小麦、大麦K~+电压门控通道蛋白β亚基基因分子克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用PCR扩增克隆法,首次从普通小麦(良麦4号和中国春)、野生二粒小麦和大麦中分离得到4个编码钾离子通道蛋白β亚基的基因序列,从分子水平上研究β亚基基因在拟南芥、水稻、小麦、大麦中的遗传变异和氨基酸序列差异,并进行了生物信息学预测、分析,主要研究结果如下:
     1.来自良麦4号、中国春、野生二粒小麦与大麦的钾离子通道蛋白β亚基的基因均为987bp,编码328个氨基酸残基的蛋白质序列。将克隆得到的基因序列与已知的K+通道蛋白β亚基基因序列KAB1和KOB1进行比对,同源性分别达到92.08%和95.08%,克隆得到的基因序列具有完整的开放阅读框架,具有起始密码子ATG和终止密码子TAA。与KAB1和KOB1的氨基酸序列比对同源性分别达到96.04%和95.37%。据此认为,克隆得到的基因序列是编码小麦、大麦钾离子通道蛋白β亚基的基因,分别命名为KTB1和KHB1。
     2.在KOB1中,第79位到第115位的氨基酸与KAB1中同位置的氨基酸存在很大差异,有34个氨基酸发生了改变其中包括一个缺失。而KTB1和KHB1在该位置与KAB1是高度同源的,仅有2个位点发生了变异,分别是脯氨酸→谷氨酰胺,苏氨酸→亮氨酸之间的替换。在中国春中,该区域第115位酪氨酸→半胱氨酸的替换导致其缺少了1个酪氨酸激酶磷酸化位点。bovKvβ2和ratKvβ1在该区域也相当保守,仅有1个位点的差异,即谷氨酸→谷氨酰胺的替换。KOB1在该区域缺少了3个蛋白激酶C磷酸化位点(STK、SRK、SLK)和1个酪氨酸激酶磷酸化位点(KRLDM (D/E) Y)而多出1个酪蛋白激酶Ⅱ磷酸化位点(SSWE),而植物和哺乳动物仅有的4个共同蛋白激酶C磷酸化位点在该区域出现了2个(S/TTK、SRK)。
     3.生物信息学分析表明,KTB1和KHB1没有信号肽,是一个没有跨膜区域的亲水性蛋白。对其二级结构进行预测分析发现,该蛋白无规则卷曲(Coil, c)含量最高,其次是α螺旋(Helix, h),分别为46.65%和39.02%,而β折叠(Strand, e)含量最低,为14.33%。亚细胞定位结果表明该蛋白主要存在于细胞质(60.9%)中,其次是线粒体(26.1%),然后是细胞核(8.7%),极少部分存在于细胞骨架中(4.3%)。
Based on PCR cloning, four gene sequences encoding voltage-gated K+ channelβsubunit were isolated from wheat (cv Liang mai 4, Chinese spring), wild emmer and barley for the first time. Amino acids sequences variations ofβsubunit in Arabidopsis, rice, wheat and barley were detected. Bioinformatics analysis was also conducted. The results were outlined as following.
     1. The voltage-gated K+ channelβsubunit sequences from Liang mai 4, Chinese spring, wild emmer and barley were 987bp, encoding 328 amino acids. The nucleotide sequences of KTB and KHB shared 92.08% and 95.08% sequence similarity with those from Arabidopsis and rice K+ channelβsubunits(KAB1 and KOB1), respectively. The genes had complete open reading frames, start codon ATG, and stop codon TAA. The amino acids sequences shared 96.04% and 95.37% sequence identity with KAB1 and KOB1. These clones, the first K+ channel from wheat and barley, were designated as 'KTB1' and 'KHB1'.
     2. The region of the KOB1 sequence (amino acids 79-115) shared little homology with KAB1,34 amino acids were mutated including a deletion. However, KTB1 and KHB1 had a high degree of sequence conservation in this region for each other; only 2 mutations, which were Pro→Gln and Thr→Leu, were found. In Chinese Spring, the mutation of Tyr115→Cys115 in this region resulted in a deletion of tyrosine kinase phosphorylation site. KOB1 lacked 3 protein kinase C phosphorylation sites (STK, SRK, SLK) and 1 tyrosine kinase phosphorylation site but had an additional casein kinaseⅡphosphorylation site (SSWE) in this region. Two out of 4 protein kinase C phosphorylation sites which both plant and mammalian shared are present here (S/TTK, SRK).
     3. Bioinformatics analysis indicated that KTB1 and KHB1 were hydrophilic polypeptides without signal peptides or membrane spanning regions. Secondary structure prediction showed that they had more coil (46.65%) andα-helix (39.02%) thanβ-strand(14.33%). Subcellular location prediction demonstrated that KTB1 and KHB1 mainly existed in cytoplasm (60.9%), followed by chondriosome (26.1%) and nuclear (8.7%), the rest (4.3%) were located in cytoskeletal.
引文
1. Maser P,Thomine S,Schroeder JI,et al.Phylogenetic relationships within cation transporter families of Arabidopsis[J].Plant Physlo,2001,126(4):1646-1667.
    2.刘全喜,马连运.衡水耕层土壤钾素状况及施钾效果[J].土壤肥料,1997,4(1):29-31.
    3.胡思农,涂仕华.四川省作物钾素营养和钾肥应用研究[M].成都:四川科学技术出版社,1999:108-109,108.
    4.严蔚东,王校常,何锶洁等.利用外源钾通道基因改良水稻钾素营养.中国水稻科学,2002,16(1):77-79.
    5.许海涛,班新河,许波.钾肥施用对玉米干物质生产及籽粒产量影响研究[J].中国土壤与肥料,2009,(3):48-50.
    6.林咸永,何念祖,章永松等.不同水稻品种对钾的吸收和利用的差异及其与产量和品质的关系.土壤通报,1995,26(7):49-52.
    7.赵景云,赵宏伟.钾素用量对春玉米及产量性状的影响.东北农业大学学报,2009,40(8):10-13.
    8.孙斌.不同钾素水平下小麦纹枯病发生与小麦参量形成因素的关系[J].江苏农业科学,2009,4(3):133-135.
    9.王桂良,黄玉芳,叶优良.不同钾肥品种和用量对小麦产量品质和养分吸收利用的影响.干旱地区农业研究,2009,27(5):35-40.
    10.孙斌,曹雯梅,王应君等.不同土壤钾素对强筋小麦产量形成因子的影响.中国农学通报,2009,25(16):146-149.
    11.李国怀,刘娟旭.施钾肥对温州蜜柑果实发育、裂果和品质的影响.果树科学.1999,16(1):43-46.
    12.印莉萍,黄勤妮,吴平.植物营养分子生物学及信号转导[M].北京:科学出版社,2006:110-111,111.
    13.周伯瑜,杨子江.植物缺钾诊断与施钾[J].生命世界,1993,1(1):42-43.
    14. Anderson JA,Huprikar SS,Kochian LV,et al.Functional expression of probable potassium channel Arabidopsis thaliana in S.cerevisie[J].Proc.Natl.Acid.Sci.USA,1992,89(9):3736-3740.
    15. Sentenac H,Bonneaud N,Minet M,et al.Cloning and expression in yeast of a plant potassium ion transport system[J].Science,1992,256(5057):663-665.
    16. Hirsch RE,Lewis BD,Spalding EP,et al.A role for the AKT1 potassium channel in plant nutrition[J].Science,1998,280(5365):918-921.
    17. Zimmermann S,Talke I,Ehrhardt T,et al.Characterization of SKT1,an inwardly rectifying potassium channel from potato,by heterologous expression in insect cells[J].Plant Physiology,1998,116(3):879-890.
    18. Hartje S,Zimmermann S,Klonus D,et al.Functional characterisation of LKT1,a K+ uptake channel from tomato root hairs,and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes[J].Planta,2002,210(5):723-731.
    19. Su H,Golldack D,Katsuhara M,et al.Expression and stress-dependent induction of potassium channel transcripts in common ice plant[J].Plant Physiology,2001,125(2):604-614.
    20. Buschmann PH,Vaidyanathan R,Gassmann W,et al.Enhancement of Na+ Uptake Currents,Time-Dependent Inward-Rectifying K+ Channel Currents,and K+ channel transcripts by K+ stavation in wheat root cells[J].Plant Physiology,2000,122(4):1387-1397.
    21. Golldack D,Quigley F,Christine B,et al.Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently[J].Plant Molecular Biology,2003,51(1):71-81.
    22. Nakamura RL,Mckendree WL,Hirsch RE,et al.Expression of Arabidopsis potassium channel gene in guard cells [J]. Plant Physiol,1995,109(2):371-374.
    23. Reintanz B.Szyroki A,Ivashikina N,et al.AtKCl, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx[J].Proc.Natl.Acad.Sci.USA,2002,99(6):4079-4084.
    24. Pilot G.Gaymard F,Mouline K,et al.Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant[J].Plant Molecular Biology,2003,51(5):773-787.
    25. Ache P,Becker D,Ivashikina N,et al.GORK,a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana,is a K+ -selective,K+ -sensing ion channel[J].FEBS Letters,2000,486(2):93-98.
    26. Dreyer I,Poree F,Schneider A,et al.Assembly of plant Shaker-like Kout channels requires two distinct sites of the channel α-subunit[J]. Biophysical Journal,2004,87(2):858-872.
    27. Marten I, Hoth S, Deeken R. AKT3, a phloem-localized K+ channel, is blocked by protons. Proc. Natl. Acad. Sci. USA,1999,96(13):7581-7586.
    28. Lacombe B,Pilot G,Michard E,et al.A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis[J].The Plant Cell,2000,12(6):837-851.
    29. Geiger D,Becker D,Lacombe B.Outer pore residues contral the H+ and K+ sensitivity of the Arabidopsis potassium channel AKT3[J].The Plant Cell,2002,14(8):1859-1868.
    30. Ketchum KA, Slayman CW. Isolation of an ion channel gene from Arabidopsis thaliana using the H5 sinature sequence from voltage-dependent K+ channels. FEBS Lett,1996,378(1):19-26.
    31. Czempinski K,Zimmermann S,Ehrhardt T,et al.New structure and function in plant K+ channels:KCOl,an outward rectifier with a steep Ca2+ dependency[J].EMBO Journal,1997,16(10):2565-2575.
    32. Becker D,Geiger D,Dunkel M.et al.AtTPK4,an Arabidopsis tandem-pore K+ channel,poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner[J].Proc.Natl.Acad.Sci.USA,2004,101(44):15621-15626.
    33. Schonknecht QSpoormaker P,Steinmeyer R,et al.KCOl is a component of the slow-vacuolar (SV) ion channel[J].FEBS Letters,2002,511(1):28-32.
    34. Czempinski K,Frachisse JM,Maurel C,et al.Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCOl[J].The Plant Journal,2002,29(6):809-820.
    35. Arazi T,Kaplan B,Fromm H.A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains [J].Plant Molecular Biology,2000,42(4):591-601.
    36. Hua BG,Mercier RW,Leng Q,et al.Plants do it differently.A new basis for potassium/sodium selectivity in the pore of an ion channel[J].Plant Physiology,2003,132(3):1353-1361.
    37. Balague C,Lin B,Alcon C,et al.HLMl,an essential signalling component in the hypersensitive response,is a member of the cyclic nucleotide-gated channel ion channel family[J].The Plant Cell,2003,15(2):365-379.
    38. Bridges D,Fraser M,Moorhead G.Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes[J].BMC Bioinformatics,2005,6(6):6-17.
    39. Leng Q,Mercier RW,Hua BG,et al.Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels[J].Plant Physiology,2002,128(2):400-410.
    40. Schachtman DP,Schroeder JI.Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J].Nature,1994,370(6491):655-658.
    41. Horie T,Schroeder JI.Sodium transporters in plants.Diverse genes and physiological functions[J].Plant Physiology,2004,136(1):2457-2462.
    42. Rus A,Yokoi S,Sharkhuu A,et al.AtHKTl is a salt tolerance determinant that controls Na+ entry into plant roots[J].Proc.Natl.Acad.Sci.USA,2001,98(24):14150-14155.
    43. Maser P,Eckelman B,Vaidyanathan R,et al.Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transport AtHKTl[J].BS Letters,2002,531(2):157-161.
    44. Zakharyan E,Trchounian A.K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux[J].FEMS Microbiology Letters,2001,204(l):61-64.
    45. Quintero FJ,Blatt MR.A new family of K+ transporters from Arabidopsis that are conserved across phyla[J].FEBS Letters,1997,415(2):206-211.
    46. Santa-Maria GE,Rubio F,Dubcovsky J,et al.The HAKl gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J].The plant Cell,1997,9(12):2281-2289.
    47. Brown AM.Functional bases for interpreting amino acid sequences of voltage dependent K+ channels[J].Annu Rev Biophys Biomol Struct,1993,22(1):173-198.
    48. Scott VES,Rettig J,Parcej DN,et al.Primary structure of a β subunit of α-dendrotoxin-sensitive K+ channels from bovine brain[J].Proc.Natl. Acad.Sci.USA,1994,91(5):1637-1641.
    49. Dolly JO,Rettig J,Scott VES,et al.Oligomeric and subunit structures of neuronal voltage sensitive K+ channels[J].Biochem Soc Trans.,1994,22(2):473-478.
    50. McCormack T,McCormack K.Shaker K+ channel β subunits belong to an NAD(P)H-dependent oxidoreductase superfamily[J].Cell,1994,79(7):1133-1135.
    51. Tang H,Vasconcelos AC,Berkowitz GA.Evidence that plant K+ channel proteins have two different types of subunits[J].Plant Physiol.,1995,109(1):327-330.
    52. Fang ZW,Kamasani U,Gerald A,et al.Molecular cloning and expression characterization of a rice K+ channel β subunit[J].Plant Molecular Biology,1998,37(4):597-606.
    53. Rettig J,Helnemann SH,Wunder F,et al.Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit[J].Nature,1994,369(1):289-294.
    54. Morales MJ,Castellino RC,Crews AL,et al.A novel β-subunit increases rate of inactivation of specific voltage-gated potassium channel a-subunits[J].J.Biol.Chem.,1995,270(11):6272-6277.
    55. Tang H,Vasconcelos AC,Berkowitz GA.Physical association of KAB1 with plant K+ channel a subunits[J].Plant Cell,1996,8(9):1545-1533.
    56. Xu J,Li HD,Chen LQ,et al.A protein kinase,interacting with two calcineurin B-like proteins,regulates K+ transporter AKT1 in Arabidopsis[J].Cell,2006,125(7):1347-1360.
    57. Fu HH. AtKUPI:adual-afinity K+ transporter from Arabidopsis. The Plant cell,1998, 10(1):63-73.
    58.胡承孝,王运华.不同小麦品种施钾效应的差异Ⅰ.华中农业大学学报,1996,15(3):243-248.
    59. Chouinard SW,Wilson SF,Schlimgen AK,et al.A potassium channel β subunit related to the aldo-keto reductase superfamily is encodee by Drosophila hyperkinetic locus[J].Proc.Natl.Acad.Sci.USA,1995,92(15):6763-6767.
    60. Basset M,Conejero G,Lepetit M,et al.Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana[J].Plant Mol Biol,1995,29(5):947-958.
    61. Niu X,Bressan RA,Hasegawa PM,et al.Ion homeostasis in NaCl stress environment[J].Plant Physiol,1995,190(3):735-742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700