我国不同分区湖泊表层沉积物中氮形态及DOM光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是水生生物最基础的营养物质,沉积物中的氮在整个水生生态系统氮循环中占据重要地位。湖泊生态系统中的溶解有机质(DOM)对湖泊系统各种物理、化学和生物过程都发挥着重要作用。本文对我国湖泊沉积物中氮的化学结合形态进行了分析,研究了各形态氮的含量和分布特征;对湖泊沉积物DOM进行了紫外-可见光谱、同步荧光光谱和三维荧光光谱的测定和分析,得到主要结果如下:
     (1)湖泊表层沉积物中有机氮主导了总氮的分布,有机氮是总氮的主要存在形式,各湖区湖泊沉积物中有机氮占总氮的比例均超过了80%;固定态铵是总氮的重要组成部分,蒙新高原湖区湖泊沉积物中固定态铵占总氮的比例最低,为8.99%,东部平原湖区最高,为13.83%;可交换态氮占总氮的比例最低。
     (2)湖泊沉积物中可交换态氮一般以可交换态氨氮为主,可交换态硝氮次之,且氨氮含量远大于硝氮,青藏高原湖区与此不同,其有半数的湖泊沉积物样中硝氮含量大于氨氮。
     (3)各湖区湖泊沉积物中氨氮和硝氮均与总氮、有机氮和TOC呈显著正相关关系。固定态铵与其他氮形态和TOC的关系不明显,东部平原湖区、蒙新高原湖区和青藏高原湖区湖泊沉积物中固定态铵与其他形态氮和TOC之间无显著相关关系;东北平原与山地湖区湖泊沉积物中固定态铵与硝氮、总氮、有机氮和TOC呈显著正相关关系;云贵高原湖区湖泊沉积物中固定态铵与TOC呈显著负相关关系。
     (4)不同湖泊沉积物DOM的紫外-可见光谱图形不同,且与地域分异无关;各湖泊沉积物DOM的同步荧光光谱均在280nm附近有较强的吸收峰,长波处吸收峰较弱,说明湖泊沉积物DOM的组分中含有大量的类蛋白等小分子物质。
     (5)湖泊沉积物DOM的三维荧光光谱中类蛋白峰、紫外区类腐殖质峰、可见光区类腐殖质峰均有出现;湖泊沉积物DOM三维荧光光谱中类蛋白峰的强度要普遍高于类腐殖质峰;但东北平原与山地湖区湖泊沉积物DOM的类腐殖质峰强度普遍高于类蛋白峰。
Nitrogen is the most basic nutriment of aquatic organism, and nitrogen in lake sediment plays an important role in nitrogen cycling of aquatic ecosystem. Dissolved organic matter (DOM) in Lake Ecosystem involves in all kinds of physical, chemical and biological processes in lake system. The content and distribution of various nitrogen in lake sediments in China was studied, and UV-VIS absorbance, synchronous fluorescence spectroscopy and three-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM) were selected to characterize DOM in lake sediments in this paper. The main results as follows:
     (1) Organic nitrogen (No) was the main form of nitrogen in superficial sediment, accounting for over 80% of total nitrogen (TN) in all regions. Fixed ammonium (NFIX) was an important part of total nitrogen, the proportion of NFIX in TN in lake sediments in Mengxin Plateau was lowest, which was 8.99%, and East Plain was highest, which was 13.83%. Exchangeable nitrogen (NEX) was least in nitrogen.
     (2) In most lake sediments, exchangeable ammonia nitrogen was more than exchangeable nitrate nitrogen. But in Tibetan Plateau, exchangeable nitrate nitrogen was more than exchangeable ammonia nitrogen in half lake sediments.
     (3) Ammonia nitrogen and nitrate nitrogen had positive correlations with total nitrogen, organic nitrogen and TOC. There was no correlation between NFIX and other various nitrogen fractions and TOC in East Plain, Mengxin Plateau and Tibetan Plateau; There was a strong positive correlation between NFIX and nitrate nitrogen, organic nitrogen, total nitrogen and TOC in lake sediments in Northeast plain and mountainous region; And in Yungui Plateau, NFIX had a negative correlation with TOC.
     (4) UV-VIS spectrums of DOM in lake sediments were different, including in same regions. All synchronous spectrums exhibited a peak at about 280nm, showing that there were a large number of small molecular weight matters, such as protein-like matters.
     (5) There were protein-like fluorophores, UV humic-like fluorophores and VIS humic-like fluorophores in 3DEEMs of DOM in lake sediments. Generally, the fluorescence intensity of protein-like was higher than humic-like in 3DEEMs of DOM in lake sediments. But, the fluorescence intensity of humic-like was higher than protein-like commonly in northeast plain and mountainous region.
引文
[1] Rysgard S. Nitrification and denitrification in lake and denitrification in sediments[J]. Linmology and Oceangraphy, 1993, 39: 1643-1652
    [2]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309
    [3]罗莎莎,万国江,黄荣贵.云南阳宗海沉积物-水界面铁、锰、硫的循环特征[J].城市环境与城市生态,2003,16(5):75-78
    [4] Sondergaard M, Jensen J P, Jeppesen E. Internal phosphorus loading in shallow Danish lakes[J]. Hydrobiologia, 1999, 408-409: 145-152
    [5] Ryding S O, Forsberg C. Sediments as a nutrient source in shallow polluted lakes[A]. The Hague: Dr.Junk Publ, 1977
    [6] Schindler D W, Hesslein R H, Turner M A. Exchange of nutrients between sediments and water after 15 years of experimental eutrohication[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 44(suppl): 26-33
    [7] Murphy T P, Lawson A, Kumagai M, et al. Review of emerging issue in sediment treatment[J]. Aquatic Ecosystem Health and Management, 1999, (2): 419-434
    [8] Li W, Yin C. Discussion on phosphorus release from lake sediment[J]. Journal of lake Science, 1999, 4(11): 2013-2018
    [9]金相灿,徐南妮,张雨田,等.沉积物污染化学[M].北京:中国环境科学出版社,1992
    [10]王少梅.武汉东湖沉积物中氮和磷释放试验[J].水生生物学报,1991,15(4):379-380
    [11]钟丽娜.重金属在上海淀山湖的沉积记录及意义[D].上海:上海交通大学,2008
    [12]马红波.渤海沉积物中氮的赋存形态及其在循环中的作用[D].青岛:中国科学院海洋研究所,2001
    [13] Kalbitz K, Solinger S. Controls on the dynamics of dissolved organic matter in soils A Review[J]. Soil Science, 2000, 165(4): 277-304
    [14] Chin Y P, Traina S J, Swank C R. Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland[J]. Limnology and Oceanography, 1998, 43(6): 1287-1296
    [15] Leenheer J A, CrouéJ P. Characterizing aquatic dissolved organic matter[J]. Environmental Science and Technology, 2003, 37(1): 19-26
    [16] Burdige D J, Gardner K G. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters[J]. Marine Chemistry, 1998, 62(1): 45-64
    [17] Wu F C, Tanoue E, Liu C Q. Fluorescence and amino acid characteristics of molecular sizefractions of DOM in the waters of Lake Biwa[J]. Biogeochemistry, 2003, 65(2): 245-257
    [18] Laskov C, Amelung W, Peiffer S. Organic matter preservation in the sediment of an acidic mining lake[J]. Environmental Science and Technology, 2002, 36(20): 4218-4223
    [19] Riffaldi R, Minzi R L. Adsorption on soil dissolved organic carbon from farmyard manure[J]. Agriculture Ecosystems and Environment, 1998, 691: 13-169
    [20] Wu F C, Mills R B, Evans R D, et al. Kinetics of metal-fulvic acid complexation using a stopped-flow technique and three-dimensional excitation emission fluorescence spectrophotometer[J]. Analytical Chemistry, 2004, 76(1): 110-113
    [21] Artinger R, Buckau G, Geyer S, et al. Characterization of groundwater humic substances: influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000, 15(1): 97-116
    [22]任保卫,赵卫红,王江涛,等.胶州湾围隔实验中溶解有机物三维荧光特征[J].环境科学,2007,28(4):712-718
    [23]吉芳英,黎司,周光明,等.重庆主城区两江溶解有机质的荧光光谱特性[J].光谱学与光谱分析,2010,30(1):233-238
    [24]彭全材,胡继伟,蒋翠红,等.百花湖沉积物孔隙水中溶解有机质的光谱特性[J].江西师范大学学报(自然科学版),2009,33(3):261-266
    [25]傅平青,刘从强,吴丰昌,等.洱海沉积物孔隙水中溶解有机质的三维荧光光谱特性[J].第四纪研究,2004,24(6):695-700
    [26]徐轶群,熊慧欣,赵秀兰,等.底泥磷的吸附与释放研究进展[J].重庆环境科学,2003,25(11):147-149
    [27]翟滨.象山港表层沉积物中氮和磷的分布特征、影响因素及其污染评价[D].青岛:中国海洋大学,2006
    [28]孔健健.福州第二水源山仔水库底泥营养盐-氮污染研究[D].福州:福建师范大学,2005
    [29]周德庆.微生物学教程(第一版)[M].北京:高等教育出版社,2001
    [30]吴丰昌,万国江,黄荣贵.沉积物-水界面营养元素的生物地球化学作用和环境效应:Ⅰ界面氮循环及其环境效应[J].矿物学报,1996,16(4):403-409
    [31]冯峰.沉积物中碳氮磷形态含量、微生物量的垂向分布及其相关性研究[D].武汉:中国科学院水生生物研究所,2006
    [32] Boyd S R.. Nitrogen in future biosphere studies[J]. Chemical Geology 2001, 76: l-30
    [33]叶丽娟,李强国.氨态氮测定方法的研究[J].衡阳师范学院学报(自然科学),2002,23(3):18-19
    [34]马红波,宋金明.海洋沉积物中的氮循环[J].海洋科学集刊,2001,Vol.43:96-107
    [35]吕晓霞,宋金明.海洋沉积物中氮的形态及其生态学意义[J].海洋科学集刊,2003,45:101-111
    [36]朱炳德.黄海及胶州湾沉积物中氮的形态研究[D].青岛:中国海洋大学,2007
    [37]王文强,温琰茂,柴士伟.养殖水体沉积物中氮的形态、分布及环境效应[J].水产科学,2004,23(1):29-33
    [38] Berner R A. Early diagenesis: A theoretical approach[M]. Princeton: Princeton University Press, 1980, 241
    [39] Delange G J. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic[J]. Marine geology, 1992, 109: 95-114
    [40]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003,32(1):48-54
    [41]钟立香.巢湖水-沉积物系统中氮的赋存变化及其与水华发生的关系研究[D].北京:中国环境科学研究院,2009
    [42]宋金明.中国近海生物地球化学[M].济南:山东科技出版社,2004
    [43] Mackin J E, Aller R C. Ammonium adsorption in marine sediments[J]. Limnology and Oceanography, 1984, 29: 250-257
    [44]马嵩.钱塘江沉积物生源氮素和有毒物质多氯联苯污染特征[D].杭州:浙江大学,2007
    [45] Allion F E, Doetsch J H, Roller E M. Availability of fixed ammonium in soils containing different clay mineral[J]. Soil Science, 1953, 75: 373-381
    [46] Rodrigues G F. Fixed ammonium in tropical soils[J]. Soil Science, 1954, 5: 264-274
    [47] Hanway J J, Scott A D. Ammonium fixation and release in certain Iowa Soils[J]. Soil Science, 1956, 82: 379-386
    [48] Stevenson F J, Dhariwal A P S. Distribution of fixed ammonium in soils[J]. Soil Science Society of America Journal, 1958, 23: 121-125
    [49] Mengel K, Horn D, Tributh H. Availability of interlayer ammonium as related root vicinity and mineral type[J]. Soil Science, 1990, 149(3): 131-137
    [50]邹长明,谢萍若.NH4+,K+在土壤中的固定率及相互竞争能力[J].土壤通报,1993,24(4):158-160
    [51] Chen J S, Machenzie A F. Fixed ammonium and potassium as affected by added nitrogen and potassium in three Quebec Soils. Communication in soil Scicene and Plant Analysis, 1992, 23(11,12): 1145-1159
    [52] Bremner J M. Organic forms of soil nitrogen[A]. Black C A, et al(eds). Methods of Soil Analysis[C]. USA: Madison, American society of Agronomy, 1965, 1148-1178
    [53] Murphy D V, MacDonald A J, Stockdale E A. Soluble organic Nitrogen in agriculture soils[J]. Biology and Fertility of Soils, 2000, 30: 374-387
    [54] Ji-Hyung P, Egbert M. Detrital control on the release of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) from the forest floor under chronic N deposition[J]. Environmental Pollution, 2006, 143: 178-185
    [55] Zhong Z K, Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology and Biochemistry, 2003, 35: 333-338
    [56] Groot J J R, Houba V J G. A comparison of different indices for nitrogen mineralization[J]. Biology and Fertility of Soils, 1995, 19:1-9
    [57]杨绒,严德翼,周建斌,等.黄土区不同类型土壤可溶性有机氮的含量及特性[J].生态学报,2007,27(4):1387-1420
    [58]黎文,白英臣,王立英,等.淡水湖泊水体中溶解有机氮测定方法的对比[J].湖泊科学,2006,18(1):63-68
    [59] Stepanauskas R, Leonardson L, Tranvik L J. Bioavailability of wetland-derived DON to freshwater and marine bacterioplankton[J]. Limnology and Oceanography, 1999, 44: 1477-1485
    [60] Stepanauskas R, Edling H., Tranvik L J. Differential dissolved organic nitrogen availability and bacterial aminopeptidase activity in limnic and marine waters. Microbial Ecology, 1999, 38: 264-272
    [61] Seitzinger S P, Sanders R W. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria phytoplankton. Limnology and Oceanography, 1999, 44(3): 721-730
    [62]王静,吴丰昌,黎文,等.云贵高原湖泊颗粒有机物稳定氮同位素的季节和剖面变化特征[J].湖泊科学,2008,20(5):571-578
    [63]林素梅,王圣瑞,金相灿,等.湖泊表层沉积物可溶性有机氮含量及分布特征[J].湖泊科学,2009,21(5):623-630
    [64] Hammond D E, McManus J. Early Diagenesis of Organic Material in Equatorial Pacific Sediments: Stpichiometry and kinetics[J]. Limnology and Oceanography, 1996, 43(4-6): 1365-1412
    [65] Underhill S E, Prosser J I. Surface attachment of nitrifying bacteria and their inhibition by potassium ethylxanthate[J]. Microbial Ecology, 1987, 14: 129~139
    [66] Rosenfeld J K. Ammonium adsorption in near shore reducing sediments. Limnology and Oceanography, 1979,24: 356–364
    [67] Seitzinger S P, Gardner W S, Spratt A K. The effect of salinity on ammonium sorption in aquatic sediments: Implications for benthic nutrient recycling[J]. Estuaries, 1991, 14:167~174
    [68] Gardner W S, Seitzinger S P, Malczyk J M. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux[J].Estuaries, 1991, 14: 157~166
    [69]刘培芳,陈振楼,刘杰,等.环境因子对长江口潮滩沉积物中NH4+的释放影响[J].环境科学研究,2002(15):28-31
    [70] Boatman C D, Murray J W. Modeling exchangeable NH4+ adsorption in marine sediments: Process and controls of adsorption[J]. Limnology and Oceanography, 1984, 27: 99~110
    [71] Simon N S, Kennedy M M. The distribution of nitrogen species and adsorption of ammonium in sediments from the tidal Potomacriver and estuary[J]. Estuarine Coastal and Shelf Science, 1987, 25: 11~26
    [72]侯立军,刘敏,蒋海燕,等.河口潮滩沉积物对氨氮的等温吸附特性[J].环境化学,2003,22:568-572
    [73]杨龙元,Gardner W S.休伦湖Saginaw湾沉积物反硝化率的测定及时空特征[J].湖泊科学,1998,10(3):548-553
    [74] John A. Nitrogen biogeochemistry of aquaculture Ponds[J]. Aquaculture, 1998, 166: 181-212
    [75]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-47
    [76]王东红,黄清辉,王春霞,等.长江中下游浅水湖泊中总氮及其形态的时空分布[J].环境科学,2004,25(2):28-30
    [77]胡凯,柯鹏振,吴永红,等.高原浅水湖泊沉积物中磷、氮形态化学研究[J].长江流域资源与环境,2005,14(4):507-511
    [78] Morin J W, Morse J W. Ammonium release from resuspended sediments in the Laguna Madre estuary. Marine Chemistry, 1999, 65: 97–110
    [79]刘敏,侯立军,许世远,等.河口滨岸潮滩沉积物—水界面N、P的扩散通量[J].海洋环境科学,2001,20(3):19-23
    [80]叶曦雯,刘素美,张经.鸭绿江口潮滩沉积物间隙水中的营养盐[J].环境科学,2002,23(3):92-96
    [81] Falco M, Vale C. Sediment-water exchanges of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal lagoon(Ria Formosa)[J]. Hydrobiology, 1998, (373-374): 193~201
    [82]玉坤宇,刘素美,张经,等.海洋沉积物一水界面营养盐交换过程的研究[J].环境化学,2001,20(5):425-431
    [83]王东启,陈振楼,钱嫦萍,等.盐度对崇明东滩沉积物-水界面NH4+交换行为的影响[J].海洋环境科学,2002,21(3):5-9
    [84] Magalháes C M, Bordalo A A, Wiebe W J. Temporal and spatial patterns of intertidal sediment-water nutrient and oxygen fluxes in the Douro River estuary, Portugal[J]. MarineEcology Progress Series, 2002, 233: 55-71
    [85] Gardner W S, Seitzinger S P, Malczyk J M. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux [J]. Estuaries, 1991, 14: 157-166
    [86] Laima M, Brossard D, Sauriau P. The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Oléron Bay, France[J]. Marine Environmental Research, 2002, 53: 381-402
    [87] Bolalek J, Graca Z. Ammonia nitrogen at the water-sediment interface in Puck bay(Baltic Sea) [J]. Estuarine Coastal and Shelf Science, 1996, 43: 767-779
    [88] Enell M, L?fgren S. P in interstitial water: methods and dynamics [J]. Hydrobiologia, 1988, 170: 103-132
    [89]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359-366
    [90] Kalbitz K., Solinger S, Park J H, et al. Controls on the Dynamics of Dissolved Organic Matter in Soils: a review[J]. Soil Science, 2000, 165(4): 277-304
    [91]俞天智,滕秀兰杜,杜金州,等.大亚湾土壤胡敏酸的荧光光谱特征[J].光谱学与光谱分析,1998,18: 277-304
    [92]傅平青,刘丛强,尹祚莹,等.腐殖酸三维荧光光谱特性研究[J].地球化学,2004,33: 301-307
    [93]曹军,陶澍.土壤与沉积物中天然有机物释放过程的动力学研究[J].环境科学学报,1999,19(3):297-302
    [94]陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响[J].植物营养与肥料学报,1998,4(3):201-210
    [95]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报,2002,22(2):259-269
    [96] Dawson H J, Ugolini F C, Hrutfiord B F, et al. Role of soluble organics in soil processes of a podzol, Central Cascades, Washington.[J] Soil Science, 1978, 126: 290-296
    [97] Kalbitz K, Popp P, Geyer W, et al.β-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter[J]. Science of Total Environment, 1997, 204: 37-48
    [98] Raulund-Rasmussen K, Borrggaard O K, Hansen H C B, et al. Effect of natural organic soil solutes on weathering rates of soil minerals. European Journal of Soil Science, 1998, 49: 397-406
    [99]周江敏,代静玉,潘根兴.应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征[J].光谱学与光谱分析,2004,24(19):1060-1065
    [100] Benner R, Pakulski J D, Mccarthy M, et al. Bulk Chemical characteristics of dissolved organic matter in the ocean[J]. Science, 1992, 255(5051): 1561-1564
    [101] Huguet A, Vacher I, Sau Busse S, et al. New insights into the size distribution of fluorescent dissolved organic matter in estuarine water[J]. Organic Geochemistry, 2010, 41(6): 595-610
    [102] Jennifer N A, Treavor H B. Conbined ion exchange treatment for removal of dissolved organic matter and hardness[J]. Water Research, 2010, 44(8): 2419-2430
    [103] JafféR, Boyer J N, Lu X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry, 2004, 84: 195-210
    [104] Thurman E M. Organic Geochemistry of Natural Waters[M]. Boston: Martinus Nijhoff/Dr. W Junk Publishers, 1985
    [105] Magee B R, Lion L W, Lemley A T. Transport of DOM macromolecules and their effect on the transport of phenanthrene in porous media[J]. Environmental Science and Technology, 1991, 5(2): 323-331
    [106] Baham J, Sposito G.. Chemistry of water-soluble, metal-complexing ligands extracted from an anaerobically-digested sewage sludge[J]. Journal of Environmental quality, 1983, 12(1): 96-100
    [107] Leenheer J A, Huffman E W D. Classification of organic solutes in water by using macroreticular resin[J]. Journal of the Royal Statistical Society, 1976, 4(6): 737-751
    [108] Chin Y P, Aiken G, O’Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances[J]. Environmental Science and Technology, 1994, 28(11): 1853-1858
    [109] Battin T J. Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela[J]. Organic Geochemistry, 1998, 28: 561-569
    [110]何海军,瞿文川,钱君龙.湖泊沉积物中腐殖酸的紫外-可见分光光度法测定[J].分析测试技术与仪器,1996,2(1):14-18
    [111]孙莉英,倪晋仁,孙卫玲.不同粒径黄和沉积物中可提取腐殖质的含量分布及光谱特性[J].环境科学,2007,28(6):1324-1331
    [112] Guggenberger G, Christensen B T, Zech W. Land-use effects on the composition of organic matter in particle size separates of Soil: I. Lignin and carbohydrate signature[J]. European Journal of Soil Science, 1994, 45: 449-458
    [113] Thosen M, Lassen P, Dobel S, et al.. Characterization of humic materials of different origin: A multivariate approach for quantifying the latent properties of dissolved organic matter[J]. Chemosphere, 2002, 49: 1327-1337
    [114]张甲,曹军,陶澍.土壤水溶性有机物的紫外光谱特征及地域分异[J].土壤学报,2003,40(1):118-122
    [115] Gressel N, McGrath A E, McColl J G, et al. Spectroscopy of aqueous extracts of forest litter.Ⅰ: Suitability of methods[J]. Soil Science Society of Ameria Journal, 1995, 59:1715-1723
    [116]陶澍,崔军,张朝生.水生腐殖酸的可见-紫外光谱特征[J].地理学报,1990,45(4):484-489
    [117]周琰,傅丽娜,阮宏华,等.武夷山不同海波土壤水溶性有机物的紫外-可见光谱特征[J].南京林业大学学报(自然科学版),2008,32(4):23-27
    [118] Gressel N, McColl J G, Powers R F, et al. Spectroscopy of aqueous extracts of forest litter.Ⅱ: Effects of management practice[J]. Soil Science Society of Ameria Journal, 1995, 59: 1723-1731
    [119]陈国珍.荧光分析法[M].北京:科学出版社,1990
    [120] Coble P G, Green S A, Blough N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature, 1990, 348(6300): 432-435
    [121] Coble P G. Characterization of marine and terrestrial DOM in seawater using exciting-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346
    [122] Baker A. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers[J]. Environmental Science and Technology, 2001, 35: 948-953
    [123] Van Beynen P, Bourbonniere R, Ford D, et al. Causes of color and fluorescence in speleothems[J]. Chemical Geology, 2001, 175: 319-341
    [124] Komada T, Schofield O M E , Reimers C E. Fluorescence characteristics of organic matter released from coastal sediments during resuspension[J]. Marine Chemistry, 2002, 79: 81-97
    [125] Wu F C, Tanoue E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J]. Environmental Science and Technology, 2001, 35: 3646-3652
    [126] Wu F C, Midorikawa T, Tanoue E. Fluorescence properties of organic ligands for copper(Ⅱ) in Lake Biwa and its rivers[J]. Geochemical Journal, 2001, 35: 333-346
    [127]傅平青.水环境中的溶解性有机质及其与金属离子的相互作用—荧光光谱学研究[D].北京:中国科学院研究生院,2004
    [128]傅平青,吴丰昌,刘丛强.洱海沉积物间隙水中溶解有机质的地球化学特性[J].水科学进展,2005,16(3):338-344
    [129]杨艳.三峡库区消落区土壤溶解有机质荧光特征研究[D].重庆:重庆大学,2010
    [130] Smart M M, Rada R G, Donnermeyer G N. Determination of total nitrogen in sediments and plants using persulfate digestion[J]. Water Research, 1983, 17(9): 1207-1211
    [131]钱君龙,张连弟,乐美麟.过硫酸盐消化法测定土壤全氮全磷[J].土壤,1990,5(10):258-262
    [132]戴纪翠,宋金明,李学刚,等.胶州湾沉积物中氮的地球化学特征及其环境意义[J].第四纪研究,2007,27(3):347-356
    [133]国家环保总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002
    [134]金相灿.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990
    [135]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998
    [136]李进村.安徽霍邱城东湖太湖新银鱼生长的初步研究[J].渔业现代化,2005,5:35-37
    [137]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J].环境科学学报,2008,28(1):37-43
    [138] Mudroch A, Azcue D J M. Manual of Aquatic Sediment Sampling[M]. Boca Raton, Florida: Lewis Publications, 1995
    [139] Dean W E. The carbon cycle and biogeochemical dynamics in lake sediments[J]. Journal of Paleolimnology, 1999, 21(4):375-393
    [140]陈敬安,万国江,汪福顺,等.湖泊现代沉积物碳环境记录研究[J].中国科学(D辑),2002,32(1):73-80
    [141]姚书春,李世杰.巢湖富营养化过程的沉积记录[J].沉积学报,2004,22(2):343-347
    [142]沈丽丽,何江,吕昌伟,等.哈素海沉积物中氮和有机质的分布特征[J].沉积学报,2010,28(1):158-165
    [143]高效江,张念礼,陈振楼,等.上海斌岸潮滩水沉积物中无机氮的季节性变化[J].地理学报,2002,5(4):407-412
    [144]王文强,温琰茂,柴士伟.养殖水体沉积物中氮的形态、分布及环境效应[J].水产科学,2004,23(1):29-33
    [145]宋金明,马红波,李学刚,等.渤海南部海域沉积物中吸附态无机氮的地球化学特征[J].海洋与湖沼,2004,35(4):315-322
    [146]徐晓燕,马毅杰,张瑞平.土壤中钾的转化及其与外源钾的相互关系的研究进展[J].土壤通报,2003,34(5):389-395
    [147]吴丰昌,万国江.泸沽湖沉积物-水界面扩散作用对上覆水体基本化学组成的影响[J].环境科学,1996,17(1):10-13
    [148]吕晓霞,宋金明.南黄海表层沉积物中单的区域地球化学特征[J].海洋科学进展,2003,21(2):174-180
    [149]焦立新,王圣瑞,金相灿,等.长江中下游浅水湖泊沉积物固定态铵特征及影响因素[J].环境科学研究,2007,20(4):57-63
    [150]董慧文.镜泊湖水质的营养特征及变化趋势分析[J].黑龙江环境通报,2005,29(2):18-19
    [151]贺斌,郭海英.大伙房水库底质重金属污染分析[J].现代农业科技,2010,(5):259-260
    [152]崔双发,李树滢,曹月坤,等.大伙房水库主要营养物物流平衡研究[J].水产科学,2004,23(6):31-33
    [153]柏钰春,尹喜霖.镜泊湖的环境地质风貌和开发存在问题及对策[J].北方环境,2004,29(4):4-6
    [154]苏国栋,于保群,任东升.五大连池渔业资源现状及开发利用[J].水产学杂志,1996,9(2):85-89
    [155]刘东兴.浅析兴凯湖湿地保护[J].东北水利水电,2009,6:50-52
    [156]王献溥,于顺利,刘振杰.黑龙江省兴凯湖保护区的基本特点及其有效管理[J].野生动物杂志,2006,27(2):29-32
    [157]王立群,戴雪荣,华珞,等.安徽龙河口水库沉积物碳、氮、磷地球化学记录及其环境意义[J].海洋湖沼通报,2007,4:60-65
    [158]李畅游,武国正,李卫平,等.乌梁素海浮游植物调查与营养状况评价[J].农业环境科学学报,2007,26(增):283-287
    [159]岳彩英,赵卫东,李明娜,等.达赉湖水质状况及影响因素分析[J].内蒙古环境科学,2008,20(2):7-9
    [160]岳城,黄燕,王莲芳,等.新疆吉力湖鱼类寄生虫区系调查[J].中国兽医科技,1998,28(12):17-19
    [161]蒋庆丰,沈吉,刘兴起,等.2.5ka来新疆吉力湖湖泊沉积记录的气候环境变化[J].湖泊科学,2010,22(1):119-126
    [162]蒋庆丰,刘兴起,沈吉.乌伦古湖沉积物粒度特征及其古气候环境意义[J].沉积学报,2006,24(6):877-882
    [163]杜新宪,许月英.博斯腾湖流域污染治理与生态环境保护对策浅析[J].干旱环境监测,2009,25(2):113-116
    [164]何清溪,张穗,方正信,等.大亚湾沉积物中氮和磷的地球化学形态分配特征[J].热带海洋,1992,11(2):38-45
    [165]吉磊,夏威岚,项亮,等.内蒙古呼伦湖表层沉积物的矿物组成和沉积速率[J].湖泊科学,1994,6(3):227-232
    [166]赵永晶,沈建忠,王腾,等.基于大型底栖动物的乌伦古湖水质生物学评价[J].水生态学杂志,2010,3(3):7-11
    [167]王凤娇.呼伦湖氮磷的地球化学特征[D].呼和浩特:内蒙古大学,2010
    [168]杨光华,包安明,陈曦,等.新疆博斯腾湖湿地生态质量的定量评价[J].干旱区资源与环境,2009,23(2):121-126
    [169]徐昶,林乐枝,杨波.青海湖沉积物中的粘土矿物[J].地质科学,1989,4:348-354
    [170]刘天仇.西藏羊卓雍错水位动态研究[J].地理科学,1995,15(1):55-63
    [171]张荣祖,郑度,杨勤业.西藏自然地理[M].北京:科学出版社,1982:23-67
    [172]吴彦宏,王苏民.湖泊沉积物中人类活动导致的营养盐累积通量估算——以龙感湖为例[J].第四纪研究,2006,26(5):843-848
    [173]薛滨,姚书春,王苏民,等.长江中下游不同类型湖泊沉积物营养盐蓄积变化过程及其原因分析[J].第四纪研究,2007,27(1):122-127
    [174]林丽花,张敏.巴松错国家级森林公园生态旅游资源评价及开发探讨[J].林业调查规划,2007,32(5):135-138
    [175]袁军,高吉喜,吕贤国,等.纳木错湿地资源评价及保护与合理利用对策[J].资源科学,2002,24(4):29-34
    [176] Rysgaard S, Thastum P, Dalsgarrd T, et al. Effects of Salinity on NH3-N Adsorption Capacity, Nitrification, and Denitrification in Danish Estuarine Sediments[J]. Estuaries, 1999, 22(1): 21-30
    [177]杨建新,祁洪芳,史健全,等.青海湖水化学特征及水质分析[J].淡水渔业,2005,35(3):28-32
    [178]卢晏生.羊卓雍错浮游生物的初步调查[Z].34-37
    [179] Ogilvie B, Nedwell D B, Harrison R M. High nitrate, muddy estuarines as nitrogen Sinks: the Nitrogen budget of the River Colne (United Kingdom)[J]. Marine Ecology Progress Series, 1997, 150: 217-228
    [180]罗泰义,高振敏.岩矿中固定铵的地球化学研究[J].矿物学报,1995,15(3):328-331
    [181]胡兴文.农药、化肥进入杞麓湖水体的现状和控制方法[J].云南农业科技,2006(增刊):194-195
    [182]陈敬安,万国江,黄荣贵.云南程海沉积物粒度研究[J].环境科学进展,1999,7(4):76-82
    [183]梁剑,张绍东,王洪波,等.邛海富营养化状态评价初探[J].四川环境,2009,28(3):33-36
    [184]裴新.大桥水库水质的预测分析[J].四川水利,1997,18(6):18-22
    [185]曹俊,陈斌,郭建强.马湖成因探讨[Z].184-190
    [186]姚远,张恩楼,沈吉,等.云南属都湖沉积物金属元素地球花絮[J].湖泊科学,2008,20(4):486-491
    [187]唐寿岚,丁文东,赵建林,等.碧塔海水体物理性质指标测定[J].林业调查规划,2008,33(5):29-30
    [188]和丽萍,陈异晖,赵祥华.杞麓湖“十五”期间污染底泥环境疏浚工程效益评估研究[J].环境科学导刊,2007,26(5):31-36
    [189]陈毅风,万国江.泸沽湖沉积物α纤维素的提取及其稳定碳同位素研究初探[J].底质地球化学,1999,27(4):72-76
    [190]王浩然.高原湖泊沉积物有机元素的早期成岩与湖泊营养演化研究[J].矿物岩石地球化学通报,1998,17(1):55-58
    [191] Kelts K. Environments of deposition of lacustrine petroleum source rocks: an introduction[J]. Lacustrine Petroleum Source Rocks, 1988, (40): 3-26
    [192]冯峰,王辉,方涛,等.东湖沉积物中微生物量与碳、氮、磷的相关性[J].中国环境科学,2006,26(3):342-345
    [193] Krishnaumurhy R V, Bhallacharya S K, Kusumgar S. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa Lake sediments, India[J]. Nature, 1986, 323(11): 150-152
    [194]王金亮,王平,鲁芬,等.碧塔海景区旅游活动对湿地生态环境影响研究[J].地理科学进展,2004,23(5):101-108
    [195]文启孝,程励励,陈碧云.我国土壤中的固定态铵[J].土壤学报,2000,37(2):145-156
    [196]朱维琴,章永松,林咸永.土壤矿物固定态铵研究进展[J].土壤与环境,2000,9(4):333-335
    [197] Candler R, Van cleve K. A comparison of aqueous extracts from the B horizon of birch and Aspen forest in interior Alaska[J]. Soil Science, 1982, 134: 176-180
    [198]何海军,瞿文川,钱君龙.湖泊沉积物中腐殖酸的紫外-可见分光光度法测定[J].分析测试技术与仪器,1996,2(1):14-18
    [199]周江敏,代静玉,潘根兴.土壤中水溶性有价值的结构特征及其与富里酸、胡敏酸的比较[J].土壤,2004,36(1):46-50
    [200]陶澍,崔军,张朝生.水生腐殖酸的可见-紫外光谱特征[J].地理学报,1990,45(4):484-489
    [201] Baes A U, Bloom P R. Fulvic acid ultraviolet-visible spectral influence of solvent and pH[J]. Soil Science Society of America Journal, 1990, 54: 1248-1254
    [202]徐秋芳.森林土壤活性有机碳库的研究[D].杭州:浙江大学,2003
    [203] Ivarsson H, Jansson M. Temporal variations in the concentration and character of dissolved organic matter in a highly colored stream in the coastal zone of Northern Sweden[J]. Archiv fur Hydrobiologie. Stuttgart, 1994, 132: 45-55
    [204] Chen J, Gu B, LeBoeuf E J, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J]. Chemosphere, 2002, 48(1): 59-68
    [205] Ferrari G M, Mingazzini M. Synchronous fluorescence spectra of dissolved organic matter(DOM)of algal origin in marine coastal waters[J]. Marine Ecology Progress Series, 1995, 125(10): 305-315
    [206] Peuravuori J, Koivikko R, Pihlaja K. Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy[J]. Water Research, 2002, 36(18): 4552-4562
    [207] Santin C, González-Pérez M, Otero X L, et al. Characterization of humic substances in salt marsh soils under sea rush (Juncus Maritimus) [J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 541-548
    [208] Senesi N, Miano T M, Provenzano M R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy[J]. Soil Science, 1991, 152: 253-259
    [209] Belanger T V, Walker R B. Groundwater seepage into the Indian River Lagoon at Port St. Luces[J]. Florida Scientist, 1990, 53(3): 169-179
    [210]何小松,席北斗,魏自民,等.堆放垃圾渗滤液水溶性有机物的荧光特性[J].中国环境科学,2010,30(6):752-757
    [211] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology, 2003, 37: 5701-5710
    [212]郭卫东,程远月,吴芳.海洋荧光溶解有机物研究进展[J].海洋通报,2007,26(1):98-106
    [213]刘明亮,张运林,秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J].湖泊科学,2009,21(2):234-241
    [214]傅平青,刘丛强,吴丰昌,等.洱海沉积物孔隙水中溶解有机质的三维荧光光谱特征[J].第四纪研究,2004,24(6):695-700
    [215] Silva J A, Bremner J M. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed Ammonium[J]. Soil Science Society of America Journal, 1966, 30: 587-594
    [216]周召千.东海沉积物中氮的形态研究[D].青岛:中国海洋大学,2008
    [217]程远月,郭卫东,胡明辉.近岸沉积物再悬浮期间所释放溶解有机物的荧光特性[J].地球化学,2008,37(1):51-58
    [218]郭旭晶,席北斗,何小松,等.乌梁素海周边土壤溶解性有机质荧光特性及其与Cu(Ⅱ)的配位研究[J].环境化学,2010,29(6):1121-1126
    [219] Battin T J. Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela[J]. Organic Geochemistry, 1998, 28: 561-569
    [220] McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic materials and aromaticity[J].Limnology and Oceanography, 2001, 46: 38-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700