西农萨能奶山羊脂肪酸合酶基因启动子的克隆、测序及活性区域分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸合酶(Fatty acid synthase, FAS;EC 2.3.1.85)是哺乳动物的脂肪酸合成过程中具有重要作用的关键酶。它利用乙酰-CoA、丙二酸单酰-CoA和NADPH催化饱和脂肪酸的合成。山羊乳腺短、中链脂肪酸合成受到FAS中的乙酰/丙二酸单酰基转移酶(Acetyl-CoA and malonyl-CoA transacylases, AT/MT)功能域的转酰基作用调控。可以设想对脂肪酸合酶基因进行调控或改造,从而达到生产出高品质乳品的目标。通过调控FAS基因表达可以达到改变山羊乳脂肪酸组成、提高羊奶中对人体有益的脂肪酸含量、解决山羊乳膻味问题等目的。所以对其启动子的结构和功能的研究,可进一步揭示脂肪酸合酶基因表达所依赖的调控信息以及这些信息相互作用的分子机制。因此,本研究以脂肪酸合酶基因的启动子活性功能探索为切入点,对FAS基因启动子的全长进行克隆、测序和生物信息学分析,在对其结构了解比较清楚的基础上进行启动子缺失片段载体的构建,找出其最小活性中心。用不同浓度雌激素作用于此最小活性中心,对其启动活性和功能调控进行进一步的探索,为FAS基因的功能调控等深入研究打下基础。该研究旨在为西农萨能奶山羊乳腺FAS基因的功能研究奠定基础,通过掌握FAS基因启动子的调控规律,为山羊乳腺脂肪酸代谢、FAS基因功能以及山羊奶膻味的遗传调控机理研究提供试验依据。
     本研究以西北农林科技大学萨能羊原种场健康的纯种西农萨能奶山羊为试验材料,扩增获得了西农萨能奶山羊乳腺FAS基因启动子序列全长,并对其进行了生物信息学分析;采用荧光素酶活性分析的方法检测了不同启动子缺失片段(pGL3—E、pGL3—3、pGL3—4、pGL3—5、pGL3—6、pGL3—8、pGL3—10、pGL3—14、pGL3—19、pGL3—21)的启动活性。用不同浓度的雌激素作用于启动子的最小活性中心,研究雌激素对启动子活性的影响。试验结果如下:
     1.克隆获得了西农萨能奶山羊FAS基因启动子全长2640bp,登录GenBank收录号为EF556550(数据已公布)。
     2.对克隆得出的启动子序列进行生物信息学分析,表明羊FAS基因启动子和牛、人FAS启动子存在90%以上同源性,启动子还存在数个潜在SP1、Ets、LSF等转录因子结合位点。没有典型的TATA框,存在CCAAT框和GC框,在-1040bp~-340bp处可能存在启动子活性中心。
     3.启动子缺失片段的荧光素酶活性分析表明,启动子前段区域可能存在负调控元件,-721~-540bp中间存在着FAS启动子的核心区域,-540bp后无启动子活性序列。
     4.雌激素对FAS启动子活性影响试验表明,-721~-540bp序列存在雌激素的结合区域。雌激素浓度为4-100μmol/L时,雌激素对FAS启动子活性有显著的提高作用。其中20μmol/L时作用最为显著。
Fatty acid synthase(FAS) plays an important role in de novo fatty acids synthesis in mammals. FAS helps to catalyze all the reaction steps in the conversion of acety1-CoA, malonyl-CoA and NADPH to saturated fatty acids. Short- and medium- chain fatty acids in goat mammary synthesis are functioned by a transferase reaction in the region of Acetyl-CoA and malonyl-CoA transacylases(AT/MT). It’s one of the important means to solve goat milk odor from genetics and breeding aspect by regulating FAS gene expression in order to change fatty acids composition in goat mammary gland. So the study of FAS gene promotor’s struture and function can further reveal the regulated informaton and its interacted mechanism of which FAS gene expression depending on. Therefore, this study take FAS gene promoter active and function as a point, cloned the FAS gene promoter, sequenced and bioinformation analyzed it. Construct PGL-3 expression vector based on structure foundation, found out core promoter sequences. Use estrogen of concentration gradient on the core promoter sequence, further explore its starting activity and function regulation. Laid a foundation for FAS gene founctional regulation research. This study aims at consummating fundamental research of Xinong Saanen Goat FAS gene promoter, Provided experimental basis on Goat Mammary Gland fatty acid metabolism,FAS gene’s function and genetic regulation mechnism of goat milk flavor by mastering the FAS promoter’s regulation rules.
     The study uses purebred and healthy Xinong saanen goat in Xinong Saanen Goat Breeding Farm of Northwest A&F University as experimental materials, cloned and analyzed the sequence of Xinong Saanen Dairy Goat mammary FAS gene promoter full length region; Detected activity of different promoter deletion fragments(pGL3—E, pGL3—3, pGL3—4, pGL3—5, pGL3—6, pGL3—8, pGL3—10, pGL3—14, pGL3—19, pGL3—21)by luciferase assays. Selected estrogen of different concentrations act on the core promoter sequences, study the estrogen effects on promoter’s activity. The experimental results are as follows:
     1. Cloned sequence of FAS gene promoter is 2640bp, The Genbank number of the sequence is EF556550 (published).
     2. Sequence analysis shows that the homology of Xinong Saanen Goat FAS gene promoter with bovine and homo is over 90%, there are several potential transcription factor binding sites such as SP1、Ets、LSF. There is no typical TATA box, and similar CCAAT box and GC box exist. The core promoter sequences potentially located in -1040bp~-340bp.
     3. Luciferase assays of different FAS gene promoter deletion fragments shows that the potential negative control element may located in forepart of FAS gene promoter, The core promoter sequences potentially located in-721~-540bp, and there is no promoter activity sequencese after-540bp.
     4. Use estrogen of concentration gradient on the core promoter sequence, we draw a conclusion that the estrogen binding domain exsit in-721~-540bp. When the consentration of estrogen is 4-100μmol/L, estrogen has a significant effect on the improvement of promoter activity, the improvement was most remarkable when the estrogen concentration is 20μmol/L.
引文
[1] Jensen R G.The composition of bovine milk lipids:January 1995 to December 2000[J].Journal of Dairy Science,2002,85:295-350.
    [2] Luo jun,Fan rui.Preliminary study on fatty acids composition in milk of dairy goat. 25th IGA Anniversary International Symposium,2007,Italy.
    [3] Jannick D B, Henrik N, Gunnar H,et al.Improved prediction of signal peptides: SignalP 3.0[J].Journal of Molecular Biology,2004,340:783-795.
    [4] Bonetta L.Bioinformatics-from genes to pathways[J].Nat Methods,2004,1:169-176.
    [5] Bichet A,Polverari D,Malpertuy A. Gene regulation and bioinformatics[J].Bull Cancer, 2005,92:97-107.
    [6] Kundsen J,Grunnet I.Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase.Synthesis of medium-chain-length(C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase[J].The Journal of Biochemistry,1982,202:139-143.
    [7] Glass R L,Jenness R,Lohse L W. Comparative biochemical studies of milk.V.The triglyceride composition of milk fats[J].Comparative Biochemistry and Physiology, 1969,28:783-786.
    [8]王海滨,刘拉平,单翠燕等.不同胎次中国荷斯坦牛鲜乳脂肪酸组成研究[J].中国乳品工业, 2006,34(6):32-35.
    [9] Skjevdal T.Flavour of goat’s milk:a review of studies on the sources of its variations[J].Livestock Production Science,1979,4:397-405.
    [10] Kompan D, Oresnik A, Salobir J,et al.The effect of n-3 fatty acid supplementation on the milk and milk lipids fatty acids[J].In: European Dairy Congress,Portoroz,Slovenian, pp.2003,17.
    [11] Fyksen S, Stelnsholt K.Report No.183 from the Dairy Research Institute.Agric.Univ of Norway.1974.
    [12]罗军,单翠燕,刘拉平等.不同胎次西农萨能羊鲜乳中链和短链脂肪酸组成的初步研究[J].西北农林科技大学报(自然科学版),2005,33(3):24-28.
    [13] Brennand C P,Kim H J and Lindsay R C.Aroma properties and thresholds of some branched-chain and other minor volatile fatty acids occurring in milk fat and meat lipids[J].Journal of Sensory Studies,1989,4:105-120.
    [14] Antunac N, Havranek J L, Samarzija D. Effect of breed on chemical composition of goat milk[J].Czech Journal of Animal Science,2001a,6:268-274.
    [15] Antunac N, Havranek J L, Samarzija D. Effect of breed on chemical composition of goat milk[J].Czech Journal of Animal Science,2001a,6:268-274.
    [16]王海滨,罗军,武会娟,韩雪峰,单翠燕,张宁,西农萨能羊乳腺脂肪酸合酶基因exon 9-15的克隆与序列分析,中国农业科学2008,41(3):828-833
    [17] Boivin A,Deshaies Y. Dietary rat models in which the development of hypertriglyceridemia and that of insulin resistance are dissociated[ J ]. Metabolism, 1995, 44 (12) : 1540 - 1547.
    [18]田维熙,董妍,权晖,等.不同生长期蛋鸡的体脂水平和肝脏脂肪酸合成酶活性的关系[ J ].生物化学杂志, 1996, 12 ( 2) : 234 -236.
    [19]刘世杰,宋代军,刘作华.日粮因素对脂肪酸合成酶(FAS)基因表达的影响J.饲料工业,2004,25(11):27-29
    [20] Stoeckman AK,Ma L,Towle HC.Mlx Is the Funetional Heteromeric Partner of the Carbohydrate Response Element-binding Proteinin Glueose Reuglation of Lipogenic EnZyme Genes[J].J BiolChem,2004,279:15662-15669.
    [21] SEMEN KOVICH C F. Regulation of fatty acid synthase ( FAS) [J ] . Prog ress in L i pi d Research , 1997 ,36 :45-53.
    [22]彭祥伟,范守城,邢豫川,等.鹅肥肝的生产及其FAS活性测定[J ] .中国家禽,2005 ,9 (1) :48251.
    [23] MOUROT J , GU Y G, PEIRNIAU P ,et al. Effects of overfeeding on lipid synthesis ,transport and torage in two breeds of geese differing in their capacity for fatty liver production[J ] . A nim Res , 2006 , 55 : 427-442.
    [24] Rigout,S.,et al Duodenal Glueose incerases glueose fluxes and laetose synthesis in grass silage–fed dairy cows. JDairy Sci,2002a,85:595-606.
    [25] J. M. Griinari. Trans-Octadecenoic Acids and Milk Fat Depression in Lactating Dairy Cows [J]. Dairy Sci,1998,81:1251-1261
    [26] TYznick,W,Allen N N.The relation of roughage intake to the fat content of the milk and level of fatty acids in the rumen [J]. Dairy Sci,1951,34(3):493
    [27] Ookhtens M, Kannan R , Lyon I , Baker N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol , 1984 , 247 : R146– 153
    [28] Kuhajda FP.Fatty acid synthase and human cancer:new perspectives on its role in tumor biology[J]. Nutrition,2000,16(3):202.208
    [29] Pizer E S , Wood F D , Pasternack G R , et al . Fatty acid synhase ( FAS) : a target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells [ J ] . Cancer Res , 1996 , 56 ( 4 ) :745 - 751.
    [30] Hennigar R A , Pochet M , Hunt D A , et al . Characterization of fatty acid synt hase in cell lines derived f rom experimental mammary tumors [ J ] . Biochim Biophys Acta , 1998 ,1392 (1) : 85 -100.
    [31] Pizer E S , Wood F D , Heine H S , et al . Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer [J ] . Cancer Res , 1996 ,56 (6) :1189 - 1193.
    [32] Pizer E S , Thupari J , Han W F , et al . Malonyl-coenzyme-A is apotential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenograft s[J ] . Cancer Res , 2000 , 60 (2) :213 - 218.
    [33] Gabrielson E W, Pinn M L , Testa J R , et al . Increased fatty acid synthase is a t herapeutic target in mesot helioma [ J ] . ClinCancer Res , 2001 , 7 (1) :153 - 157.
    [34] Matthew H H,Chirala S S,Wakil S J. Human Fatty-Aeid Synthase Gene[J]J.Biol.Chem,1996,271:13584~13592.
    [35] Mikkelsen J, et al. Evidence that the medium-chain acyl transferase of lactating-goat mammary gland fatty acid synthetase is identical with the acetyl/malonyl transferase[J]. J.Biochem.,1985,227:981-985.
    [36] Bonnet M, Faulconnier Y, Flechet J,et al.Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed-refed ewes and cows[J].Reprod.Nutr.Dev.,1998,38(3):297-307.
    [37] Kameda K. , and Goodridge A. G. , Isolation and Partial Charaterization of the Gene for Goose Fatty Acid Synthase J . Biol. Chem ,1991 ,266 :419~426
    [38] Roy,R., Gautier,M., Hayes,H., Laurent,P., Osta,R., Zaragoza,P., Eggen,A. and Rodellar,C. Assignmentof the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93 (1-2), 141-142 (2001)
    [39] Trinklein, N.D., Aldred, S.J., Saldanha, A.J., and Myers, R.M. 2003. Identification and functional analysis of human transcriptional promoters. Genome Res. 13: 308C312.
    [40] Remenyi, A., Scholer, H.R., Wilmanns, M. (2004) Combinatorial control of gene expression Nature Struct. Mol. Biol, . 11, 812 815 .
    [41] Kimura N.Nagasaka T.Murakami J.Sasamoto H Murakami M Tanaka N Matsubara N Methylation profiles of genes utilizing newly developed CpG island methylation microarray on colorectal cancer patients 2005 ;33:e46
    [42] Neve R L , West R W, Rodriguez R L. Eukaryotic DNA fragments which act as promoters for a plasmid gene [J ] .Nature , 1979 , 277 (5694) : 324 - 325.
    [43] Williams D M, Duvall E J , Lovett P S. Cloning restriction fragments that promote expression of a gene in bacillus sub2 tilis[J ] . J Bacterol , 1981 , 146 (3) : 1162 - 1164.
    [44] Zukowski M M, Gaffney D F , Speck D , et al. Chro2 mogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene[J ] . Proc Natl Acad Sci U S A , 1983 , 80 (4) : 1101- 1105.
    [45] Scorpione R C , De Camargo S S , Schenberg A C , er al. A new promoter-probe vector for Saccharomyces cerevisiae using fungal glucoamylase cDNA as the reporter gene [J ] .Yeast , 1993 , 9 (6) : 599 - 605.
    [46] Sidhu R S , Mathewes S , Bollon A P. Selection of secretory protein-encoding genes by fusion with PHO5 in Saccharomyces cerevisiae[J ] . Gene , 1991 , 107(1) : 111 - 118.
    [47] Fodor I , Krasnikova O V , Berets E , et al. Cloning , structure and features of a Saccharomyces cerevisiae DNA fragment causing the expression of reporter genes[J ] . Mol Biol(Mosk) , 1990 ,24 (5) :1411 - 1418.
    [48] Luo X. Cloning and characterization of three Aspergillusniger promoters[J ] . Gene , 1995 , 163(1) : 127 - 131.
    [49]张勇为,张义正.启动子探针型载体的构建.四川大学学报(自然科学版),1995,32(4):457-461.
    [50]黄玉屏,杨洋,沈萍,沈韬芬.大肠杆菌-酿酒酵母启动子探针穿梭载体的构建.见:刘经南主编,生命科学与微生物专辑.湖北省科学技术协会,武汉,2004
    [51]苏宁,孙萌,李轶女,倪丕冲,沈桂芳.水稻叶绿体16S启动子克隆改造、载体构建及转化研究.植物学通报,2003,20(3):295-301
    [52]韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农业学报,2001,17(2):27-32
    [53]马晴,张渝英.反向PCR方法克隆腾冲嗜酸两面菌的分子伴侣基因.微生物学通报,2005,32(4):112-115
    [54]袁静,王恒晖,苏国富.锅柄式PCR及其在混合谱系白血病基因断裂区中的应用.生物技术通讯,2006,17(1):115-118
    [55] Siebert P D , Chenchik A , Kellogg D E , et al. An improved PCR method for walking in uncloned genomic DNA [J ] . Nucleic Acids Res , 1995 , 23 (6) : 1087-1088.
    [56] Li X B , Cai L , Cheng N H , Liu J W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber[J ] . Plant Physiol , 2002 ,130(2) :666 -674.
    [57] Shyamala V, Ames G F L. Genome walking by single-specific-primer polymerase chain reaction : SSR-PCR. Gene, 1989, 84(1) :1-8
    [58]王新国,肖成祖,张国华,等.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学与分子生物学报,2001,17(1) :61-65
    [59] Prarshar Y, et al.Proc Natl Acad Sci USA, 1996, 93:659-663.
    [60]方卫国,张永军,马金成,等.用YADE法克隆球孢白僵菌类枯草杆菌蛋白酶基因CDEP-1的启动子及启动子序列分析.菌物系统, 2003, 22(2) :252-258
    [61] Liu YG, Robert FW.Genomics, 1995, 25:674-681.
    [62] Ueli Grossniklaus, Jean-Philippe, Vielle-Calzada. Maternal control of embrogenesis by MEDEA, a polycmb group gene in Arabidopsis. Science, 1998, 280 : 446-450
    [63] Gento Tsuji, et al.Gen Plant Pathol, 2003, 69:230-239.
    [64] Oubrahim H,Wang J,Stadtman ER,Chock PB. Molecular cloning and characterization of murine caspase-12 gene Promoter. Proc Natl Acad sci USA,2005,102:2322-2327
    [65] Jura N,Archer H,Bar-Sagi D. Chronic Pancreatitis,Pancreatic adenocarcinoma and the black box In-between?Cell Res,2005 Jan,15(1):72-7
    [66]肖月华,罗明,方卫国,等.遗传学报, 2002, 29( 1) :62~66.
    [67] Hwang Y S , Yang D , McCullar C , et al . Analysis of the rice endosperm- specific globulin promoter in transformed rice cells [ J ] .Plant Cell Rep ,2002 , 20 :842 - 8471
    [68] Xie B, Tang C, Chen P, Gou YB, Xiao J, DU H. The effect of hepatitis B virus X protein on the c-met promoter activity in HepG2 cells. Zhonghua Gan Zang Bing Za Zhi. 2009 Apr;17(4):292-6.
    [69] Defendi F, Decleva E, Martel C, Dri P, Stasia MJ. A novel point mutation in the CYBB gene promoter leading to a rare X minus chronic granulomatous disease variant -- Impact on the microbicidal activity of neutrophils. Biochim Biophys Acta. 2009 Jan 21.
    [70] Winslow RH, Julien B, Calendar R, Christie GE. An upstream sequence element required for NucC-dependent expression of the Serratia marcescens extracellular nuclease. J Bacteriol. 1998 Nov;180(22):6064-7.
    [71] Kamoto M, Umezawa N, Kato N, Higuchi T. Novel probes showing specific fluorescence enhancement on binding to a hexahistidine tag. Chemistry. 2008;14(26):8004-12.
    [72] Lauer SA, Nolan JP.Development and characterization of Ni-NTA-bearing microspheres.Cytometry. 2002 Jul 1;48(3):136-45.
    [73] Dils R R.Milk fat synthesis.In Biochemistry of Lactation,pp.141±158[TB Mepham, editor].Amsterdam,The Netherlands:Elsevier.1983.
    [74] Moore J H,Christie W W.Lipid metabolism in the mammary gland of ruminant animals[J]. Progress in Lipid Research,1979,17:347-395.
    [75] Hilditch T P.The Chemical Constituents of Natural Fats.New York,N Y:John Wiley.1941.
    [76] Popjak G,French T H,Hunter G D,et al.Mode of formation of milk fatty acids from acetate in the goat[J].J. Biochemical,1951b,48:612-618.
    [77] Silveira , N J , Freitas U , Hugo B , et al . Structural bioinformatics study of PNP from Schistosoma mansoni [J].Biochemical and Biophysical Research Communications ,2004 , (1) :100~104.
    [78] Burkhard Rost.Protein secondary structure prediction continues to rise.Journal of Structual.Biology,2001,134:204~218.
    [79] Papin, J.,Subramaniam, S. Bioinformatics and cellular signaling[J]. Current Opinion in Biotechnology, 2004,(1): 78~81.
    [80] Benson DA,Karsch-Mizrachi I,Lipman DJ et al. GenBank. Nucleic Acids Research ,2005,33 (Database issue) :D 34~D38.
    [81]廖志华,谌容,陈敏,杨春贤等.生物学信息数据库简介[J].生物学教学,2006,31(1):61~62.
    [82] Barber M C,Clegg R A,Travers M T , et al.Lipid metabolism in the lactating mammary gland[J].Biochimica et biophysica acta,1997,1347(2-3):101-126.
    [83]蒋彦,王小行,曹毅,等.基础生物信息学及应用[M].北京:清华大学出版社,2003.
    [84] Gottesman MM,Pastanl,Ambudker SV,et al. P-glyco Protein and multidrug resistanee.Curr OPin Genet Dev,1998:6(5):610-617.
    [85] NakagomiH,FuruyaK,HagiwaraJ,etal. Toremifene sensitized the effect of adriamycin on human breast cancer eell lines. Gan ToKagaku Ryoho,1998,1(3):454-458.
    [86] Maruyama S,Kuroiwa S,Saimoto S, et al.Combined effects of toremifene and paclitaxel on human breast cancer cell lines. GanToKagaku Ryoho,2003,30(5):669-675.
    [87] Kusama M, Kaise H, Nakayama S, etal. A case of breast cancer patient of CAF(cyclophamid, adriamycin, 5-fluorouracil)resistant lung metastasis with remarkable response to reverse drug-resistance by toremifene. Gan toKagaku Ryoho, 1999,26:1171-1175
    [88] Sugimoto Y, Tsukahara S, Imai Y, etal. Reveasal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther, 2003,2(1):105-112
    [89] BevanM,et al.Analysis of 1.9 Mb of contigous sequence from chromosome 4 of Arabidopsisthaliana[J].Nature.1998,391:485-488
    [90] Joshi.An inspection of the domain between putative TATA box and translation site of 79 plant genes[J].Nucl Acids Res.1987,15:6643-6653
    [91] Ha J K,Lindsay R C.Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases[J].Journal of Dairy Science,1993,76:677-690.
    [92] Chilliard Y,Fertay A,Rouel J,et al. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis[J].Journal of Dairy Science,2003,86:1751-1770.
    [93]孙晓红,陈明杰,潘迎捷.启动子克隆概述.食用菌学报,2002,9: 57-62.
    [94] P.C.特纳A.G.麦克伦南A.D.贝茨M.R.H怀特Molecular Biology第2版.北京:科学出版社, 2001. 045753.
    [95] Yu CX, Jin T, Chen WW, Zhang PJ, Liu WW, Guan HY, Zhang J, Liu QW, Jiang AL. Identification of Sp1-elements in the promoter region of human homeobox gene NKX3.1. Mol Biol Rep. 2009 Mar 5.
    [96]喻红,彭芳芳.医学生物化学与分子生物学实验技术[M].武汉:武汉大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700