近岸海域环境数学模型研究及其在胶州湾的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近岸海域在国民经济发展中具有战略地位,开展近岸海域数值模式研究与应用具有重要的意义。本文主要目标是构建一个适合近岸海域的潮流、泥沙、生态数学模型,并将模型用在胶州湾海域解决工程环境问题。本文分两部分,第一部分为数值模型研究;第二部分为模型的应用研究。研究的主要内容和结论如下:
     (1)在水动力学ECOM-SI模型的基础上,耦合NPZD生态动力学模型和ECOMSED模式的泥沙输运模型和波浪模型,构建一个三维变边界潮流、泥沙、生态数学模型。模型集成了目前先进的海洋数值计算模块和计算方法,可为近岸海域环境规划与管理提供有力的计算工具。该模型成功地应用在胶州湾海域,潮流场,泥沙浓度分布、营养盐以及生物量的数值模拟结果同监测结果符合良好。
     (2)为满足近岸海域的需要,用欧拉-拉格朗日格式改造物质输运方程的平流项。模式应用在胶州湾海域,模拟效果良好,在近岸海域环境模型的研究上具有重要应用价值。
     (3)在潮流数值模拟的基础上,展开了前湾填海对海洋动力影响的研究,得到如下结论:前湾填海对胶州湾的潮波系统影响甚微,振幅和位相的变化都在1%以内。但是对于潮流和余流,在前湾和工程附近海域水动力条件变化比较大,填海后,潮流速度减小16.9%~55.7%;余流速度减小29%-70.1%。其他海域水动力变化不大,潮流的变化在1%左右,余流速度变化的绝对值在3.14%~9.16%之间。
     (4)计算了胶州湾的潮能通量,并从能量角度评价了前湾填海造地对潮能通量的影响。填海后,内湾口和外湾口附近潮能通量增加2.6%~5.24%,前湾和工程局部区域潮能通量减小20.21%~87.23%。
     (5)利用泥沙数学模型计算了胶州湾海底应力分布并分析了胶州湾的冲淤趋势。结果表明,胶州湾由于河流泥沙来源减少,只有周边海域和前湾处于微淤趋势,湾中,大沽河水道,沧口水道等海区处于微冲状态,湾口附近处于不冲不淤的状态。定量化评估了填海造地对地形冲淤的影响。主要结论是,填海将促使前湾海区淤积,对工程附近的湾口地区则可导致冲刷。
Near shore area plays a strategic role in the development of economy for one country. The study on modeling environment and application is very significant. The first object of the paper is to establish current-sediment-biological model for the near shore area. Another one is to applied the environment model to the Jiaozhou bay. The paper have two parts, in the first part, the modeling was studied. In the second one, the environment model was applied to Jiaozhou bay.
     Significant result has been achieved in the following aspects.
     1.on the base of ECOM-SI model, a NPZD ecological dynamical module, a sediment module and a wave module with the ECOMSED are coupled. A dry-wet three-dimensional physical-sediment-ecological model has been established, which is a useful tool for the ocean environment management and planning. Some current advanced ocean numerical modules have been integrated. Using the model, the tidal field, sediment concentration, nutrient concentration and the biomass of the phytoplankton have been simulated. The simulation results conform to the observed data.
     2.In order to meet the need of the near shore area, the mass transport model has been improved by adopting the Euler-Lagrange scheme to the advection term. Through the application to Jiaozhou bay, the numerical results are well. The improvement is more value to the modeling environment of near shore area.
     3.On the base of simulation of tidal current, the impacts of Qianwan bay marine reclamation land on the hydrodynamic was studied. Some meaningful conclusion has been obtained in the following. The effect on the tide bulge system is very little. The variation range of the amplitude or the phase is less than 1%. As to the effect on the tidal and residual current, the influence is very large in Qianwan bay and the local round the engineering. After sea-filling the tidal current decrease 16.9%~55.7%,and the residual current decrease 29.0~70.1%. in the other sea area the effect is little, the
引文
[1] 白玉川,于天一.分步分层拟三维水流数学模型及其在廉州湾潮流计算中应用[J].海洋学报,1998, 20(5):126-135.
    [2] 变淑华,胶州湾环境研究与冲淤变化(D).硕士论文,1999。
    [3] 曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟[J].海洋学报,1993,15(1),107-118.
    [4] 陈长胜.海洋生态系统动力学模型[M].北京:高等教育出版社,2003.5.
    [5] 陈国祥,陈界仁,沙捞.巴里. 三维泥沙数学模型的研究进展[J].水利水电科技进展 1998,18(1):13-19。
    [6] 陈宗庸.潮汐学.北京:科学出版社,1980,88-90.
    [7]丁平兴, 史峰岩, 孔亚珍.波流共同作用下的三维悬沙扩散方程[J]. 科学通报.1999,44(12):1339-1442.
    [8] 董金海,焦念志(主编).胶州湾生态学研究[M].北京:科学出版社,1995.
    [9] 方国洪,于克俊.斜压海洋动力学的一种三维数值模式,I.动力方程数值格式[J].海洋与湖沼,1998,29(3): 232-239.
    [9] 高会旺,王强.1999 年渤海浮游植物生物量的数值模拟[J].中国海洋大学学报,2004,34(5):867-873。
    [10] 高抒.海洋沉积动力学研究与应用前景展望[J].世界科技研究与发展,1997,19(3):62-66。
    [11] 管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟[J]. 海洋学报 2003,25(1):52-58.
    [12] 国家海洋局.2005 年海洋环境质量公报,2005。
    [13] 国家海洋局第一海洋研究所.胶州湾自然环境[M],北京:海洋出版社,1984。
    [14] 国家环境保护总局.近岸海域环境功能区划分技术规范,HJ/T 82-2001.
    [15] 胡克林.波浪共同作用下长江口二维悬沙数值模拟[D]. 华东师范大学博士学位论文,2002.
    [16] 江文胜,孙文心. 渤海悬浮颗粒物的三维输运模式[J],II 模拟结果.海洋与湖沼,2001,32(1): 94-100
    [17] 江文胜,孙文心.渤海悬浮颗粒物的三维输运模式[J],与湖沼,2001, 31(6):682-688.
    [18] 蒋风华,王修林,石晓勇等.si 在胶州湾海底沉积物-海水界面磷酸盐交换速率和通量研究[J]。青岛海洋大学学报.2002,32(6):1012-1018.
    [19] 蒋风华,王修林,石晓勇等,胶州湾海底沉积物-海水界面磷酸盐交换速率和通量研究[J].海洋科学.2003,27(5):50-53.
    [20] 蒋风华,王修林,石晓勇,等.溶解无机氮在胶州湾海底沉积物-海水界面磷酸盐交换速率和通量研究[J].海洋科学.2004,28(4):13-18.
    [21] 焦念志(主编).海湾生态过程与持续发展[M],北京:科学出版社,2001
    [22] 孔令双,陈玉明,李炎保,等.胶州湾海洋泥沙淤积数值模拟[J].青岛建筑工程学院学报,2004,25(2):62-65.
    [23] 李克强.胶州湾石油烃污染物环境容量模型研究及其应用[D].中国海洋大学硕士论文,2004.
    [24] 李孟国.波生近岸流的数学模型研究[J].水道港口,2003,24(4):161-166
    [25] 李培良,李磊,左军成,等.渤黄东海潮能通量与潮能耗散[J].中国海洋大学学报,2005,35(5):713-718。
    [26] 李玉瑛,沈渭铨,章伟.鲁南沿海沉积物分布规律的研究[J].青岛海洋大学学报,1997,27(4):546-552.
    [27] 练继建.波浪、水流与泥沙质底床的相互作用[D],天津,天津大学,1993。
    [28] 刘桂梅.关键物理过程对黄、渤海浮游生物影响的现象分析与模式研究[D].中国科学院海洋研究所博士论文,2002.
    [29] 刘瑞玉(主编).胶州湾生态学和生物资源[M].北京:科学出版社,1992.
    [30] 刘哲.胶州湾水体交换与营养盐收支过程数值模型研究[D].青岛海洋大学博士论文,2004.
    [31] 闾国年,贾建军,宋志尧,等.从潮能通量变化看 6000a 以来长江口的迁移[J]. 海洋地质与第四纪地质.1999,19(4):1-9.
    [32] 潘友联 郭玉洁,曾呈奎.胶州湾口内初级生产力的周年定点观测[J],海洋与湖沼,1995,26(3):310-316.
    [33] 潘友联.胶州湾两个站的海水透明度和水下照度周年观测资料的初步研究[J],海洋科学,1987,3:49-53.
    [34] 乔方利,袁业立,朱明远,等.长江口海域赤潮生态动力学模型及赤潮控制因子研究[J].海洋与湖沼,2000,31(1):93-100
    [35] 青岛市海洋功能区划编写组.青岛市海洋功能区划报告[M],中国海洋大学环保中心,2005.
    [36] 任玲, 杨军.海洋中氮营养盐循环及其模型研究[J].地球科学进展,2000,15(1):58-64.
    [37] 沈育疆,叶安乐.东中国海三维半日潮流数值模拟[J].海洋湖沼通报,1984,1:1-10.
    [38] 沈志良.胶州湾营养盐结构的长期变化及其对生态环境的影响[J].海洋与湖沼,2002,33(5):322-331.
    [39] 石磊,奚盘根.三维浅海流体动力学方程的分步杂交解法[J].青岛海洋大学学报,1995,25(2):162-172.
    [40] 史峰岩,孙文心.极坐标变化变边界模型及其应用[J].海洋与湖沼,1995,26(4):369-376.
    [41] 史峰岩,孙文心,魏更生.运动侧边界条件海洋问题的自适应网格模拟方法[J].海洋学报,1997,19(2):1-9.
    [42] 孙文心,江文胜,李磊.近海环境流体动力学[M].科学出版社,2004.
    [43] 孙文心,杨宗严,史峰岩.对风暴潮漫滩预报模式的分析和探讨[J].青岛海洋大学学报,1994,24(2):29-33.
    [44] 孙英兰,陈时俊.胶州湾环流和污染扩散的数值模拟,IV 胶州湾变动边界模型[J].山东海洋学院学报,1987,17(1):10-25.
    [45]孙英兰,陈时俊,赵可胜.沿岸海域三维斜压场的数值模拟[J].青岛海洋大学学报,1990, 20(3):17-24.
    [46] 孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟[J].海洋与湖沼.2001,32(4):355-362.
    [47] 汤毓祥.东海东北部 M2 潮流场的三维数值模拟[J].海洋学报,1991,13(2):149-157.
    [48] 田恬,魏浩,苏健,等.黄海氮磷营养盐的循环和收支研究[J].海洋科学进展,2003,21(1):1-10.
    [49] 汪亚平,高抒,贾建军.胶州湾及邻近海区沉积物分布特征和运移趋势[J].地理学报,2000,55(4):449-458.
    [50] 汪亚平.胶州湾及临近海区沉积动力学[D].博士学位论文,中科院海洋所,2000.
    [51] 王海黎,洪华生. 海洋生态动力学模式[J]. 海洋科学.1996(2):6-18.
    [52] 王厚杰,李瑞杰.近岸区域波流耦合作用的数学模型[J].海洋湖沼通报,1999,3:1-9.
    [53] 王化桐,方欣华,匡国瑞,等.胶州湾环流和污染物扩散的数值模拟,Ⅰ胶州湾潮流数值计算[J].山东海洋学院学报,1980,10(1):26-63.
    [54]王凯,方国洪,冯士祚.渤海、黄海、东海 M 2潮汐潮流的三维数值模拟[J].海洋学报,1999,21(4),1-13.
    [55] 王寿松,冯国灿,段美元,等.大鹏湾夜光藻赤潮的营养动力学模型[J].热带海洋,1997,16(1):1-6.
    [56] 吴玉霖,孙松,张永山,等.胶州湾浮游植物数量长期动态变化研究[J].海洋与湖沼,2004,35(6),518-523.
    [57] 吴增茂,俞光耀,张志南,等.胶州湾北部水层生态动力学模型与模拟,Ⅱ 水层生态动力学的模拟研究.青岛海洋大学学报,1999,29(3):429-435.
    [58] 奚盘根,冯士榨,孙文心.非线性三维潮波边值问题模型[J].山东海洋学院学报,1988,18(2):37-47.
    [59] 辛文杰.潮流、波浪综合作用下河口二维悬沙数学模型[J].海洋工程,1997,15(1),30-47.
    [60] 杨东方.营养盐限制的唯一性因子探究[J]. 海洋科学,2001,25(12):49-51
    [61] 杨世伦,孟栩,张经,等,胶州湾悬浮体特征及其对水动力和排污的响应[J].科学通报,2003,48(23):2493-2498.
    [62] 叶曦雯.胶州湾生物硅的研究[D].硕士学位论文,中国海洋大学,2003.
    [63] 俞光耀,陈时俊.胶州湾环流和污染物扩散的数值模拟,Ⅲ 胶州湾拉格朗日余流与污染物质的迁移[J].山东海洋学院学报,1983,13(1):1-11
    [64] 俞光耀,吴增茂,张志南,等.胶州湾北部水层生态动力学模型与模拟,Ⅰ胶州湾北部水层生态动力学模型[J].青岛海洋大学学报, 1999, 29 (3):421-428.
    [65] 袁业立,乔方利,华锋等.近海环流模式的建立,I 海波的搅拌和波流相互作用[J],水动力学研究与进展,A 辑,1999,14(B):1-8.
    [66] 远航,于定勇.潮流与泥沙数值模拟回顾及进展[J]. 海洋科学进展,2004,22(1).
    [67] 翟雪梅,张志南.虾池生态系统能流结构分析[J].青岛海洋大学学报,1998, 26(2):275-282.
    [68] 张均顺,沈志良.胶州湾营养盐结构变化的研究[J].海洋与湖沼,1997,31(2):221-229.
    [69] 张铭汉.胶州湾海水中悬浮体的分布及其季节变化[J].海洋科学集刊,2000,42:49-54.
    [70] 张学雷,朱明远,汤庭耀,等.桑沟湾和胶州湾夏季的沉积物-水界面营养盐通量研究[J].海洋环境科学,2004,23(1):1-4.
    [71] 张越美,孙英兰.渤海湾三维变动边界潮流数值模拟[J].青岛海洋大学学报.2002,3(3):337-344.
    [72] 张学庆,孙英兰.胶南近岸海域三维潮流数值模拟[J].中国海洋大学学报.2005,35(4):579-582.
    [73] 赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟[J].海洋学报,1994,16(5):1-10.
    [74] 赵亮,魏皓.渤海氮磷营养盐循环和收支研究[J].环境科学,2002,23 (1):78-81.
    [75] 赵亮.渤海浮游植物生态动力学模型研究[D].青岛海洋大学博士论文,2002.
    [76] 郑继民,沈渭铨.胶州湾沉积物工程特征及其开发利用[J].海岸工程,1986,5(3):39-47.
    [77] 郑永红,沈永明,邱大洪.结合抛物形缓坡方程计算波浪辐射应力[J].海洋学报,2000,22(6):110-116.
    [78] 中国海湾志编辑委员会.中国海湾志(第四分册)[M].第一版.北京:海洋出版社,1993.
    [79] 朱建荣,傅德健,吴辉,等. 河口最大浑浊带形成的动力模式和数值试验[J]. 海洋工程,2004,22(1):66-73.
    [80] 朱首贤.流浪模式和物质长期输运分离研究[D].华东师范大学博士论文,2005.
    [81] 邹立.胶州湾生态系统中浮游体系氮循环模型的研究.青岛海洋大学博士论文,1999.
    [82] Blackford, J.C., Radford, P.J.. A structure and methodology for marine ecosystem modeling. Netherlands Journal of Sea Research, 1995,33(3), 247-260
    [83] Blumberg, A.F.. A primer for ECOMSED. Technical Report of Hydroqual,inc.c,2002 .
    [84] Cancino,L.&Neves,R..Hydrodynamic and sediment suspension modeling in estuarine systems: Part I: Description of the numerical models. Journal of Marine Systems, 1999,22 (2): 105-116
    [85] Casulli V, Cattani E.Stability,accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow.Comput. Math. Appl., 1994, 27(4): 99~112.
    [86] Casulli, Vincenzo, Stelling, Guus.S. Simulation of three-dimensional free-surface flows for estuaries and coastal seas, Proc. of the 1995 4th Int. Conference on Estuarine, San Diego, CA, USA, 1-12.
    [87] Casulli,Vincenzo,Stelling, Guus.S.. Numerical simulation of 3D qusi-hydrostatic free-surface flows, Journal of Hydraulic Engrg. 1998, 24(7): 678~686.
    [88] Cerco, F.C.. Simulation of Long-term Trends in Chespeake Bay Eutrophication. Journal of Environmental Engineering, 1995,121: 298~310.
    [89] Chen C.S., Ji R.B. Zheng L.Y., Zhu M.Y., Rwason M. Influences of physical processes on the ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment. Journal of Geophysical Research. 1999, 104:29925-29949
    [90] Chen RE. Modeling of estuary hydrodynamics-A mixture of art and science.Proceedings of 3rd International Symp. on River Sedimentation.
    [91] Chen, C. H. Liu, R. C. Beardsley,. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 2003,20, 159-186
    [92] Chen, C. R. Ji, L. Zheng, M. Zhu, and M. Rawson. Influences of physical processes on ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment. Journal of Geophysical Research, 104 (C12), 1999,29,925-29, 949.
    [93] Chen, C., and R. Beardsley. Cross-frontal water exchange on Georges Bank: modeling exploration of the US GLOBEC/Georges Bank phase III study. Journal of Oceanography, 2002,58, 403-420.
    [94] Chen, C., J. Zhu, R. Beardsley, and P.J.S. Franks. Physical-biological sources for dense algal blooms near the Changjiang River Geophysical Research Letter, 2003 ,30(10):1515
    [95] Cui, M. C., H. Zhu. Coupled physical-ecological modeling in the central part of Jiaozhou Bay. Ⅱ. Coupled with an ecological model. Chinese Journal of Oceanology and Limnology. 2001, 19:21-28
    [96] Donelan, M. A. A simple numerical model for wave and wind stress application. Report, National Water Research Institute, Burlington, Ontario, Canada, 1977,28 pp.
    [97] Fransz, H.G., Mommaerts, J.P., Radach, G.. Ecology modeling of the North Sea. Netherlands Journal of Sea Research, 1991.28(1): 67-140
    [98] George L. Mellor, Testuji Yamada,Development of a Turbulent Closure Model for Geophysical Fluid Problems, Reviews of Geophysics and Spacephysics.1982,20(4): 851-875.
    [99] Huayong Xia, Zongwan Xia, Liangsheng Zhu. Vertical variation in radiation stress and wave-induced current. Coastal Engineering , 51 (2004) 309-321.J. Hydr. Engr., 2004,110(11):1613-1638.
    [100] Ji, R., C. Chen, J. Budd, D. Schwab, D. Beletsky, D. Fahanenstial, T. H. Johengen, H. Lavrentyev B. Eadies, J. Cotner, W. Gardner and M. Bundy. A couplede biological and physical model study of the ecosystem in lake Michigan part II: in fluence of suspence of suspended sediment. Ecological Modeling, 2002, 152:169-190.
    [101] L. zou, H.T. Chen, J. Zhang. Experimental Examination of the Effects of Atmospheric Wet Deposition on Primary Production in the Yellow sea. Journal of Experimental Marine Biology and Ecology,2000,249:111-121.
    [102] Leendertse J. Alexander R C,Liu S K. A three-dimensional model for estuaries and coastal seas[R].Rand Corp. R 1417 一 OWRR, 1973.
    [103] Lian Xie, Kejian Wu et al. A numerical study of wave-current interaction through surface and bottom stress: wind-driven circulation in the south Atlantic Bight under uniform winds. Journal of geoghysical research, 2001, 106(C8):16841-16855.
    [104] Lin, B. L. &Falconer, R..Numericalmodeling of three-dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research,1996, 34 (4): 435-456
    [105] Liu, P. C., D. J. Schwab, and J. R. Bennett. Comparison of a Two-Dimensional Wave Prediction Model with Synoptic Measurements in Lake Michigan, J. Phys. Oceanogr. , 1984, 14, 1514 B 1518.
    [106] Lutyen, P.J., J.E. Jones,R. Proctor,A.Tabor,and K. Wild-Allen,1999:COHERENS-A coupled hydrodynamical-ecological model for regional and shelf seas, user documentation.
    [107] Malcherek,A.,Lenonnant,C.,Peltier,E.,Teisson,C.,Markofsky, ,Zielke,W..Three- Dimensional modeling of estuarine sediment transport,1993.
    [108] McAnally W H,Leter J W,Tomas W A. Two and three-D modeling systems for sedimentation[C]. Proc. Of the 3rd Int. Symp. on River Sedimentation. The University of Mississippi,1986.
    [109] mellor G L .Users guide for a three-dimensional,primitive equation,numerical ocean model[R].Princeton University,Princeton,NJ 08544 一 0710,1998.
    [110] Mellor,G..L.. the three-dimensional current and surface wave equations. Journal of physical oceanograghy,2003,33,1978-1989.
    [111] O'Connor B. A. and Nicholson, J. A three-dimensional model of suspended particulate sediment transport[J].Coastal Engr.,1988, 12:157-174.
    [112] Partheniades, E..Estuarine Sediment Dynamics and Shoaling Processes.Coastal and Ocean Engineering, 1992, 3,:985-1071.
    [113] Patsch, J., Radach, G..Long-term simulation of the eutrophication of the North Sea- temporal development of nutrients, chlorophyll and primary production in comparison to observations. Journal of Sea Research, 1997, 38: 275-310
    [114] R.P.Signell,R.C.Beardsley,H.G.Graber,and A.Capotondi.Effect of Wave-Current Interaction on Wind-Driver Circulation in Narrow Shallow Embayments. Journal of geophysical res. 1990,95(C6):9671-9678.
    [115] Ren ling ,zhang manping. Pelagic Nitrogen Cycling in Jiaozhou Bay, a model study :the conceptual Model. Chinese Journal of Oceanology and limnology. 2003,21(4):358-367.
    [116] Schwab, D.J., J.R. Bennett, P.C. Liu, and M.A. Donelan, Application of a Simple NumericalWave Prediction Model to Lake Erie, J. Geophys. Res.,1984, 89(C3):3586-3592.
    [117] Shen z. L. Historical Changes in Nutrient Structure and its Influences on Phytoplankton Composition in Jiaozhou Bay ,Estuarine Coastal and shelf Science, 2001,52,211-224.The University of Mississippi.1986.
    [118] Van Rijn L C. Field verification of 2-D and 3-D suspended sediment models. J. of Hydrg, ASCE, 116,10: 1270-1288.
    [119] Van Rijn L C. Mathematical modeling of morphological Processes in the case of suspended sediment transport. Delft Hydra. Communication No. 382,Delft,The Netherlands,1987.
    [120]Van Rijn, L.C.. Sediment transport, part II: suspended load transport, ASCE , 1984,95:9671-9678.
    [121] Wang S Y., Adeff S E.Three-dimensional modeling of river sedimentation processes[C].Proc. Of the 3rd Int. Symp. on River Sedimentation. The Univ. of Mississippi,1986:594-1601.
    [122] Wang, P.F., Martin, J., Momison, G. Water quality and eutrophication in Tampa Bay, Florida Estuarine. Coastal and Shelf Science, 1999,49: 1-20
    [123]Wang,S.S.Y & Adeff, S.E..Three-dimensional modeling of river sedimentation processes.Proceedings of the Third International Symposium on River Sedimentation, Eds. S.Y Wang, H.W Sheng and L.Z. Ding. The University of Mississippi, Mississippi, USA,1986.
    [124] Yanagi, T., Montani, K.. Ecological modeling as a tool for coastal zone management in Dokai Bay, Japan. Journal of Marine System, 1997,13: 123-136
    [125]Zheng, L., C. Chen, a nd H. Liu.. A 3-D modeling study of the Satilla River estuarine System. Part I: simulation of flooding/drying processes. Estuaries, 2003,26(3): 651-669.
    [126] Grant, W.D. and Madsen, O.S.. Combined Wave and Current Interaction with a Rough Bottom, J. Geophys. Res., 1979,84(C4):1797-1808.
    [127] Arhonditsis, G.,Tsirtsis, G., Angelidis, M.O., Karydis., M.. Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication: applications to a semi-enclosed gulf in the Mediterranean Sea. Ecological Modelling,2000, 129(2): 209-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700