影响荷斯坦母牛产奶性状候选基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以荷斯坦母牛为试验材料,采用聚合酶链式反应(PCR)、聚合酶链式反应-限制性片段长度多态(CAPS)、单链构象多态(SSCP)、序列分析和基因克隆等方法研究PPARGC1A, FASN和STAT5A候选基因的遗传变异,并分析这些基因对荷斯坦母牛5个产奶性状(305 d产奶量、蛋白率、乳脂率、乳糖率、干物质率)的影响,寻找影响荷斯坦母牛产奶性状的主效基因或有较大关联的基因型或遗传标记,为奶牛产奶性状的标记辅助选择提供科学依据。主要研究结果如下:
     1) PPARGC1A基因DNA序列中存在C85330T、A103592C、2632delCTTT和T84064C四个突变位点。C85330T突变位点经HaeⅢ酶切产生三种基因型CC、CT和TT,其频率分别为0.621、0.326和0.053;A103592C突变位点经NheⅠ酶切产生三种基因型AA、AC和CC,基因型频率分别为0.430、0.444、0.126;2632delCTTT突变位点经SSCP检测发现三种基因型EE、EF、FF,其频率分别为0.742、0.237、0.021;T84064C突变位点经SSCP检测发现三种基因型GG、GH、HH,其基因型频率分别为0.770、0.218、0.012。χ2检验表明所检测到的四个多态位点均处于Hardy-Weinberg平衡。关联分析显示,对于C85330T突变位点,TT和CT基因型乳脂率最小二乘均值显著高于CC基因型所对应的值(P<0.05),TT和CT基因型乳脂率最小二乘均值差异不显著(P>0.05);TT是提高乳脂率的最有利基因型,CC是最不利基因型;对于A103592C突变位点,AA和AC基因型蛋白率最小二乘均值显著高于CC基因型所对应的值(P<0.05),AA和AC基因型蛋白率最小二乘均值差异不显著(P>0.05);AA是提高蛋白率的最有利基因型,CC是最不利基因型。对于2632delCTTT和T84064C突变位点,基因型之间5个产奶性状最小二乘均值差异均不显著(P>0.05)。
     2) FASN基因DNA序列中存在G15028A和G16923A两个突变位点。G15028A突变位点经SSCP检测发现三种基因型AA、AB、BB,基因型频率分别为0.757、0.233、0.010;G16923A突变位点经SSCP检测发现三种基因型CC、CD、DD,基因型频率分别为0.489、0.425、0.086,且该突变导致丙氨酸变为苏氨酸。χ2检验表明该两个多态位点均处于Hardy-Weinberg平衡。关联分析结果初步显示荷斯坦母牛FASN基因G16923A多态位点的等位基因D与荷斯坦母牛较高乳脂率显著相关(P<0.05),D等位基因是提高奶牛乳脂率的一个潜在的DNA标记。
     3) STAT5A基因DNA序列中存在A14217G和17266indelCCT两个突变位点。A14217G突变位点经MspA1Ⅰ酶切产生三种基因型AA、AG和GG,其基因型频率分别为0.252、0.486、0.262;17266indelCCT突变位点经SSCP检测发现三种基因型CC、CT、TT,基因型频率分别为0.751、0.234、0.015。χ2检验表明该两个多态位点均处于Hardy-Weinberg平衡。关联分析表明,AG和GG基因型蛋白率最小二乘均值显著高于AA基因型所对应的值(P<0.05),GG和AG基因型蛋白率最小二乘均值差异不显著(P>0.05);GG是提高蛋白率的最有利基因型,AA是最不利基因型。TT和CT基因型305 d产奶量最小二乘均值显著高于CC基因型所对应的值(P<0.05),TT和CT基因型305 d产奶量最小二乘均值差异不显著(P>0.05);TT是提高305 d产奶量的最有利基因型,CC是最不利基因型;CC和CT基因型乳脂率最小二乘均值显著高于TT基因型所对应的值(P<0.05),CC和CT基因型乳脂率最小二乘均值差异不显著(P>0.05);CC是提高乳脂率的最有利基因型,TT是最不利基因型。
To detect the polymorphisms of PPARGC1A,FASN and STAT5A gene in Holstein cows, CAPS (PCR-RFLP), PCR-PAGE, PCR-SSCP, sequence analysis and gene cloning were used. The relation between the polymorphisms and milk production traits (milk yield at 305d, protein percentage, fat percentage, lactose percentage and dry matter percentage) was also studied to provide a scientific basis for marker-assisted selection of milk production traits in cows. The results were as follows.
     1) The products amplified by primers P1, P2, P16 and P18 displayed polymorphisms in PPARGC1A gene. For primer P1, three genotypes (CC, CT and TT) were detected at C85330T site in Holstein cows by digesting the PCR products with restriction endonuclease HaeⅢ, and the frequency of CC/CT/TT was 0.621/0.326/0.053, respectively. Least squares mean of fat percentage for TT or CT was significantly higher than that for CC(P<0.05), the difference of the least squares mean for fat percentage was not significant between TT and CT (P>0.05).For primer P2, three genotypes (AA, AC and CC) were detected at A103592C site in Holstein cows by digesting the PCR products with restriction endonuclease NheⅠ, and the frequency of AA/AC/CC was 0.430/0.444/0.126, respectively. Least squares mean of protein percentage for AA or AC was significantly higher than that for CC (P<0.05), the difference of the least squares mean for protein percentage was not significant between AA and AC (P>0.05). For 2632delCTTT mutation site, three genotypes (EE, EF and FF) were detected in Holstein cows, and the frequency of EE/EF/FF was 0.742/0.237/0.021, respectively. The differences of the least squares means for the five milk production traits between EE, EF and FF were not significant (P>0.05). For primer P18, three genotypes (GG, GH and HH) were detected at T84064C site in Holstein cows, and the frequency of GG/GH/HH was 0.770/0.218/0.012, respectively. The differences of the least squares means for the five milk production traits between GG, GH and HH were not significant (P>0.05).
     2) Only the products amplified by primers P3 and P8 displayed polymorphisms. For P3, three genotypes (AA, AB and BB) were detected at G15028A site in Holstein cows, and the frequency of AA/AB/BB was 0.757/0.233/0.010, respectively. For P8, three genotypes (CC, CD and DD) were detected at G16923A site in Holstein cows, and the frequency of CC/CD/DD was 0.489/0.425/0.086, respectively. The two sites were all in Hardy-Weinberg equilibrium. Association analysis showed that the DD genotype of g.16923G>A was associated with a significant increase in fat percentage (P<0.05).
     3) The products amplified by primers P1 and P2 displayed polymorphisms. For P1, three genotypes (AA, AG and GG) were detected at G14217A site in Holstein cows, and the frequency of AA/AG/GG was 0.252/0.486/0.262 respectively. For 17266indelCCT mutation site, three genotypes (CC, CT and TT) were detected in Holstein cows, and the frequency of CC/CT/TT was 0.751/0.234/0.015, respectively. The two sites were all in Hardy-Weinberg equilibrium. Association analysis showed that, for P1, the AG and GG genotype were associated with a significant increase in protein percentage (P<0.05). However, for P2, the TT and CT genotype were associated with a significant increase in milk yield at 305 d (P<0.05), and the CC and CT genotype were associated with a significant increase in fat percentage (P<0.05).
引文
鲍斌,房兴堂,陈宏,张润锋,严林俊,张海军. 2008.中国荷斯坦奶牛STAT5A基因遗传多态性与泌乳性状的相关分析[J].中国农业科学. 41(6): 1872-1878.
    曹新,王强,颜景斌,阳飞昆,黄淑帧,曾溢滔. 2002.牛催乳素基因组及其cDNA全长序列的分子克隆和分析[J].遗传学报. 29(9): 768-733.
    陈杰,杨晓静,佟辉,赵茹茜. 2004. FAS和HSL mRNA在猪背最长肌的表达及其与肌内脂肪含量的关系[J].农业生物技术学报. 12(4): 422-423.
    何峰,孙东晓,俞英,王雅春,张沅. 2007.荷斯坦奶牛STAT5A基因的SNPs检测及其与产奶性状的关联分析[J].畜牧兽医学报. 38(4): 326-331.
    李吉涛,杜立新. 2004.中国荷斯坦奶牛催乳素基因型与产奶性状的相关分析[J].山东农业大学学报. 35(4): 553-555.
    梁慧超,王自能,车参贤,萧文惠. 2009.乙肝孕妇足月胎盘ABCG2表达及意义[J].广东医学. 30(3): 438-439.
    林福玉,李宁. 1999.中国荷斯坦牛κ-酪蛋白基因多态性与产奶量的相关分析[J].中国畜牧杂志. 35(1): 8-9.
    路国彬,李宏滨,李玉荣,牛丽莉,任航行,杜立新. 2009.中国荷斯坦牛ABCG2基因编码区多态性检测及生物信息学分析[J].生物技术通讯. 20(6):818-822.
    马妍,贾晋,张毅,孙东晓,张沅. 2009.荷斯坦牛GHR基因多态与产奶性状关联分析[J].畜牧兽医学报. 40(8): 1186-1190.
    萨姆布鲁克J.等. 1992.分子克隆实验指南(第二版),北京科学出版社.
    石晶,滕月娥,张敬东,金波,赵明芳,于萍,刘云鹏. 2008.乳腺癌组织中ABCG2和HIF-1α的表达及临床意义[J].中国医科大学学报. 37(5): 697-700.
    孙东晓. 2008.我国奶牛分子育种研究现状及展望[J].中国畜禽业. 4(5): 16-17.
    孙亮,金锋,王沥,杨泽. 2005.核辅激活因子PGC-1作用分子机制的研究进展[J].遗传. 27(2): 302-308.
    王红,韩一平,刘忠令. 2000.信号转导和转录激活因子STATs研究进展[J].国外医学·生理、病理科学与临床分册. 20(5): 354-357.
    王丽娟,李秋玲,王长法,王洪梅,李建斌,高运东,侯明海,仲跻峰. 2008.奶牛GHR基因CRS-PCR多态性及其与产奶性状的关联分析[J].农业生物技术学报. 16(6): 936-940.
    王丽娟,李秋玲,王洪梅,李建斌,王志玉,王长法,侯明海,仲跻峰. 2008.中国荷斯坦奶牛催乳素基因A8398G多态性与产奶性状相关性分析[J].山东大学学报. 43(5): 1-5.
    王燕,张湘茹,谭玮,付军,张伟. 2002.脂肪酸合成酶在非小细胞肺癌中表达的临床意义[J].中华肿瘤杂志. 24(3):271-273.
    奚忠,江春平,丁义涛. 2009. ABCG2在肝癌细胞性肝癌组织和肝癌细胞株中的表达及意义[J]. 世界华人消化杂志. 17(3): 247-252.
    熊文中,杨凤,周安国. 2001.猪重组生长激素对不同杂交肥育猪脂肪代谢调控的研究[J].畜牧兽医学报. 32(1): 1-4.
    杨保旺,岳中瑾. 2008. ABCG2与肾癌干细胞的研究进展[J].中华实用诊断与治疗杂志. 22(11): 841-842.
    张宇飞,郭丽,赵峰,姜晓玲,穆德广,徐兴洋,戚好文. 2007. ABCG2在肺癌中的表达及意义[J].解放军医学杂志. 32(9): 965-967.
    周国利,朱奇,吴玉厚,金海国. 2006.奶牛催乳素基因多态性与产奶性状的关系[J].吉林农业大学学报. 28(1): 80-83.
    祝梅香,张沅. 2000.北京地区荷斯坦牛乳蛋白多态性与产奶性能的相关分析[J].中国畜牧杂志. 36(2): 3-6.
    Abe T, Saburi J, Hasebe H, Nakagawa T, Misumi S, Nade T, Nakajima H, Shoji N, Kobayashi M, Kobayashi E. 2009. Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef [J]. Biochemical Genetics. 47(5-6):397-411.
    Amy CM, Williams-Ahlf B, Naggert J, Smith S. 1990. Molecular cloning of the mammalian fatty acid synthase gene and identification of the promoter region [J]. Biochemical Journal. 271(3): 675-679.
    Antoniou E, Hirst BJ, Grosz M, Skidmore CJ. 1999. A single strand conformational polymorphism in the bovine gene STAT5A [J]. Animal Genetics. 30(3): 232.
    Arranz JJ, Coppieters W, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mezer C, Riquet J, Simon P, Vanmanshoven P, Wagenaar D, Georges M. 1998. A QTL affecting milk yield and composition maps to bovine chromosome 20: a confirmation [J]. Animal genetics. 29(2): 107-115.
    Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, Coppieters W. 2003. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition [J]. Genetics. 163(1): 253-266.
    Bobe G, Beitz DC, Freeman AE, Lindberg GL. 1999. Effect of milk protein genotypes on milk protein composition and its genetic parameter estimates [J]. Journal of dairy science. 82(12): 2797-2804.
    Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, Rupp R, Amigues Y, Boscher MY, Leveziel H. 2003. Detection of genes influencing economic traits in three French dairy cattle breeds [J]. Genetics, selection, evolution: GSE. 35(1): 77-101.
    Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. 1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice [J]. Endocrine Reviews. 19(3):225-268.
    Bovenhuis H, Van Arendonk JA, Korver S. 1992. Associations between milk protein polymorphisms and milk production traits [J]. Journal of dairy science. 75(9): 2549-2559.
    Brym P, Kamiński S, Ru?? A. 2004. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle [J]. Journal of Applied Genetics. 45(4):445-452.
    Brym P, Kaminski S, Wojcik E. 2005. Nucleotide sequence polymorphism within exon of the bovine prolactin gene and its associations with milk performance traits [J]. Journal of applied genetics. 46(2): 179-185.
    Byts N, Samoylenko A, Fasshauer T, Ivanisevic M, Hennighausen L, Ehrenreich H, Sirén AL. 2008. Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin [J]. Cell Death and Differentiation. 15(4):783-792.
    Chirala SS, Chang H, Matzuk M, Abu-Elheiga L, Mao J, Mahon K, Finegold M, Wakil SJ. 2003. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero [J]. Proceedings of the National Academy of Sciences of the United States of America. 100(11): 6358-6363.
    Chirala SS, Huang WY, Jayakumar A, Sakai K, Wakil SJ. 1997. Animal fatty acid synthase: functional mapping and cloning and expression of the domain I constituent activities [J]. Proceedings of the National Academy of Sciences of the United States of America. 94(11): 5588-5593.
    Chrenek P, Huba J, Oravcova M, et al. 1999. Genotypes of bGH and bPRL genes in relationships to milk production [A]. JAM van Arendonk, Proceedings of the 50th Annual Meeting of the EAAP [C]. Zuerieh, Switzerland, EAAP. 40: 79-84.
    Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, Lee JH, Drackley JK, Band MR, Hernandez AG, Shani M, Lewin HA, Weller JI, Ron M. 2005. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle[J]. Genome research. 15(7): 936-944.
    Darnell JE Jr. 1997. STATs and gene regulation [J]. Science. 277(5332): 1630-1635.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. 1998. A multidrugresistance transporter from human MCF-7 breast cancer cells [J]. Proceedings of the National Academy of the United States of America. 95(26): 15665-15670.
    Falaki M, Gengler N, Sneyers M, Prandi A, Massart S, Formigoni A, Burny A, Portetelle D, Renaville R. 1996. Relationships of polymorphisms for growth hormone and growth hormone receptor genes with milk production traits for Italian Holstein-Friesian bulls [J]. Journal of dairy science. 79(8): 1446-1453.
    Falaki M, Prandi A, Corradini C, Sneyers M, Gengler N, Massart S, Fazzini U, Burny A, Portetelle D, Renaville R. 1997. Relationships of growth hormone gene and milk protein polymorphisms to milk production traits in Simmental cattle [J]. The Journal of Dairy Research. 64(1):47-56.
    Flisikowski K, Szymanowska M, Zwierzchowski L. 2003. The DNA-binding capacity of genetic variants of the bovine STAT5A transcription factor [J]. Celluar & Molecular Biology Letters. 8(3):831-840.
    Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X, et al. 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing [J]. Genetics. 139(2): 907-920.
    Gonyon DS, Mathers RE, Hines HC, Haenlein GF, Arave CW, Gaunt SN. 1987. Associations of bovine blood and milk polymorphisms with lactation traits: Holsteins [J]. Journal of dairy science. 70(12):2585-2598.
    Grebien F, Kerenyi MA, Kovacic B, Kolbe T, Becker V, Dolznig H, Pfeffer K, Klingmüller U, Müller M, Beug H, Müllner EW, Moriggl R. 2008. Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2 [J]. Blood. 111(9):4511-4522.
    Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. 2002. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition [J]. Genome research. 12(2): 222-231.
    Haenlein GF, Gonyon DS, Mather RE, Hines HC. 1987. Associations of bovine blood and milk polymorphisms with lactation traits: Guernseys [J]. Journal of dairy science. 70(12): 2599-2609.
    Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ. 2006. Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping [J]. Cytogenetic and genome research. 112(1-2): 106-13.
    Jayakumar A, Tai MH, Huang WY, al-Feel W, Hsu M, Abu-Elheiga L, Chirala SS, Wakil SJ. 1995. Human fatty acid synthase: properties and molecular cloning [J]. Proceedings of the NationalAcademy of Sciences of the United States of America. 92(19): 8695-8699.
    Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E, Mesman E, Dale TC, Schinkel AH. 2005. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk [J]. Nature medicine. 11(2): 127-129.
    Kameda K, Goodridge AG. 1991. Isolation and partial characterization of the gene for goose fatty acid synthase [J]. The Journal of Biological Chemistry. 266(1): 419-426.
    Khatami SR, Lazebnyi OE, Maksimenko VF, Sulimova GE. 2005. Association of DNA polymorphisms of the growth hormone and prolactin genes with milk productivity in Yaroslavl and black-and-white cattle [J]. Genetika. 41(2): 229-236.
    Khatib H, Monson RL, Schutzkus V, Kohl DM, Rosa GJ, Rutledge JJ. 2008. Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle [J]. Journal of Dairy Science. 91(2):784-793.
    Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang YM, Rosa GJ. 2007. The association of bovine PPARGC1A and OPN genes with milk composition in two independent Holstein cattle populations [J]. Journal of dairy science. 90(6): 2966-2970.
    Kirken RA, Malabarba MG, Xu J, Liu X, Farrar WL, Hennighausen L, Larner AC, Grimley PM, Rui H. 1997. Prolactin stimulates serine/tyrosine phosphorylation and formation of heterocomplexes of multiple Stat5 isoforms in Nb2 lymphoctes [J]. The Journal of biological chemistry. 272(22): 14098-14103.
    Klont RE, Brocks L, Eikelenboom G. 1998. Muscle fibre type and meat quality [J]. Meat Science. 49: 219-229.
    Komisarek J, Dorynek Z. 2009. Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls [J]. Journal of applied genetics. 50(2): 125-132.
    Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M. 2004. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3 [J]. Nature medicine. 10(5): 530-534.
    Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. 2005. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis [J]. PLoS biology. 3(4): e101.
    Lewis RS, Ward AC. 2008. Stat5 as a diagnostic marker for leukemia [J]. Expert Review of Molecular Diagnostics. 8(1): 73-82.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. 2002. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres [J]. Nature. 418(6899): 797-801.
    Liu X, Robinson GW, Goiouilleux F, Groner B, Hennighausen L. 1995. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue [J]. Proceedings of the National Academy of Sciences of the United States of America. 92(19): 8831-8835.
    Liu X, Robinson GW, Hennighausen L. 1996. Activation of Stat5 and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation [J]. Molecular Endocrinology. 10(12): 1496-1506.
    Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. 1997. Stat5a is mandatory for adult mammary gland development and lactogenesis [J]. Genes & Development. 11(2): 179-186.
    Looft C, Reinsch N, Karall-Albrecht C, Paul S, Brink M, Thomsen H, Brockmann G, Kuhn C, Schwerin M, Kalm E. 2001. A mammary gland EST showing linkage disequilibrium to a milk production QTL on bovine Chromosome 14. Mammalian genome: official journal of the International Mammalian Genome Society. 12(8): 646-650.
    Mao J, Molenaar AJ, Wheeler TT, Seyfert HM. 2002. STAT5 binding contributes to lactational stimulation of promoterⅢexpressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland [J]. Journal of Molecular Endocrinology. 29(1): 73-88.
    Marrube G, Rozen F, Pinto GB, Pacienza N, Melo JE, Huguet MJ, Canet Z, Zandomeni R, Miquel MC. 2004. New polymorphism of FASN gene in chicken [J]. Journal of Applied Genetics. 45(4): 453-455.
    Mclean DM, Graham ER, Ponzoni RW, Mckenzie HA. 1984. Effects of milk protein genetic variants on milk yield and composition [J]. The Journal of dairy research. 51(4): 531-546.
    Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1 [J]. Proceedings of the National Academy of Sciences of the United States of America. 98(7): 3820-3825.
    Molenaar A, Wheeler TT, McCracken JY, Seyfert HM. 2000. The STAT3-encoding gene resides within the 40 kbp gap between the STAT5A- and STAT5B-encoding genes in cattle [J]. Animal genetics. 31(5): 339-340.
    Morris CA, Cullen NG, Glass BC, Hyndman DL, Manley TR, Hickey SM, McEwan JC, Pitchford WS, Bottema CD, Lee MA. 2007. Fatty acid synthase effects on bovine adipose fat and milk fat[J]. Mammalian Genome. 18(1): 64-74.
    Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. 2006. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype [J]. American journal of physiology. Endocrinology and metabolism. 291(4): E807-E816.
    Ng-Kwai-Hang KF, Hayes JF, Moxley JE, Monardes HG. 1984. Association of genetic variants of casein and milk serum proteins with milk, fat, and protein production by dairy cattle [J]. Journal of dairy science. 67(4): 835-840.
    Olsen HG, Nilsen H, Hayes B, Berg PR, Svendsen M, Lien S, Meuwissen T. 2007. Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle [J]. BMC genetics. 8(1): 32.
    Parmentier I, Portetelle D, Gengler N, Prandi A, Bertozzi C, Vleurick L, Gilson R, Renaville R. 1999. Candidate gene markers associated with somatotropic axis and milk selection[J]. Domestic animal endocrinology. 17(2-3): 139-148.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis [J]. Cell. 92(6): 829-39.
    Rowland JE, Lichanska AM, Kerr LM, White M, d'Aniello EM, Maher SL, Brown R, Teasdale RD, Noakes PG, Waters MJ. 2005. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts [J]. Molecular and Cellular Biology. 25(1): 66-77.
    Roy R, Gautier M, Hayes H, Laurent P, Osta R, Zaragoza P, Eggen A, Rodellar C. 2001. Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping [J]. Cytogenetics and Cell Genetics. 93(1-2): 141-142.
    Roy R, Ordovas L, Zaragoza P, Romero A, Moreno C, Altarriba J, Rodellar C. 2006. Association of polymorphisms in the bovine FASN gene with milk-fat content [J]. Animal Genetics. 37(3): 215-218.
    Roy R, Taourit S, Zaragoza P, Eggen A, Rodellar C. 2005. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): comparative analysis of the FASN gene between monogastric and ruminant species [J]. Cytogenetic and Genome Research. 111(1): 65-73.
    Santos SJ, Haslam SZ, Conrad SE. 2008. Estrogen and progesterone are critical regulators of Stat5a expression in the mouse mammary gland [J]. Endocrinology. 149(1): 329-338.
    Schennink A, Bovenhuis H, Léon-Kloosterziel KM, van Arendonk JA, Visker MH. 2009. Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fatcomposition [J]. Animal genetics. 40(6): 909-916.
    Seyfert HM, Pitra C, Meyer L, Brunner RM, Wheeler TT, Molenaar A, McCracken JY, Herrmann J, Thiesen HJ, Schwerin M. 2000. Molecular characterization of STAT5A- and STAT5B-encoding genes reveals extended intragenic sequence homogeneity in cattle and mouse and different degrees of divergent evolution of various domains [J]. Journal of molecular evolution. 50(6):550-561.
    Spelman RJ, Ford CA, McElhinney P, Gregory GC, Snell RG. 2002. Characterization of the DGAT1 gene in the New Zealand dairy population[J]. Journal of dairy science. 85(12): 3514-3517.
    Tantia MS, Vijh RK, Mishra BP, Mishra B, Kumer ST, Sodhi M. 2006. DGAT1 and ABCG2 polymorphism in Indian cattle(Bos indicus) and buffalo(Bubalus bubalis) breeds [J]. BMC veterinary research. 2: 32.
    Taylor JF, Coutinho LL, Herring KL, Gallagher DS Jr, Brenneman RA, Burney N, Sanders JO, Turner JW, Smith SB, Miller RK, Savell JW, Davis SK. 1998. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle [J]. Animal Genetics. 29(3):194-201.
    Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D. 2003. Acquirement of brown fat cell features by human white adipocytes [J]. The Journal of biological chemistry. 278(35): 33370-6.
    Tsiaras AM, Bargouli GG, Banos G, Boscos CM. 2005. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows [J]. Journal of dairy science. 88(1): 327-334.
    Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. 1997, Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression [J]. Proceedings of the National Academy of Sciences of the United States of America. 94(14):7239-7244.
    Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, Ciampolini R, Lépingle A, Velmala R, Kaukinen J, Varvio SL, Martin P, Leveziel H, Guerin G. 1994. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism [J]. Mammalian genome. 5(5): 288-297.
    Van AL, Medrano JF. 1991. Milk protein polymorphisms in califormia dairy cattle [J]. Journal of dairy science. 74(5): 1730-1742.
    Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Maki-Tanila A, Georges M, Vilkki J. 2006. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle [J]. Genetics. 173(4): 2151-2164.
    Wakil SJ, Stoops JK, Joshi VC. 1983. Fatty acid synthesis and its regulation [J]. Annual Review of Biochemistry. 52:537-579.
    Wakil SJ. 1989. Fatty acid synthase, a proficient multifunctional enzyme [J]. Biochemistry. 28(11): 4523-4530.
    Weikard R, Kühn C, Goldammer T, Freyer G, Schwerin M. 2005. The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis [J]. Physiological genomics. 21(1): 1-13.
    Weller JI, Golik M, Seroussi E, Ezra E, Ron M. 2003. Population-wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population [J]. Journal of dairy science. 86(6): 2219-2227.
    Winter A, Kramer W, Werner FA, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R. 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol acyltransferase(DGAT1) with variation at a quantitative trait locus for milk fat content [J]. Proceedings of the National Academy of Sciences of the United States of America. 99(14): 9300-9305.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 [J]. Cell. 98(1): 115-124.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 [J]. Nature. 413(6852): 131-138.
    Yu-Lee LY, Luo G, Book ML, Morris SM. 1998. Lactogenic hormone signal transduction [J]. Biology of reproduction. 58(2): 295-301.
    Zhang S, Knight TJ, Reecy JM, Beitz DC. 2008. DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition [J]. Animal Genetics. 39(1): 62-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700