甘氨双唑钠对鼻咽癌移植瘤的时辰放射增敏作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过观察甘氨双唑钠(CMNa)对鼻咽癌荷瘤裸鼠时辰放射增敏后肿瘤生长的影响,检测肿瘤组织中HIF-1α、γ-H2AX和凋亡蛋白的表达水平,来探讨甘氨双唑钠对鼻咽癌移植瘤的时辰放射增敏机制。
     方法:130只Balb/c裸鼠在统一光照条件下同步化饲养,建立统一的生物节律至少3周以上。建立统一的生物节律后,在裸鼠右侧大腿外侧处接种低分化鼻咽癌细胞(CNE-Ⅱ),建立裸鼠鼻咽癌移植瘤模型。成瘤并达到入组标准后,将112只移植瘤裸鼠随机分为3组:放疗(radiotherapy,RT)组、RT+CMNa组、空白对照组,并将每一组按4个时辰3HALO(光照后小时,hours after light onset)、9HALO、15HALO、21HALO分为4个亚组。其中RT+CMNa组分别在3HALO、9HALO、15HALO、21HALO四个时间点前1小时给予腹腔注射甘氨双唑钠20mg/kg,并且RT组、RT+CMNa组在四个时间点分别进行单次放疗,剂量为10Gy。时辰放疗结束后24小时处死各亚组的一半裸鼠,获取肿瘤标本;剩余裸鼠测定再生长延长时间(regrowth delay time,TGD),绘制生长曲线;用免疫组化法检测各组肿瘤标本中HIF-1α、γ-H2AX和凋亡蛋白的表达水平,并用免疫组化图像分析软件进行半定量分析。本实验采用完全随机单因素方差分析法对各组的免疫组化检测结果进行统计学分析。
     结果:各处理因素均对鼻咽癌裸鼠移植瘤有不同程度的抑制作用。通过对各组TGD的比较,以RT+CMNa组对肿瘤的抑制效果最好。在该组中TGD:15HALO>21HALO>9HALO>3HALO,15HALO与3HALO的TGD比较有统计学意义(P<0.05)。各组肿瘤标本的免疫组化检测结果(PI值)显示:HIF-1α、γ-H2AX及凋亡蛋白的表达水平呈时间节律性,同时辰的放射增敏组和单纯放疗组之间HIF-1α、γ-H2AX及凋亡蛋白的表达差异均有统计学意义(P<0.05)。HIF-1α的表达在RT+CMNa组和RT组中:3HALO>9HALO>21HALO>15HALO,其中15HALO与3HALO的HIF-1α表达水平比较有统计学意义(P<0.05)。γ-H2AX的表达在RT+CMNa组和RT组中:15HALO>21HALO>9HALO>3HALO,其中15HALO与3HALO的γ-H2AX表达水平比较有统计学意义(P<0.05)。凋亡蛋白的表达在RT+CMNa组和RT组中:15HALO>21HALO>9HALO>3HALO,其中15HALO与3HALO,9HALO的凋亡蛋白表达水平比较有统计学意义(P<0.05)。
     结论:甘氨双唑钠联合时辰放疗对鼻咽癌裸鼠移植瘤有明显的时辰放射增敏作用,以15HALO RT+CMNa组对肿瘤的抑制效果最佳。证实了甘氨双唑钠对肿瘤的时辰放射增敏作用具有时间节律性,其对肿瘤的抑制效果与相关免疫组化结果具有良好的一致性。其机制可能与HIF-1α的表达,DNA双链损伤,凋亡有关。
Objective: To investigate effect on tumor growth and the expressions of HIF-1α,γ-H2AX and apoptosis proteins after the chronomodulated radiosensitization by CMNa on human nasopharyngeal carcinoma(NPC) in nude mice, and to disclose the mechanism of chronomodulated radiosensitization on nasopharyngeal carcinoma.
     Methods: 130 Balb/c mice were synchronized with an alternative lighting regimen with 12 hours for light and 12 hours for dark at least 3 weeks. Human nasopharyngeal poorly differentiated squamous cell carcinoma(CNE-II) cells were implanted into the right lateral thigh of each mouse. Three weeks after transplantation, 112 nude mice xenografts were divided into 3 groups: radiotherapy(RT) group, RT+CMNa group and control group. Each group was divided into 4 subgroups at four time points of 3HALO, 9HALO, 15HALO, 21HALO. CMNa (20mg/kg) were injected introperitoneally one hour before four time points in RT+CMNa group. RT group and RT+CMNa group were given radiotherapy which dose of 10Gy at four time points. Half of nude mice were exceuted 24 hours after radiotherapy. The remaining mice were determined regrowth delay time (TGD), and the growth curve was drawn. The expressions of HIF-1α,γ-H2AX and apoptosis proteins were detected by immunohistochemistry and were analyzed by Image-Pro Plus(IPP) software. Data were analyzed by completely randomized single-factor variance analysis method.
     Results: The processing factors have different inhibition for NPC xenografts in nude mice. According to TGD, RT+CMNa group obtained the best inhibitory action of tumor. In this group, TGD had statistical difference between 15HALO and 3HALO (P<0.05). According to immunehistochemical results, the expressions HIF-1α,γ-H2AX and apoptosis proteins have circadian rhythm. At the same time point, the expressions of HIF-1α,γ-H2AX and apoptosis proteins had significant difference between RT+CMNa group and RT group (P<0.05). The expression of HIF-1αin RT+CMNa group and RT group: 3HALO>9HALO>21HALO>15HALO. There were statistical difference between 15HALO and 3HALO (P<0.05). The expression ofγ-H2AX in RT+CMNa group and RT group: 15HALO>21HALO>9HALO>3HALO. There were statistical difference between 15HALO and 3HALO (P<0.05). The expression of apoptosis proteins in RT+CMNa group and RT group: 15HALO>21HALO>9HALO>3HALO. There were statistical difference among 15HALO, 3HALO and 9HALO (P<0.05).
     Conclusion: This study showed that CMNa combined with chronomodulated radiotherapy could obviously enhance the radiosentivity of NPC xenografts, and RT+CMNa group at 15HALO can get the greatest efficacy. The chronomodulated radiosensitization by CMNa have circadian rhythm. Inhibitory effect on tumor and the results of immunohistochemistry have good consistency. Its mechanism might be related to the expression of HIF-1α, the injury of DNA double strands and apoptosis.
引文
[1] Lee AW, Sze WM, Au JS, et a1. Treatment results for nasopharyngeal carcinoma in the modern era the Hong Kong experience[J]. Int J Radiat Oncol Biol Phys. 2005,61(4):1107-1116
    [2] AI-Sarraf M, Reddy MS. Nasopharyngeal carcinoma[J]. Curr Treat Options Oncol. 2002,3(1):21-32
    [3] Brown JM. Tumor hypoxia in cancer therapy[J]. Methods Enzymol. 2007,435:297-321
    [4] Anderson P, Aguilera D, Pearson M, et al. Outpatient chemotherapy plus radiotherapy in sarcomas: improving cancer control with radiosensitizing agents[J]. Cancer Control. 2008,15:38-46
    [5] Mckeown SR, Cowen RL, Williams KJ. Bioreductive drugs: from concept to clinic[J]. Clin Oncol (R Coll Radiol). 2007,19:427-42
    [6] Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour[J]. Nat Rev Cancer. 2008,8:705-13
    [7]郑秀龙,金一尊,沈瑜,等.肿瘤治疗增敏药[A].见:郑秀龙编.甘氨双唑钠研究论文集[C].上海:第二军医大学出版社,2001.113
    [8] meng xs, zhao f, gao jg,et al. sensitizing effects of a radio an chemosensitizer, metronidazol amino acidum natricum(cmna)[J]. med cell. 1988,2:3-4
    [9] Edery I. Circadian rhythms in a nutshell[J]. Phvsiol Genomics. 2000,3:59-74
    [10] Mormont MC, Levi F. Cancer chronotherapy: principles, applications, and perspectives[J]. Cancer. 2003,97(1):155-169
    [11] BlumenthaI RD, Osorio L, Ochakovskaya R. Regulation of tumor drug delivery by blood flow chronobiology[J]. Eur J Cancer. 2000,36(14):1876-1884
    [12] Levi F. Chronotherapeutics: the relevance of timing in cancer therapy[J]. Cancer Causes Control. 2006,17(4):611-621
    [13] Tampellini M, Filipski E, Liu XH, et al. Docetaxel chronopharmacology in mice[J]. Cancer Res. 1998,58(17):3896-2904
    [14] Sompuram SR, Vani K, Bogen SA. A molecular model of antigen retrieval using a peptide array[J]. Am J Clin Pathol. 2006,125(1):9l-98
    [15]杨兴龙,刘杰.一种晚期复发鼻咽癌(NPC)的时辰化疗方案疗效观察[J].中国肿瘤临床.2001,28(1):42-45
    [16] Mullins D, Proulx D, Saoudi A, et al. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity[J]. Int J Radiat Oncol Biol Phys. 2005,62(1):230-237
    [17] Deka AC, Chatterjee B,Gupta BD, et a1. Temperature rhythm—an index of tumour regression and mucositis during the radiation treatment of oral cancers[J]. Indian J Cancer. 1976,13(1):44-50
    [18]李光明,刘廷友等.鼻咽癌时辰放疗与常规放疗的比较[J].航天医学与医学工程.2006,19(3):225-227
    [19] Elisabeth Filipski, Guy Lemaigre etc. Circadian Rhythm of Irinotecan Tolerability in Mice[J]. CHRONOBIOLOGY INTERNATIONAL. 2004,21(4–5):613-627
    [20]沈瑜,糜福顺.肿瘤放射生物学[M].北京:北京医药科技出版社,2002.181-182,420
    [21]赵景民,翟为溶,张月娥等.肝细胞癌整合蛋白α5β1、纤维连接蛋白及其降解片段的表达[J].中华病理学杂志.1997,26(2):65-69
    [22] Lee AW, Sze WM, Au JS, et a1. Treatment results for nasopharyngeal carcinoma in the modern era the Hong Kong experience[J].Int J Radiat Oncol Biol Phys. 2005,61(4):1107-1116
    [23] AI-Sarraf M, Reddy MS. Nasopharyngeal carcinoma[J]. Curr Treat Options Oncol. 2002,3(1):21-32
    [24] Bjarnason GA, Jordan RC, Southern RB. Circadian variation in the expression of cell-cycle proteins in human oral epithelium[J]. Am J Pathol. 1999,154:613-622
    [25] Bjarnason GA, Jordan R. Rhythms in Human Gastrointestinal Mucosa and Skin[J]. Chronobiol Int. 2002,19 (1),129-140
    [26] Xian LJ, Sun J, Cao QY, et al. Circadian rhythms of DNA synthesis in nasopharyngeal carcinoma cells[J]. Chronobiol Int. 2002,19(1):69-76
    [27] Meister A. Selective modification of glutathione metabolism[J]. Science. 1983, 220(4596):472-477
    [28] Levi F. Circadian Chronotherapy for human cancers[J]. Lancet Oncol. 2001, 2(5):307-315
    [29] Yi X, Ding L, Jin Y, et a1. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma[J]. Int J Radiat Oncol Biol Phys. 1994,29(2):393-396.
    [30]杨兴龙,刘杰.一种晚期复发鼻咽癌(NPC)的时辰化疗方案疗效观察[J].中国肿瘤临床.2001,28(1):42-45
    [31] Mullins D, Proulx D, Saoudi A, et al. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity[J]. Int J Radiat Oncol Biol Phys. 2005,62(1):230-237
    [32]孙健,冼励坚,曹弃元等.移植于裸鼠的人鼻咽癌细胞DNA合成生物节律的初步研究[J].2001,20(2):128-130
    [33] Fu L, Pelicano H, Liu J, et a1. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[J]. Cell. 2002,111(1):41-50.
    [34] Mullins D, Proulx D, Saoudi A, et al. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity[J]. Int J Radiat Oncol Biol Phys. 2005,62(1):230-237
    [35] Zhang X, Kon T, Wang H, et a1. Enhancement of hypoxia induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia inducible factor-1alpha [J]. Cancer Research. 2004, 64(22):8139-8142
    [36] Vordermark D, Brown JM. Evaluation of hypoxia-inducible factor-lalpha(HIF-lalpha) as an intrinsic marker of tumor hypoxia in U87 MG human glioblastoma: in vitro and xenograft studies[J]. Int J Radiat Oncol Biol Phys. 2003,56(4):1184-1193
    [37] Skalka AM, Katz RA. Retroviral DNA integration and the DNA damage response[J]. Cell Death And Differentiation. 2005,12(Suppl 1):971-978
    [38] Yu T, MacPhail SH, Banath JP, et a1. Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability[J]. DNA Repair. 2006,5(8):935-946
    [39] Nakamura A, Sedelnikova OA, Redon C, et a1. Techniques for gamma-H2AX detection[J]. Methods Enzymol. 2006,409:236-250
    [40]沈瑜,糜福顺.肿瘤放射生物学[M].北京:北京医药科技出版社,2002.81-182,420
    [41] Holgersson A, Heiden T, Castro J, et a1. Different G2/M accumulation in M059J and M059K cells after exposure to DNA double-strand break-inducing agents[J]. Int J Radiat Oncol Biol Phys. 2005,6l(3):915-921
    [1] Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements[J]. Nat Rev Cancer. 2004,4:737-47
    [2] Seiwert TY, Salama JK, Vokes EE. The concurrent chemoradiation paradigm–general principles[J]. Nat Clin Pract Oncol. 2007,4:86-100
    [3] Bentzen SM, Harari PM, Bernier J. Exploitable mechanisms for combining drugs with radiation: concepts, achievements and future directions[J]. Nat Clin Pract Oncol. 2007,4:172-180
    [4] Wardman P. Chemical radiosensitizers for use in radiotherapy[J]. Clin Oncol (R Coll Radiol). 2007,19:397-417
    [5] Shewach DS, Lawrence TS. Antimetabolite radiosensitizers[J]. J Clin Oncol. 2007,25:4043-50
    [6] Ben-Josef E. Capecitabine and radiotherapy as neoadjuvant treatment for rectal cancer[J]. Am J Clin Oncol. 2007,30:649-55
    [7] Taiho Pharmaceutical Co. Radiotherapy enhancer[P]. EP1864683,2007
    [8] Taiho Pharmaceutical Co. Potentiator for radiation therapy comprising pyridine derivative as active ingredient[P]. EP1864974,2007
    [9] Kazuno H, Shimamoto Y, Tsujimoto H, et al. Mechanism of action of a new antitumor ribonucleoside,1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106), differs from that of 5-fluorouraci[J]. Oncol Rep 2007,17:1453-60
    [10] Yasui H, Inanami O, Asanuma T, et al. Treatment combining X-irradiation and a ribonucleoside anticancer drug, TAS106, effectively suppresses the growth of tumor cells transplanted in mice[J]. Int J Radiat Oncol Biol Phys. 2007,68:218-28
    [11] Clinical Trials. Available from: www.clinicaltrials.gov
    [12] Flanagan SA, Robinson BW, Krokosky CM, et al. Mismatched nucleotides as the lesions responsible for radiosensitization with gemcitabine: a new paradigm forantimetabolite radiosensitizers[J]. Mol Cancer Ther. 2007,6:1858-68
    [13] Jordheim L, Galmarini CM, Dumontet C. Recent developments to improve the efficacy of cytotoxic nucleoside analogs[J]. Recent Patents Anticancer Drug Discov. 2006,1:163-70
    [14] Kil WJ, Cerna D, Burgan WE, et al. In vitro and in vivo radiosensitization induced by the DNA methylating agent temozolomide[J]. Clin Cancer Res. 2008,14:931-8
    [15] Nieder C, Adam M, Grosu AL. Combined modality treatment of glioblastoma multiforme: the role of temozolomide[J]. Rev Recent Clin Trials. 2006,1:43-51
    [16] University of Pittsburgh, Sobol R. Inhibiting DNA polymerase beta to enhance efficacy of anticancer agents[P]. WO2007001684,2007
    [17] Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer. 2007,7:573-84
    [18] Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond[J]. Nat Rev Cancer. 2006,6:789-802
    [19] California Pacific Medical Center, Catholic Healthcare West. Camptothecin derivatives as chemoradiosensitizing agents[P]. WO2007048002, 2007
    [20] Hofstetter B, Vuong V, Broggini-tenzer A, et al. Patupilone acts as radiosensitizing agent in multidrug-resistant cancer cellsin vitro and in vivo[J]. Clin Cancer Res. 2005,11:1588-96
    [21] Overgaard J. Hypoxic radiosensitization: adored and ignored[J]. Clin Oncol. 2007,25:4066-74
    [22] Spectrum Pharmaceuticals, Inc. Trustees of the University of Illinois. Sensitization of tumour cells to radiation therapy through the administration of endothelin agonists[P]. WO2008027839,2008
    [23] Brown JM. The hypoxic cell: a target for selective cancer therapy– Eighteenth Bruce F[J]. Cancer Res. 1999,59:5863-70
    [24] Brown JM. Tumor hypoxia in cancer therapy[J]. Methods Enzymol. 2007,435:297-321
    [25] Mckeown SR, Cowen RL, Williams KJ. Bioreductive drugs: from concept to clinic[J]. Clin Oncol (R Coll Radiol). 2007,19:427-42
    [26] Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents[J].Drug Discov Today. 2007,12:853-9
    [27] Melillo G. Targeting hypoxia cell signaling for cancer therapy[J]. Cancer Metastasis Rev. 2007,26:341-52
    [28] Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour[J]. Nat Rev Cancer. 2008,8:705-13
    [29] Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response[J]. Nat Rev Cancer. 2008,8:425-37
    [30] Wardman P, Rothkamm K, Folkes LK, et al. Radiosensitization by nitric oxide atlow radiation doses[J]. Radiat Res. 2007,167:475-84
    [31] De Ridder M, Verellen D, Verovski V, et al. Hypoxic tumor cell radiosensitization through nitric oxide[J]. Nitric Oxide. 2008,19:164-9
    [32] Duke University. Use of an agent that restores tissue perfusion and oxygenation[P]. WO2006113540,2006
    [33] Reddy SB, Williamson SK. Tirapazamine: a novel agent targeting hypoxic tumor cells[J]. Expert Opin Investig Drugs. 2009,18:77-87
    [34] Maity A, Tuttle SW. 2-Deoxyglucose and radiosensitization: teaching an old DOG new tricks? [J]. Cancer Biol Ther. 2006,5:824-6
    [35] Threshold Pharmaceuticals. Treatment of cancer with 2-deoxyglucose[P]. WO2006124573, 2006
    [36] Yasui H, Ogura A, Asanuma T, et al. Inhibition of HIF-1alpha by the anticancer drug TAS106 enhances X-ray-induced apoptosis in vitro and in vivo[J]. Br J Cancer. 2008,99:1442-52
    [37] Zhang X, Kon T, Wang H, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha[J]. Cancer Res. 2004,64:8139-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700