-activated protein kinase(MAPK)and its substrates in postsynaptic density fractions from the rat brain.Neurosci Res.1995Jun;22(3):277-85.
    16.Galeotti N,Vivoli E,Bartolini A,Ghelardini C.A gene-specific cerebral types 1,2,and 3 RyR protein knockdown induces an antidepressant-like effect in mice.J Neurochem.2008Sep;106(6):2385 -94.
    17.Feng P,Wu Z,Yang X,Hu Y,Strohl KP(2007) Brain calsequestrin 2 was increased but BDNF was decreased after long term voluntary exercise.In:Neuroscience Meeting.San Diego,CA:Society for Neuroscience.
    18.王跃春.Y-型电迷宫在大鼠学习记忆功能测试中的合理运用.中国行为医学科学,2005,14:69-70.
    19.王跃春.大鼠Y-型迷宫测试法的筛选与优化.中国行为医学科学,2005,14:50-52.
    20.杨安峰,王平等.大鼠的解剖与组织.科学出版社.1985,126.
    21.George Paxinos,Charles Watson(主译:诸葛启钏).The Rat in Stereotaxic Coordinates(大鼠脑立体定位图谱).人民卫生出版社.2005,第三版.
    22.Porsolt RD,Le Pichon M,Jalfre M.Depression:A new animal model sensitive to antidepressant treatments.Nature,1977,266:730-732.
    23.Willner P.Validation criteria for animal models of human mental disorders:learned helplessness as a paradigm ease.Preg Neuropsychopharmacol Biol Psychiatry,1986,10(6):677-690.
    24.Prendergast B J,Nelson RJ.Affective responses to changes in day length in Siberian hamsters (Phodopus sungorus).Psychoneuroendocrinology.2005 Jun;30(5):438-52.
    25.Gauer F,Masson-Pevet M,Pevet P.Seasonal regulation of melatonin receptors in rodent pars tuberalis:correlation with reproductive state.J Neural Transm Gen Sect.1994;96(3):187-95.
    26.Geiser F,McAllan BM,Kenagy GJ,Hiebert SM.Photoperiod affects daily torpor and tissue fatty acid composition in deer mice.Naturwissenschaften.2007 Apr;94(4):319-25.
    27.Goldman BD.Mammalian photoperiodic system:formal properties and neuroendocrine mechanisms of photoperiodic time measurement.J Biol Rhythms.2001 Aug;16(4):283-301.
    28.Golombek DA,Martini M,Cardinali DP.Melatonin as an anxiolytic in rats:time dependence and interaction with the central GABAergic system.Eur J Pharmacol.1993 Jun 24;237(2-3):231-6.
    29.Kopp C,Vogel E,Rettori MC,Delagrange P,Renard P,Lesieur D,Misslin R.Regulation of emotional behaviour by day length in mice:implication of melatonin.Behav Pharmacol.1999Dec;10(8):747-52.
    30.Guardiola-Lema(?)tre B,Lenegre A,Porsolt RD.Combined effects of diazepam and melatonin in two tests for anxiolytic activity in the mouse.Pharmacol Biochem Behav.1992Feb;41(2):405-8.
    31.王跃春,王子栋等.动物学习记忆能力的Y_型迷宫测试法(综述).暨南大学学报:自然科学与医学版,2001,22:137-40.
    32.McGreevy PD,Webster A J,Nicol CJ.Study of the behaviour,digestive efficiency and gut transit times of crib-biting horses.Vet Rec,2001,148:592-596.
    33.Dwivedi Y,Rizavi HS,Roberts RC,et al.Reduced activation and expression of ERK1/2MAP Kinase in the post-mortem brain of depressed suicide subjects.J Neurochem,2001;77:916-928.
    34.Feng PF,Guan Z,Yang X,Fang J.Impairments of ERK signal transduction in the brain in a rat model of depression induced by neonatal exposure of clomipramine.Brain Res.2003,21;991(1-2):195-205.
    35.Shirayama Y,Chen ACH,Nakagawa S,Russell DS,Duman RS.Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression.J Neurosci,2002,22:3251-3261.
    36.Shen CP,Tsimberg Y,Salvadore C,Meller E.Activation of ERK and JNK MAPK pathways by acute swim stress in rat brain regions.BMC Neurosci.2004 Sep 20;5:36.
    37.Mercier G,Lennon AM,Renouf B,et al.MAP Kinase MAP Kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes.J Mol Neurosci,2004,24(2):207-216.
    38.Adams JP,Swear JD.Molecular Psychology:Role for the ERK MAPKinase Cascade in Memory,Annu.Rev,Pharmacol.Toxicol,2002,42:135-63.
    39.Campbell KP,MacLennan DH,Jorgensen AO,Mintzer MC.Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein.J Biol Chem.1983 Jan 25;258(2):1197-204.
    40.Mitchell RD,Simmerman HK,Jones LR.Mitchell RD,Simmerman HK,Jones LR.Ca2+binding effects on protein conformation and protein interactions of canine cardiac calsequestrin.J Biol Chem.1988 Jan 25;263(3):1376-81.
    41.Beard NA,Laver DR,Dulhunty AF.Calsequestrin and the calcium release channel of skeletal and cardiac muscle.Prog Diophys Mol Biol.2004 May;85(1):33-69.
    42.Gy(o|¨)rke S,Terentyev D.Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease.Cardiovasc Res.2008 Jan 15;77(2):245-55.
    43.Somlyo AV,Gonzalez-Serratos HG,Shuman H,McClellan G,Somlyo AP.Somlyo AV,Gonzalez-Serratos HG,Shuman H,McClellan G,Somlyo AP.Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle:an electron-probe study.J Cell Biol.1981 Sep;90(3):577-94.
    44.Saito A,Seiler S,Chu A,Fleischer S.Preparation and morphology of sarcoplasmic reticulum terminal cistemae from rabbit skeletal muscle.J Cell Biol.1984 Sep;99(3):875-85.
    45.Franzini-Armstrong C,Kenney L J,Varriano-Marston E.The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J Cell Biol. 1987 Jul;105(1):49-56.
    46. Jorgensen AO, Campbell KP.Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J Cell Biol. 1984 Apr;98(4): 1597-602.
    47. Tanaka M, Ozawa T, Maurer A, Cortese JD, Fleischer S. Apparent cooperativity of Ca~(2+) binding associated with crystallization of Ca~(2+)-binding protein from sarcoplasmic reticulum. Arch Biochem Biophys. 1986 Nov 15;251(1):369-78.
    48. Park H, Park IY, Kim E, Youn B, Fields K, Dunker AK, Kang C. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem. 2004 Apr 23;279(17): 18026-33.
    49. Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, Kang CH. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol. 1998 Jun;5(6):476-83. Nat Struct Biol. 1998 Jun;5(6):476-83.
    50. Gyorke, N. Hester, L.R. Jones and S. Gyorke, The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium, Biophys J 86 (2004), pp. 2121-2128.
    51. Gy(o|¨)rke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res. 2008 Jan 15;77(2):245-55.
    52. Terentyev D, Viatchenko-Karpinski S, Vedamoorthyrao S, Oduru S, Gy(o|¨)rke I, Williams SC, Gyorke S. Protein protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes. J Physiol. 2007 Aug 15;583(Pt 1):71-80.
    53. Shin DW, Ma J, Kim DH. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin. FEBS Lett. 2000 Dec 8;486(2): 178-82.
    54. ChenMJ, Russo-Neustadt AA. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent..Hippocampus. 2009 Mar 17.
    55. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K.Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men.J Physiol Pharmacol. 2008 Dec;59 Suppl 7:119-32.
    56. Currie J, Ramsbottom R, Ludlow H, Nevill A, Gilder M.Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women.Neurosci Lett. 2009 Feb 20;451(2):(?)2-5.
    57. Schiffer T, Schulte S, Hollmann W, Bloch W, Strüder HK.Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans.Horm Metab Res. 2009 Mar;41(3):250-4.
    58. Aguiar AS Jr, Speck AE, Prediger RD, Kapczinski F, Pinho RA.Downhill training upregulates mice hippocampal and striatal brain-derived neurotrophic factor levels.J Neural Transm. 2008 Sep;115(9):1251-5.
    1.Wingard DL,Berkman LF.Mortality risk associated with sleeping pattems among adults.Sleep.1983;6(2):102-7.
    2.杨爱芳,孙铮,沈传侠等.骨科病人术后失眠原因分析及护理对策.Journal of Practical Nursing,February,2002;18(2):206.
    3.邓华平,陈义华,姜文珍.肿瘤病人开胸术后失眠相关因素分析及护理对策.护理学杂志,2001:16(10):603.
    4.郑武飞.医学免疫学.北京:人民出版社,1997:96
    5.阮经文,郑沛仪.针灸疗法对合并睡眠障碍的早期脑卒中患者运动功能的影响.中国康复理论与实践,2000;6(2):73.
    6:Jouvet-Mounier D,Astic L,Lacote D.Ontogenesis of the states of sleep in rat,cat,and guinea pig during the first postnatal month.Dev Psychobiol.1970;2(4):216-39.
    7:McGinty DJ,Stevenson M,Hoppenbrouwers T,Harper RM,Sterman MB,Hodgman J.Polygraphic studies of kitten development:sleep state patterns.Dev Psychobiol.1977Sep;10(5):455-69.
    8.Muzet A.The effects of noise on sleep and their possible repercussions on health.Med Sci (Paris).2006 Nov;22(11):973-7.
    9.Garcia AD.The effect of chronic disorders on sleep in the elderly.Clin Geriatr Med.2008Feb;24(1):27-38.
    10.Alonso CA,Estebaranz AI.Sleeping difficulties among the elderly.Rev Enferm.2006Mar;29(3):48-52.
    11.Yehuda S,Rabinovitz S,Mostofsky DI.Essential fatty acids and sleep:mini-review and hypothesis.Med Hypotheses.1998 Feb;50(2):139-45.
    12.Haze JJ.Toward an understanding of the rationale for the use of dietary supplementation for chronic pain management:the serotonin model.Cranio.1991 Oct;9(4):339-43.
    13.Akerstedt T.Altered sleep/wake patterns and mental performance.Physiol Behav.2007 Feb 28;90(2-3):209-18.
    14.Kim EJ,Dimsdale JE.The effect of psychosocial stress on sleep:a review of polysom_nographic evidence.Behav Sleep Med.2007;5(4):256-78.
    15.Coins S.Sleep disturbances in patients with schizophrenia:impact and effect of antipsychoties.CNS Drugs.2008;22(11):939-62.
    16.Menaker M,Moreira LF,Tosini G.Evolution of circadian organization in vertebrates.Braz j Med Biol Res.1997 Mar;30(3):305-13.
    17.Moore RY.Neural control of the pineal gland.Behav Brain Res.1996;73(1-2):125-30.
    18. Moore RY. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc. 1983 Aug;42(11):2783-9.
    19. Meijer JH, Rietveld WJ.Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev. 1989 Jul;69(3):671-707.
    20. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990 Feb 23;247(4945):975-8.
    21. Yu GD, Rusak B, Piggins HD.Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: constant light effects. Brain Res. 1993 Feb 5;602(2):191-9.
    22. Klein, DC, Moore RY, and Reppert SM. Suprachiasmatic Nucleus: The Mind's Clock. New York: Oxford Univ. Press, 1991.
    23. Schwartz, WJ, de la Iglesia HO, Zlomanczuk P, and Illnerová H. Encoding Le Quattro Stagioni within the mammalian brain: photoperiodic orchestration through the suprachiasmatic nucleus. J Biol Rhythms .2001; 16: 302-311.
    24. Lowrey, PL, and Takahashi JS. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet. 2000;34: 533-562.
    25. Reppert, SM, and Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol.2001; 63: 647-676.
    26. Grosse J, Davis FC.Melatonin entrains the restored circadian activity rhythms of syrian hamsters bearing fetal suprachiasmatic nucleus grafts. J Neurosci. 1998 Oct 1;18(19):8032-7.
    27. Inouye ST, Kawamura H.Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5962-6.
    28. Inouye ST.Light responsiveness of the suprachiasmatic nucleus within the island with the retino-hypothalamic tract spared. Brain Res. 1984 Mar 5;294(2):263-8.
    29. Granada A, Hennig RM, Ronacher B, Kramer A, Herzel H.Phase response curves elucidating the dynamics of coupled oscillators. Methods Enzymol. 2009;454:1-27.
    30. Vyazovskiy VV, Achermann P, Tobler I.Sleep homeostasis in the rat in the light and dark period. Brain Res Bull. 2007 Sep 14;74(1-3):37-44.
    31. Wakatsuki Y, Kudo T, Shibata S.Constant light housing during nursing causes human DSPS (delayed sleep phase syndrome) behaviour in Clock-mutant mice. Eur J Neurosci. 2007 Apr;25(8):2413-24.
    32. Raison CL, Klein HM, Steckler M.The moon and madness reconsidered. J Affect Disord. 1999 Apr;53(l):99-106.
    33. Vyazovskiy VV, Achermann P, Tobler I.Sleep homeostasis in the rat in the light and dark period. Brain Res Bull. 2007 Sep 14;74(1-3):37-44. Epub 2007 May 24.
    34. Gonzalez MM, Aston-Jones G.Circadian regulation of arousal: role of the noradrenergic locus coeruleus system and light exposure. Sleep. 2006 Oct 1 ;29( 10): 1327-36.
    35. Lack L, Wright H, Kemp K, Gibbon S.The treatment of early-morning awakening insomnia with 2 evenings of bright light. Sleep. 2005 May 1;28(5):616-23.
    36. Phipps-Nelson J, Redman JR, Dijk DJ, Rajaratnam SM.Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep. 2003 Sep;26(6): 695-700.
    37. Ondzé B, Espa F, Ming LC, Chakkar B, Besset A, Billiard M.Advanced sleep phase syndrome. Rev Neurol (Paris). 2001 Nov; 157(11 Pt 2):S130-4.
    38. Lack L, Wright H.The effect of evening bright light in delaying the circadian rhythms and lengthening the sleep of early morning awakening insomniacs. Sleep. 1993 Aug;16(5):436-43.
    39. Zordan, MA, Rosato E, Piccin A, and Foster R. Photic entrainment of the circadian clock: from Drosophila to mammals. Sem Cell Dev Biol 12: 317-328.
    40. Gillette, MU, and Tischkau SA. Suprachiasmatic nucleus: the brain's circadian clock. Recent Prog Horm Res 54: 33-58, 1999.
    41. Hamada, T, Yamanouchi S, Watanabe A, Shibata S, and Watanabe S. Involvement of glutamate release in substance P-induced phase delays of suprachiasmatic neuron activity rhythm in vitro. Brain Res 836: 190-193.
    42. Hannibal, J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, and Mikkelsen JD. Pituitary adenylate cylcase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17:2637-2644.
    43. Pickard, GE, Smith BN, Belenky M, Rea MA, Dudek FE, and Sollars PJ. 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci 19:4034-4045.
    44. Quintero, JE, and McMahon DG. Serotonin modulates glutamate responses in isolated suprachiasmatic nucleus neurons. J Neurophysiol 82: 533-539.
    45. Kessler RC, McGonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51:8-19.
    46. Kessler RC, Merikangass KR. The National Comorbidity Survey Replication (NCS-R): background and aims. Int J Methods Psychiatr Res 2004; 13:60-8.
    47. Akiskal HS, Benazzi F.Continuous distribution of atypical depressive symptoms between major depressive and bipolar II disorders: dose-response relationship with bipolar family history. Psychopathology. 2008;41(1):39-42.
    48. Bowden CL. A different depression: clinical distinctions between bipolar and unipolar depression. J Affect Disord 2005; 84:117-125.
    49. Tang NK, Harvey AG Correcting distorted perception of sleep in insomnia: a novel behavioural experiment? Behav Res Ther 2004; 42:27-39.
    50. Riemann D, Voderholzer U, Berger M. Sleep and sleep-wake manipulations in bipolar depression. Neuropsychobiology 2002; 45 Suppl 1:7-12.
    51. Riemann D, Voderholzer U. Primary insomnia: a risk factor to develop depression? J Affect Disord 2003; 76:255-9.
    52. Dumont M, Beaulieu C. Light exposure in the natural environment: relevance to mood and sleep disorders. Sleep Med. 2007 Sep;8(6):557-65. Epub 2007 Mar23.
    53. Terman M.Evolving applications of light therapy. Sleep Med Rev. 2007 Dec;11(6):497-507.
    54. Lewy AJ, Rough JN, Songer JB, Mishra N, Yuhas K, Emens JS.The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci. 2007;9(3):291-300.
    55. Wirz-Justice A. Diurnal variation of depressive symptoms. Dialogues Clin Neurosci. 2008;10(3):337-43.
    56. Le Strat Y, Ramoz N, Gorwood P.Affective disorders and biological rhythms.Ann Pharm Fr. 2008 Jun;66(3): 169-74.
    57. Monteleone P, Maj M. The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol. 2008 Oct;18(10):701-11.
    58. Bunney JN, Potkin SG.Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull. 2008;86:23-32.
    59. Bottai T.Non-drug treatment for depression. Presse Med. 2008 May;37(5 Pt 2):877-82.
    60. McClung CA.Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 2007 May; 114(2):222-32.
    61. Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J Neurosci 2001; 21:2610-21.
    62. Cantero JL, Atienza M, Salas RM. Effects of waking-auditory stimulation on human sleep architecture. Behav Brain Res 2002; 128:53-9.
    63. Cantero JL, Atienza M, Salas RM, Dominguez-Marin E. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep. J Neurosci 2002; 22:4702-8.
    64. Huber R, Deboer T, Tobler I. Topography of EEG dynamics after sleep deprivation in mice. J Neurophysiol 2000; 84:1888-93.
    65. Meerlo P, de Bruin EA, Strijkstra AM, Daan S. A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol Behav 2001; 73:331-5.
    66. Klerman EB, Boulos Z, Edgar DM, Mistlberger RE, Moore-Ede MC. Circadian and homeostatic influences on sleep in the squirrel monkey: sleep after sleep deprivation. Sleep 1999; 22:45-59.
    67. Kas MJ, Edgar DM. Circadian timed wakefulness at dawn opposes compensatory sleep responses after sleep deprivation in Octodon degus. Sleep 1999; 22:1045-53.
    68. Driver HS, Taylor SR. Exercise and sleep. Sleep Med Rev 2000; 4:387-402.
    69. Giedke H, Schwarzler F. Therapeutic use of sleep deprivation in depression. Sleep Med Rev 2002; 6:361-77.
    70. Wiegand MH, Lauer CJ, Schreiber W. Patterns of response to repeated total sleep deprivations in depression. J Affect Disord 2001; 64:257-60.
    71. Berger M, van Calker D, Riemann D. Sleep and manipulations of the sleep-wake rhythm in depression. Acta Psychiatr Scand Suppl 2003:83-91.
    72. Giedke H, Schwarzler F.Therapeutic use of sleep deprivation in depression. Sleep Med Rev. 2002 Oct;6(5):361-77.
    73. Adrien J. Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 2002; 6:341-51.
    74. Wilson S, Argyropoulos S. Antidepressants and sleep: a qualitative review of the literature. Drugs 2005; 65:927-47.
    75. Espana RA, Baldo BA, Kelley AE, Berridge CW. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 2001; 106:699-715.
    76. Baghai TC, M(o|¨)ller HJ, Rupprecht R.Recent progress in pharmacological and non-pharmacological treatment options of major depression. Curr Pharm Des. 2006; 12(4):503-15.
    77. Ramakrishnan K, Scheid DC.Treatment options for insomnia. Am Fam Physician. 2007 Aug 15;76(4):517-26. Ramakrishnan K, Scheid DC.Treatment options for insomnia. Am Fam Physician. 2007 Aug 15;76(4):517-26.
    78.Callaghan PExercise:a neglected intervention in mental health care? J Psychiatr Ment Health Nurs. 2004 Aug; 11(4):476-83.
    79. Knechtle B. Influence of physical activity on mental well-being and psychiatric disorders Schweiz Rundsch Med Prax. 2004 Aug 25;93(35):1403-11.
    80. Fox KR .The influence of physical activity on mental well-being. Public Health Nutr. 1999 Sep;2(3A):411-8.
    81. Stathi A, Simey P.Quality of life in the Fourth Age: exercise experiences of nursing home residents. J Aging Phys Act. 2007 Jul;15(3):272-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700