肉鸡动态生长模型的建立及相关参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用营养剖分原理系统的建立了肉鸡动态生长模型并确定了模型的相关参数。建模过程主要考虑了采食饲料中能量和蛋白质在体内的分配及沉积,将动物的生长过程抽象为体组成的变化,并主要围绕体蛋白和体脂肪的沉积来展开,动物体的其它组成成分体水分、体灰分与体蛋白之间有高度的相关性,所以在模型中可以利用这种相关性而不必对灰分和水分再单独研究。通过建立的模型,使用者只需输入饲喂日粮的天数、日粮蛋白质的含量和代谢能,就能预测0~6周内任何一天的生产性能及体组成。验证试验的结果表明,本研究所建立的生长模型具有一定的可靠性和实用性。
     为了将所建立的模型进一步细化和完善,本论文还采用不同衡量指标研究了理想蛋白模式中参比氨基酸赖氨酸的需要量模型,为生长模型深入到氨基酸水平奠定基础,提供必需的理论参数。
     试验一 理想饲养条件下肉鸡最大体蛋白日沉积量模型的建立
     本试验的假设是在环境条件适宜、饲粮营养成分平衡且动物采食充分、无疾病应激的条件下所测得的蛋白质日沉积量可作为体蛋白日沉积上限的一种合理近似。选用200只AA肉仔鸡进行饲养和屠宰试验,分别模拟了描述体重与体蛋白之间关系的异速方程Y=aX~b和描述体重与日龄关系的Gompertz方程,通过两个方程的结合得到体蛋白与日龄之间的关系Pdmax≈Pd=C~*a~*b~*EBW~b~*In(A/EBW)。应用SPSS软件对试验数据进行拟合,建立的模型为:Pdmax≈Pd=0.036~*0.1166~*1.0639~*LBW~(1.0639)~*In(6130.87/LBW) (公鸡)Pdmax≈Pd=0.045~*0.1168~*1.0615~*LBW~(1.0615)~*In(3965.15/LBW) (母鸡)
     试验二 日粮充分营养水平下采食量、体蛋白和体重、体组成之间相互关系数学模型的建立
     采食量、体组成之间的关系、体蛋白和体重之间关系的数学模型是建立生长模型所必需的组成部分,这些模型参数建立的准确性直接影响着生长模型预测的准确性。本试验选用200只AA肉仔鸡进行饲养和屠宰试验,确定模型的参数。试验结果如下:
    
    采食量的预测模型为:
    Fl一0 .556*LBwo,,(公);Fl一0.53一3*LBwO7,(母)。
    或者Fl二MEI胭Ep二(7.2394*LBwo,,)从Ep(公);Fl=MEI彻Ep一(6.9169*LBwo,,)zMEp(母)
    MEI:代谢能采食量;MEp:日粮代谢能。
    体蛋白量的预测模型为:
    Pt一0 .1 592(LBw,o,,8)(公);Pt=0.1479(IJBwl,319)(母)。
    体水分量、体灰分量和体脂肪的预测模型分别为:
    似r一72756(Ptos,7,)(公);WAt一7.1274(Pt“,8’4)(母)。
    Asht一0.1446(Pt’02,,)(公);Asht一0.1427一:Pt”,,2)(母)。
    Lt=0 .3662(Pt,o,‘4)(公);Lt=o.276一(Pt‘,2,8)(母)。
    试验三不同日粮条件下肉鸡动态生长模型的应用效果
     为了评价肉鸡动态生长模型的有效性和实用性,本试验设计高低两种不同营养水平的日
    粮,选择400只肉鸡进行饲养和屠宰试验,对生长模型进行验证。模拟结果显示,高营养水
    平组肉鸡的采食量、日增重均高于低营养水平组,耗料增重比低于低营养水平组;从性别上
    来看一,公鸡生长性能优于母鸡;体重和体组成的预测值与实测值比较接近,模型具有一定的
    实用性和可靠性。
    试验四不同赖氨酸添加水平对肉仔鸡生产性能、月同体品质和血液生化指标的影
     响及赖氨酸需要量模型的建立
     本试验研究了不同赖氨酸添加水平的日粮对0一3周龄AA雄性肉仔鸡生产性能、月同体品
    质及血液生理生化指标的影响。将l日龄AA雄性肉仔鸡450只随机分成6个处理,每个处
    理5个重复,每个重复巧只。各组的基础日粮相同,含赖氨酸0.65%,各处理组分别添加
    赖氨酸盐酸盐0%、0.巧%、0.30%、0.45%、0.60%和0.75%。试验末检测生产性能、屠宰
    性能及血液生理生化指标,试验结果表明:赖氨酸水平对0一3周龄雄性肉仔鸡采食量、平均
    日增重、饲料转化效率、全净膛率、胸肌率、腹脂率均有显著影响,赖氨酸含量达到
    1.1%一1.25%才能维持肉仔鸡正常快速生长及较好的胭体品质。赖氨酸含量对血液中尿酸、
    甘油三酷、低密度脂蛋白、T4及IGF一I的浓度有显著影响。本试验还分别模拟了0一3周肉仔
    公鸡日粮赖氨酸含量变化时平均日增重、饲料转化效率、采食量、胸肌率、腹脂率和全净膛
    率的变化,从RZ以及生成图形本身进行比较分别建立了最佳的赖氨酸需要量模型。结果表
    明,二次抛物线方程的模拟效果最好。
    
    试验五以!G卜1 mRNA丰度为衡量指标建立赖氨酸需要量模型
     采用反转录一聚合酶链式扩增反应(RT一PCR)的分子生物学技术研究了日粮赖氨酸对肉
    仔鸡肝脏和胸肌中IGF一1 mRNA转录水平表达的影响,以探讨赖氨酸影响生长性能和血清中
    IGF一I浓度的分子机理并建立以IGF一1 mRNA丰度为衡量指标的赖氨酸需要量模型。将1日
    龄AA雄性肉仔鸡450只随机分成6个处理,每个处理5个重复,每个重复15只。各组的
    基础日粮相同,含赖氨酸0.65%,各组分别添加赖氨酸盐酸盐0%、0.巧%、0.30%、0.45%、
    0.60%和0.75%。结果表明,赖氨酸对IGF一1 mRNA丰度有影响,随着赖氨酸添加水平的增
    加,IGF一1 mRNA的丰度先高后低,肝脏IGF一1 mRNA的丰度在添加量为1 .1%的组最高,肌
    肉IGF一1 mRNA的丰度在添加量为0.95%时最高。这说明赖氨酸通过调?
Five experiments were conducted to determine dynamic growth model of broilers by use of nutrition partition principle and lysine requirement model.
    Experiment 1 Model for the maximum body protein deposition of broiler
    Two hundreds of AA broilers were selected to simulate the relationship of live weight and body protein. All broilers were supplied the same balanced diet and ideal environment.Daily body protein deposition could be seen as a reasonable close to maximum body protein deposition. Power function combined Gompertz function can get a better result. The final models were showed as follows:
    Pdmax=Pd=C*a*b*EBWb*In(A/EBW)=0.036*0.1166*1.0639*LBW1.0639*In(61 30.87/LBW (male)
    Pdmax=Pd=0.045*0.1168*1.0615*LBW1.0615*In(3965.15/LBW) (female)
    Experiment 2 Models for feed intake, protein and live weight, relationship of body composition of broiler
    Mathematics models of feed intake, body protein and live weight, relationship of body composition are the necessary composition of dynamic growth model. Two hundreds of AA broilers were selected to determinate parameters of models. The results indicated: power function has a better effect. The model of predicting feed intake by live weight is FI=0.556*LBW0.75(male), FI=0.5313*LBW0.75(female). The model of predicting feed intake by metabolism energy is FI=MEI/MEp= (7.2394*LBW0.75)/MEp (male), FI=MEI/MEp= (6.9169*LBW075)/MEp(female) MEp is metabolism energy in feed .The relationship of body protein and live weight is Pt =0.1592 (LBW1.0258) (male), Pt =0.1479 (LBW1.0319) (female). The relationship of body water and body protein is WAt=7.2756 (Pt0.8775) (male), WAt=7.1274 (Pt0.8814) (female).The relationship of body ash and body protein is Asht=0.1446 (Pt1.0225) (male), Asht=0.1427 (Pt1.0332) (female). The relationship of body fat and body protein is Lt=0.3662 (Pt1.0214) (male),Lt=0.2761 (Pt1.1238) (famale).
    
    
    
    Experiment 3 Validation of dynamic growth model of broiler
    The trial was designed to evaluate effectiveness and practicality of dynamic growing model. Four hundreds of AA broilers were selected to feed two different nutrition level feed. The growth model was debugged and validated in the experiment. In the debug process, different formulations and parameters were examinated and choose the suitable parameters. The simulation results showed that feed intake and daily weight gain of high nutrition group were higher than that of low nutrition group. From the simulation results, the dynamic growth model could meet requirement effectively in a certain range.
    Experiment 4 Lysine requirement model of broiler
    Four hundred and fifty AA broilers were fed to 21 days old to investigate the effects of dietary lysine levels on growth performance, body composition and blood biochemistry parameters of broilers. Six dietary lysine levels were 0.65%, 0.80%, 0.95%, 1.10%, 1.25% andl.4%o Results showed that: (1) Dietary lysine levels significantly influence the growth and body composition of broilers. (2) Lysine requirement for optimum growth performance and carcass quality is 1.1%~1.25%. (3) Uric acid, TG, LDL, T4, IGF-I concentrations are significantly affected by lysine levels. Plasma UC, TG and LDL levels are increased no matter dietary lysine is deficient or excessive. A lysine requirement model was developed. Quadratic function is better than linear, exponential and other functions.
    Experiment 5 Effects of lysine levels on the IGF-I mRNA levels in liver and muscle of broiler
    Four hundred and fifty AA broiler was fed to 21 days old to investigate the effects of dietary lysine levels on IGF-I mRNA level in liver and muscle of broilers by using of RT-PCR molecule technology. Dietary lysine levels were 0.65%,0.80%,0.95%. 1.10 %,1.25% and 1.4% Results showed that dietary lysine levels could affect IGF-I mRNA level. IGF-I mRNA level is the highest when lysine level is 1.1% in liver and 0.95% in musele.It showed that lysine levels affect broiler's growth by adjusting GH way. Lysine requirement model was Y=-4.7559+ 10.9489X+ -5.2348 X2. (R2=0.76)
引文
1.艾景军,许万根等 1996生长猪营养代谢模型中若干概念初探 动物营养学报,(8)3,55~62
    2.蔡辉益,文杰,杨禄良译 家禽营养需要(NRC)[M].北京:中国农业科技出版社,1994.26-32.
    3.蔡辉益1995肉鸡营养需要预测模型研究进展(专述),饲料工业(16)6
    4.陈金文,杨山,赵河山等 肉鸡血浆极低密度脂蛋白的双向选择效应:腹脂和屠体性状:中国家禽第七次学术讨论会论文集杭州,1995.77~79
    5.陈金文等 血浆极低密度脂蛋白浓度的双向选择对肉鸡生长性能与血脂的影响 中国兽医学报 1998(18)2:199~202
    6.成泳良,吴晓林,燕海峰等 四个乌骨鸡群体间胸肌蛋白质、氨基酸和矿物元素含量比较研究 [J].中国家禽,1999,21(11):4-5.
    7.冯定远 肉鸡营养参数及环境因素对生产性能数学函数模型的研究 华南农业大学学报 1997(18)35~39
    8.刘德超 0~3周龄不同性别肉用仔鸡真可利用赖氨酸和真可利用蛋氨酸需要量的研究[D].北京:中国农业科学院研究生院 1995.
    9.刘建文,施用晖等 动物生长轴的激素调控 中国饲料 2003 (14)7~9
    10.刘升军,呙于明 采用不同衡量指标及数学模型估测3-6周龄雌性肉仔鸡赖氨酸需求参数的研究 畜牧兽医学报 2002,33(3):209-214
    11.刘毅等 肉用仔鸡可消化赖氨酸和可消化含硫氨基酸适宜水平的研究 中国家禽 1995,5:23—24
    12.孙占田等摘译 1999肉用仔鸡营养研究进展 国外畜牧学-饲料 1,9~12
    13.王纪亭等 肉鸡日粮中赖氨酸与精氨酸适宜比例的研究 畜牧兽医学报 1999,30(3):217-224
    14.杨立彬 2001生长肥育猪生长模型及主要营养需要参数的研究 中国农业大学博士论文
    15.杨宁主编 现代养鸡生产 [M].北京:北京农业大学出版社,1993.
    16.俞渭江,王滋润,杜荣臻等.生物统计附试验设计[M].北京:农业出版社,1983,182-194.
    17.张宏福,张子仪 动物营养参数与饲养标准[M].北京:中国农业出版社,1997.165-169.
    18.赵素梅 肉仔鸡赖氨酸需要量的研究进展 饲料工业,2000(21)12:19—22
    19.陈金文等 血浆极低密度脂蛋白浓度的双向选择对肉鸡生长性能与血脂的影响 中国兽 医学报 1998(18)2:199~202
    20.张立钢 2000 生长猪动态生长模型的建立 东北农业大学硕士学位论文
    21. Allen, R.E., Merkel, R.A. and Young, R.B.(1979). Cellular aspects of muscle growth: myogenic cell proliferation. Journal of Animal Science, 49:115
    22. Allison, J. L., Lane, O.E. and Amato, S.V. (1978) Broiler profit maximizing models. Poultry Science 57:845-853
    23. Ashwell CM, Czerwinski SM, Brocht DM, Mcmurtry JP. Hormonal regulation of leptin
    
    expression in broiler chickens. Am J Physiol 1999;226-32.
    24. Ashwell CM, McMurtry JP, Wang XH, Zhou Y, Vasilatos-Younken R. Effect of growth hormone and paired-feeding on leptin mRNA expression in liver and adipose tissue. Domestic Animal Endocrinology 1999; 17:77-84
    25. Austic, R. E.,1983. The availability of amino acids as an attribute of feeds. In:G. E. Robards and R. G. Packhan(Eds), Feed information and animal production, p. 175-189. Commonwealth Agricultural Bureaux, Slough, England.
    26. Baker, D. H., and Y. Han, Ideal amino acid profile for broiler chicks during the first three weeks posthatching. Poultry Sci. 1994.73:1441-1447
    27. Baker, D. H., Partitioning nutrients for growth and other metabolic functions: Efficiency and priority considerations. Poultry Sci. 1991.70:1797-1805
    28. Baldwin, R. L., 1976. Principles of modeling animal systems. Proceedings of the New Zealand Society of Animal Production 36:128-139.
    29. Baldwin, R.L. and Smith, N.E., 1971. Application of a simulation modeling technique in analysis of dynamic aspects of animal energetics. Federation Proceedings 30:1459-1465.
    30. Baldwin, R.L.,1970. Tissue metabolism and energy expenditure of maintenance and production.Brody Memorial Lecture No. X. University of Missouri, Columbia.
    31. Becker W A, Spencer J V, Mirosh L W et al. Selection of broilers for large carcass weight and low abdominal fat. Poultry Science, 1982,61 (Suppll):14~15
    32. Bernard Leclercq Specific effects of lysine on broiler production: comparison with threonine and valine. Poultry science 1998, 77:118-123
    33. Black, J. L., 1974. Manipulation of body composition through nutrition. Proceedings of the Australian Society of Animal Prodution 10:211-218.
    34. Black, J. L., R.G.Campbell, I.H. Williams, K. J. James and G. T. Davies,1986. Simulation of energy and amino acid utilization in the pig. Research and Development in Agriculture3:121-145.
    35. Black, J.L., Davies, G.T. and Fleming, J.F., 1993. Role of computer simulation in the application of knowledge to animal industries. Australian Journal of Agricultural Research 44:541-555
    36. Black,J.L.,Campbell,R.G., Williams,I.H., James,K.J. and Davies,G.T. (1986) Simulation of energy and amino acid utilization in the pig. Research and development in agriculture,3:121-125
    37. Boorman, K.N., 1980. Dietary contraints on nitrogen retention. In: P.J.Buttery and D.B.Lindsay, Protein Deposition in Animals, P.147-166.Butterworths, London.
    38. Brameld JMR,Gilmour S,Buttery PG.[J].J Nutr,1999,129:1298-1306.
    39. Bruce, J. M. and Clark, J.J., 1979.Models of heat production and critical temperature for growing pigs. Animal Production 28:285-290
    40. Cahaner A, Nitsan Z. Evaluation of simultaneous selection for live body weight and against abdominal fat in broilers. Poultry Science, 1985, 64:1257~1263
    
    
    41. Campbell, R. G.,M.R.Taverner and D.M.Curie.1985. Effects of sex and energy intake between 48 and 90kg liveweight on protein deposition in growing pigs.Anim.Prod.40:497
    42. Campbell, R. G.,M.R. Taverner and D. M. Curic, 1984a. The effects of sex and of energy intake on rate of protein deposition in growing pigs. Animal Production in Australia 15:660.
    43. Campbell, R. G.,M.R. Taverner and D. M. Curic, 1984b. Effect of feeding level and dietary protein content on the growth, body composition and rate of protein deposition in pigs growing from 45 to 90 kg. Animal Productin 38:233-240.
    44. Campbell, R.G. and A.C.Dunkin, 1983. The influence of dietary protein and energy intake on performance, body composition and energy utilization of pigs growing from 7 to 19 kg. Animal Production 36:185-192.
    45. Campbell, R.G.,M.R. Taverner and D. M. Curic, 1983. The influence of feeding level from 20 to 45 kg liveweight on the performance and body composition of female and entire male pigs. Animal Production 36:193-199.
    46. Carr. J. R. K. N. Boorman and D. J. A. Cole, 1977. Nitrogen retention in the pig. British Journal of Nutrition 37:143-155.
    47. Chan YY, Grafstein-Dunn E, Delemarre van de Waal HA, Burton KA, Clifton DK, Steiner RA. The role of galanin and its receptor in the feedback regulation of growth hormone secretion. Endocrinology 1996; 137:5303-10.
    48. Compertz, B.(1825)On the nature of the function expressive of the law of human mortality and on a new method of determining the value of life contingencies.Philosophical Transactions of the Royal Society,513~585
    49. Davis SL, Ohlson DL, Klindt J, Anfinson MS. 1985. Epis odic growth hormone secretory patterns in sheep. Anim. Prod. 16:185.
    50. De Wilde, R.,1976. Study of a method for the determination of protein and energy retentions in pigs by means of carcass analysis. Mededelingen Fakulteit Diergeneeskunde 3-4, University of Gent (in Dutch), 211 pp.
    51. Della-Fera MA, Buonomo FC, Baile CA. Growth hormone releasing factors and secretion of growth hormone in sheep, calves and pigs. Domest Anim Endocinol 1986;3:165-176.
    52. Dent, J. B. and M. J. Blackie, 1979. Systems simulation in agriculture. Applied Science Publishers, London. 180pp.
    53. Donkin SS, McNall AD, Swencki BS, Peters JL, Etherton TD. The growth hormone-dependent decrease in hepatic fatty acid synthase mRNA is to result of a decrease in gene transcrittion. J Mol Endocrinol 1996; 16:151-8.
    54. Dunkin, A. C., J. L. Black and K. J. James, 1984. Relationship between energy intake and nitrogen retention in the finisher pig. Animal Production in Australia 15:672.
    55. Emmans, G. C., 1985. A general method to predict the unconstrained food intake of an immature animal. Animal Production 40:569.
    
    
    56. Emmans, G. C., 1986. A model of the food intake, growth and body composition of pigs fed ad libitum. Animal Production 42:471.
    57. Emmans, G.C. A model of growth and feed intake ofad libitum fed animals, particularly porltry. In: Computers in Animal Production, Occasional Publicaion No. 5, British Society of Animal Production, pp. 103-110
    58. Emmans, G.C. and Oldham, J.D. Modelling of growth and nutrition in different species. EEC Animal Modelling Conference, Brussels, April, 1987.
    59. Emmans,G.C(1984) An additive and linear energy scale. Animal Production 38:538
    60. Emmans,G.C(1988) Genetic components of potential and actual growth. In: Animal Breeding Opportunities. Occasional Publication No. 12, Butterworths, London,pp. 135~181
    61. Emmans,G.C(1989) The growth of turkeys. In: Recent Advances in Turkey Science, Butteworths London, pp. 135-166.
    62. Emmans,G.C(1995) Problems in modeling the growth of poultry. World's Poultry Science Journal 51:77-89
    63. Emmans,G.C.,1995. Problems in modeling the growth of poultry. World's poult.sci J.51:77~89
    64. Emmans,G.C.,1997. A method to predict the food intake of domestic animals from birth to maturity as a function of time. J.Ttheor.Biol. 186:189~199
    65. Fisher, C., Amino acid requirements of broiler breeders. 1998. Poultry Sci. 77:124-133
    66. Flectche TP, Thomas GB, Dunshea FR, Moore LG, Clarke IJ. IGF feedback effects on growth hormone secretion in ewes:evidence for action at the pituitary but not the hypothalamic level. J Endocrinol 1995; 144:323-31.
    67. Flint DJ. Immunomodulatory approaches for regulation of growth and body composition. Anim. Prod. 1994;58:301-312
    68. France, J. and Thornley, J.H.M. (1984) Mathematical Models in Agriculture. A Quantitative Approach to Problems in Agriculture and Related Sciences, Butterworths, London,p.335
    69. Frohman. L. A., Downs. T. R. Clarke I.J. & Thomas. G. B. (1990). Measurement of growth hormone-releasing hormone and somatostatin in hypothalamic-portal plasma of unanestheticd sheep. Journal of Clinical Investigation 86, 17 24.
    70. Fuller, M. F. and A. G. Chamberlain, 1983. Protein requirements of pigs. In:W. Haresign (Ed.), Recent advances in animal nutrition, p. 175-186. Butterworths, London.
    71. Gardner, M. J., Morrison, C. A., Steyenson, L. Q. and Flint, D, J. 1990. Production of anti-idiotypic antisera to rat GH antibodies capable of binding to GH receptors and increasing body weight gain in hypophysectomized rats. Journal Endocrinology 125:53-59.
    72. Gibson, A., 1978. Performance prediction. In: Proceedings of a Mest and Livestock Commission: Conference of the East of Scotland College of Agriculture, p.50-61.
    73. Gous,R.M et al (1999) Evaluation of the parameters needed to describe the overall growth, the chemical growth, and the growth of feathers and breast muscles of broilers. Poultry science,
    
    78:812~821
    74. Gous,R.M.,Emmans,G.C.and Fisher, C.(1992)The response of broilers to feeds differing in protein content following a period of fattening. Poultry Science 71(Supplement 1):151
    75. Graham, N.McC., Black, J.L., Faichney, G.J. AND Arnold, G.W. 1976. Simulation of growth and production in sheep-model 1:a computer program to estimate energy and nitrogen utilization, body composition and empty liveweight change, day by day for sheep of any age. Agricultural Systems 1: 113-138.
    76. Griffiths L, Leeson S, Summers J.D., Fat deposition in broilers:Effect of dietary energy to protein balance, and early life caloric restriction on productive performance and abdominal fat pad size [J]. Poult Sci,1977,(56):638-646.
    77. Griffth L, L eeson S, Summers JD. Studies on abdominal fat with four commercial strains of male broiler chicken. Poultry Science, 1978, 57:1198~1203
    78. Griffth L, Leeson S, Summers J.D. Studies on abdominal fat with four commercial strains of male broiler chicken. Poultry Science, 1978, 57:1198~1203
    79. Grisoni M L. Effect of dietary lysine level on lipogenesis in broilers. [J]. Reproduction Nutrition Development, 1991, 31 (6), 683~690.
    80. Han, Y., and D. H. Baker, Lysine requirement of fast and slow growing broiler chicks. Poultry Sci. 1991, 70: 2018-2114
    81. Hancock C.E.et al,1995. The evaluation of the growth parameters of six strains of commercial broiler chickens. British Poultry Science36:247~264
    82. Hardy et al Maintenance lysine requirement and efficiency of using lysine for accretion of whole-body lysine and protein in young chicks. Poultry Science 1999.78: 1412-1417.
    83. Hauser, S. D., McGrath, M. F., Collier, R. J. and Krivi, growth hormone receptor mRNA, Molecular and Cellular Endocrinology 72:187-200.
    84. Heinflink M, Nussenzveig DR, Friedman AM, Gershengorn MC. Thyrotropin-releasing hormone receptor activation does not elevate intracellular cyclic adenosine3', 5'-monophosphate in cells expressing high levels of receptors. J Clin Endocrinol Metab 1994;79:650-2.
    85. Henry, Y. and Sere, B., 1993. Feed intake and dietary amino acid balance in growing pigs with special reference to lysine, tryptophan and threonine. Pig News and Information 14:35N-43N
    86. Hodge, R. W.,1974. Efficiency of food conversion and body composition of the pre-ruminant lamb and the young pig. British Journal of Nutrition 32:113-126.
    87. Holder A. T., Carter C., 1995. Immunodulation of growth hormone-IGF-I axis. Livestock production Science. 42:229-237
    88. Horvath S, Palkovits M, Gorcs T, Arimura A. Electron microscope immunocytochemical evidence for the existence of bidirectional synaptic connections between growth hormone-releasing hormone-and somatostatin- containing neurons in the hypothalamus of the rat. Brain Res 1989;481:8-15.
    
    
    89. Hurwitz, S., D. Sklan, and I.Bartow,1978.New formal approaches to the determination of energy and amino acid requirements of chicks. Poultry Science57:197~205
    90. Hurwitz, S., I.Plavnik, I.Bartov, and S.Bornstein, 1980.The amino acid requirements of chicks:experimental validation of modelcalculated requirements.1980 Poultry Science 59:2470~2479
    91. Hurwitz, S., Talpaz, H. and Waibel, P.E. (1985) The use of simulation in the evaluation of economics and management of turkey production: dietary nutrient density, marketing age and environmental temperature. Poultry Science 64:1415-1423
    92. Isariyodom, S., Tasadi, I., Okumura, J. and Muramatsu, T.1988. Construction of a mathematical model for predicting broiler performance. Japanese Poultry Science 25:191-200
    93. Ishibashi T. Amino acid requirement of poultry. J Poultry Sci, 1990,27:1~15.
    94. J. Zoons, J. Buyse and E. Decuypere 1991 Mathematical models in broiler raising. World's Poultry Science Journal 47:243-255
    95. Jackson S,Summers J D, Leeson S. Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization[J]. Poult Sci, 1982,(61):2224-2231.
    96. Jones, J. L., Clemmons, D. R. 1995. Insulin-like growth factors and their binding proteins:biological actioins. Endocr. Rev. 1, 3-34.
    97. Just Nielsen, A.,Protein requirement of growing pigs determined by nitrogen balance experiments and slaughter investigations. Copenhagen Royal Veterinary and Agricultural University Yearbook 1971:81-97.
    98. Kato Y. Shimokawa N, Kato T, Hiral T, Yoshihama K, Kawai H, Hattori M, Ezashi T, Shimogori Y, Wakabayashi K. Porcine growth hormone:molecular cloning of cDNA and expression in bacterial and mammalian cells. Biochem Biophys Acta 1990;1048:290-3.
    99. Kielanowski, J. 1976. Energy cost of protein deposition. In: Protein Metabolism and Nutrition, pp207-214, ed. D.J.A. Cole. European Association for animal production, Publication 16.
    100. Kita K, J Okumura. Protein synthesis in liver and breast muscle of chichens fed a high protein diet[J]. Br Poult Sci, 1993, 34:553-558
    101. Koops, W.J., 1989 Multiphasic analysis of growth. PhD. Thesis, Wageningen, 121 pp
    102. Krulich, L McCann, S. M. Influenc of growth hormone(GH)on content of GH in the pituitaries of normal rats. Proc. Soc. Exp-Biol. Med. 121: 1114-1117, 1996.
    103. Krulich, L. and S. M. McCann. 1966. Influence of growth hormone(GH) on content of GH in the pituitaries of normal rats. Proc. Soc. Exp. Biol. Med. 121:1114.
    104. Kyriazakis, I. and Emmans, G.C., 1992a, The effects of varying protein and energy intakes on the growth and body composition of pigs: 1. The effects of energy intake at constant high protein intake. British Journal of Nutrition 68:603-613
    105. Kyriazakis, I. and Emmans, G.C., 1992b, The effects of varying protein and energy intakes on the growth and body composition of pigs: 2. The effects of varying both energy and
    
    protein intake. British Journal of Nutrition 68:615-625
    106. Kyriazakis, I. and Emmans, G.C., 1992c, The growth of mammals following a period of nutritional limitation. Journal of Theoretical Biology 156:485-498
    107. Kyriazakis, I. and Emmans, G.C., 1992d, The selection of a diet by growing pigs given choices between feeds different in their contents of protein and rapeseed meal. Appetite 19:121-132
    108. Kyriazakis, I. and Emmans, G.C., 1993. The effect of protein source on the diets selected by pigs given a choice between a low and a high protein food. Physiology and Behavior.
    109. Leclercq B, Blum JC, Borer JP. Selecting broiler for low or high abdominal fat:initial observations. British Poultry Science, 1980,21:107~113
    110. Leenstra, F.R. 1986 Effect of age, sex, genotype and environment of fat deposition in broiler chickens-a review. World's Poultry Science Journal 42:12-25
    111. Littefield. Strain difference in quantity of abdominal fat in broilers. Poultry Science, 1972, 51:18~29
    112. Low, A. G., 1980. Nutrient absorption in pigs. Journal of the Science of Food and Agriculture 31:1087-1130.
    113. Low, A. G., 1981. Amino acid use by growing pigs. In: W. Haresign (Ed), Recent advances in animal nutrition, p. 141-156. Butterworths, London.
    114. Machiels, M.A.M. and A.M.Henken, 1986. A dynamic simulation model for growth of the African Catfish, Clarias gariepinus (Burchell 1822). I. Effect of feeding level on growth and energy metabolism. Aquaculture 56:29-52.
    115. Malmlof K,Arrbenius-Nyberg V, Saxerholt H,et al.[J].Homo Metab Res, 1997,29:20-24.
    116. Martin, J. B. and W. J. Millard. 1986. Brain regulation of growth hormone secretion. J. A-nim. Sci. 63(Suppl. 2):11.
    117. Mathews, L. S., Enberg, B. and Norstedt, G. 1989 Regulation of rat growth hormone receptor gene expression. Journal of Biological Chemistry 264:9905-9910.
    118. Mau SE, Witt MR, Bjerrum OJ, Saermark T, Vilhardt H, Growth hormone hexapeptide (GHRP-6) activates the inositol (1, 4, 5)-triphosphate/diacylglycerol pathway in rat anterior pituitary cells. J Recept Signal Transduct Res 1995; 15:311-23.
    119. Merchenthaler I, Vigh S, Schally AV, Petrusz P. Immunocytochemical localization of growth hormone-releasing factor in the rat hypothalamus. Endocrinology 1984; 114:1082-5.
    120. Mersmann, H. J. (1987). Nutritional and endocrinological influences on the composition of animal growth. Prog. Food Nutr. Sci. 11, 175-201.
    121. Moran E T, Bilgili S F. Processing losses, carcass yield quality and meat yields of broiler chickens receiving diets marginally deficient to adequate in lysine prior to marketing [J].Poultry Sci, 1990,69:702~710
    122. Moughan P.J. and M.W. Verstegen (1988) The modeling of growth in the pig. Netherlands
    
    Journal of Agricultural Science 36:145~166
    123. Moughan P. J. and W.C. Smith,1984a. Prediction of dietary protein quality based on a model of the digestion and metabolism of nitrogen in the growing pig. New Zealand Journal of Agricultural Research27:501~507
    124. Moughan P.J. and W.C. Smith,1984b. Assessment of a balance of dietary amino acids required to maximize protein utilization in the growing pig(20-80 kg liveweight). New Zealand Journal of Agricultural Research27:341~347
    125. Moughan P.J. and W.C. Smith,1985. Determination and assessment of apparent ileal amino acid digestibility coefficients for the growing pig. New Zealand Journal of Agricultural Research 28:365~370
    126. Moughan P.J. and W.C. Smith,1987a. Description and validation of a model simulation growth in the pig(20-90 kg liveweight). Zealand Journal of Agricultural Research 30:59~66
    127. Moughan, P.J. and Smith, W.C., 1984. Prediction of dietary protein quality based on a model of the digestion and metabolism of nitrogen in the growing pig. Netherlands Journal of Agricultural Research 27:501-507
    128. Moughan, P.J. and Verstegen, M.W.A., 1988. The modeling of growth in the pig. Netherlands Journal of Agricultural Research 36:145-166
    129. Muldner A M, Clarke S D. 1991. Porcine fatty acid synthase :cloning of a complementary DNA and suppression of expression by somatotropin and dietary protein. J Nutrition, 121:900-907
    130. Parks, J.R. 1982 A Theory of Feeding and Growth of Animals, Springer-Verlag, 322 pp
    131. Pettigrew, J.E.,Gill,M., France, J. and Close, W.H., 1989. A mathematical model of sow energy and protein metabolism. In: Energy Metabolism of Farm Animals. Publication No. 43. European Association of Animal Production.p. 119-201.
    132. Pym R A E, Farrell D J. A composition of the energy and nitrogen growth rate, food consumption and conversion of food to gain. British Poultry Science, 1977, 18:411~426
    133. Roux, C.Z. and Meissner, H.H. (1983). Growth and feed intake patterns:1.The derived theory. In Herbivore Nutrition in the Subtropics and Tropics, eds F.M.C.Gilchrist and R. I.Mackie. The Science Press, Johannesburg, South Africa, p.672
    134. Scott, M.L., Nesheim M.C. and Young R.J. 1982. Nutrition of the Chicken. 3rd Ed.,p86. Scott. M.L. and Associates, Ithaca, New York.
    135. Sell J L, Hasiak R J, Owings W J. Independent effects of dietary metabolizable energy and protein concentrations on performance and carcass characteristics of tom turkeys[J]. Poult Sci,1985, (64):1527-1535.
    136. Shanawany, M.M.(1988) Broiler performance under high stocking densities. British Poultry Science 29:43-52.
    137. Shibashi, T. and Y. Ohta, Recent advances in amino acid nutrition for efficient poultry
    
    production. Asian-Aus. J. Anim.Sci. 1999.12(8): 1171-1332
    138. Steinbach, J.,1976. Effects of temperature on the growth of pigs. In: H. D. Johnson, Progress in animal bilmeteorology, Volume 1, part Ⅰ. Swets and Zeitlinger B.V. Amsterdam, The Netherlands. P. 320-327
    139. Stilborn, H. L., E.T.Moran,Jr, R.M. Gous, and M. D. Harrison,1997.Effect of age on feather amino acid content in two broiler strain crosses and sexes.J.Appl.Poult.Res.6:205~209
    140. Summer J D, S L linger, Ashton G C. The effect of dietary energy and protein on carcass composition with a note for estimating carcass composition[J]. Poult Sci, 1965,(44):501-509.
    141. Summers J.D., Leeson S, Bedford D M. Influence of dietary and energy on performance and composition of heavy Turkeys[J]. Poult Sci,1985, (64):1921-1933.
    142. Tagari.H. et al.1964.Studies on relationship between blood urea nitrogen and nitrogen retntion of pigs.Br.Nutr.J. 18:332-342
    143. Talpaz, H., DE LA Torre, J. R. and Sharpe, P.J.H. 1986 Dynamic optimization model for feeding of broilers. Agriculture Systems 20:121-132
    144. Talpaz, H., Hurwitz, S., DE LA Torre, J.R. and Sharpe, P.J.H. 1988 Economic optimization of growth trajectory for broilers. American Journal of Agricultural Economics 70(2): 382-390
    145. Tess, M.W., Dickerson, G.E., Nienaber, J.A. and Ferrell, C.L. 1984a. The effect of body composition on fasting heat production in pigs. J.Anim.Sci. 58:99-110.
    146. Tess, M.W., Dickerson, G.E., Nienaber, J.A.,Yen, J.T. and Ferrell, C.L. 1984b.Energy costs of protein and fat deposition in pigs fed ad libitum. J. Anim. Sci. 58:111-122.
    147. Tesseraud, S., N. Maa, R. Peresson, and A.M. Chagneau, Relative responses of protein turnover in three skeletal muscles to dietary lysine deficiency in chicks. Br. Poult. Sci. 1996.37: 641-650
    148. Thornley, J.H.M. and Johnson, I.R. (1990) A Mathematical Approach to Plant and Crop Physiology, Oxford Science Publications, p660.
    149. Totsuka, K., K. Tatsumi, K. Koide, Time course of changes of plasma free amino acids concentration following dietary changes in laying hens. Japanese Poultry Science. 1992.29: 14-22
    150. Toyomizu, M., Akiba, Y., Horiguchi, M. and Matsumoto, T. 1982 Multiple regression and response surface analysis of the effects of dietary protein, fat and carbohydrate on the body protein and fat gain in growing chicks. Journal of Nutrition 112:886-896
    151. Tzeng, R. and Becker, W.A. 1981 Growth patterns of body ahd abdominal fat weights in male broiler chickens. Poultry Science 60:1101-1106
    152. Uneo, K., Research of arginine and lysine requirements of broilers. 1998, Ph.D. Dissertation. Niigata University.
    153. Vel U JG,Baker D.H., Body composition and protein utilization of chicks fed graded levels of
    
    fat. [J]Poult Sci,1974,(53):1831 - 1838.
    154. Walker, B. and Young, B.A. 1993. Prediction of protein accretion, support costs and lipid accretion in the growing female pig and dry sow. Agri. Systems 42:343-358.
    155. Washburn K W, Guill R A, Edwards JH M. Influence of genetic differences in feed efficiency on carcass composition of young chickens. Journal of Nutrition, 1975,: 1311~1317
    156. Wathes, C. M., Gill, B.D., Charles, D.R. and Back, H.L. 1981 The effect of temperature on broilers: a simulation model of the responses to temperature. British Poultry Science 22:483-492
    157. Wethli E, Wessels JP H. The associations between body fat content and thyroid activity, feed intake, mass gain, feed conversion and final body mass in growing chickens. Agroanimalia, 1973,5:83~88
    158. Whitehead C C, Griffin H D. Development of divergent lines of lean and fat broilers using plasma very low density lipopro-tein concentration as selection criterion:the first three generations. British Poultry Science, 1984, 25:573~582
    159. Whittemore, C.T., and R.H.Fawcett. 1974.Model responses of the growing pig to the dietary intake of energy and protein. Animal Production 19:221-231.
    160. Whittemore, C.T., and R.H.Fawcett. 1976.Theoretical aspects of a flexible model to simulate protein and lipid growth in pigs. Anim.Prod.22:87
    161. Whittemore, C.T., H.M.Taylor, R.Henderson,J.D.Wood and D.C.Brock. 1981. Chemical and dissected composition changes in weaned piglets. Anim.Prod.32:203
    162. Whittemore, C.T.,A.Aumaitre and I.Williams. 1978.Growth of body components in young weaned pigs. J.Agr.Sci.(Camb.)91:681
    163. Whittemore, C.T.,(1983) Development of recommended energy and protein allowances for growing pigs. Agricultural Systems, 11:159-186
    164. Whittermore 1986.An approach to pig growth modeling. J.Amin.sci,63:615~621
    165. Zapf, J., Schoen, E., and Froesch, E. R. (1985). In vivo effects of the insuli-like growth factors(IGFs)in the hypophysectomized rat:Comparison with human growth hormone and the possible role of the specific IGF carrier proteins, In"Growth Factors in Biology and Medicine. "Growth Factors in biology and Medicine. "Ciba Foundation Symposium 116(D. Evered, J. Nugent, and J, Whelan, eds.), pp. 169-180. J. Wiley, Chichester, England.
    166. Wu D, Chen C, Zhang J, Bowers CY, Clarke IJ. The effects of GH-releasing peptide-6(GHRP-6)and GHRP-2 on intracellular adenosine 3', 5'-monophosphate(cAMP) levels and GH secretion in ovine and rat somatotrophs. J Endocrinol 1996; 148:197-205.
    167. West CR, Lookingland KJ, Tucker HA. Regulationo f growth hormone-releasing hormone and somatostatin from perifused, bovine hypothalamic slices. Dopamine receptor regulation. Domest Anim Endocrinol 1997; 14:349-57.
    168. Trenkle, A. 1977. Changes in growth hormone status related to body weight and age. Growth
    
    41:241.
    169. Theodoropoulos TJ(1985) Somatostatin is a regulator of thyrotropin secretion in the perinatal rat. Endocrinology 117:1683-1686.
    170. Tannenbaum, G. S., Harel, Z. Breier, B. H., GLuckman. P. Immunoneutralization of circulating insulin-l-ike growth factor Ⅰ fails to alter pulsatile GH secretion. Ninth Intemational Congress of Endocrinology. Nice, 1992, P08.01. 073.
    171. Tannenbaum G S, Ling N. 1984. The interrelationship of growth hormone-releasing factor and somatostatin in generation of the ultradian rhythm of growth hormone secretion. Endocrinology 115:1952.
    172. Suttie JM, Fennessy PF, Corson ID, Laas FJ, Crosbie SF, Butler JH, Gluckman PD. Pulsatile growth hormone, insulin-like growth factors and antler development in red deer (Cervus elaphus scoticus)stags. J Endocrinol 1989; 12:351-60.
    173. Spencer G. S. G., Bass, J. J., Hodgkinson, S. C., Edgley, W. H. R., Morre, L. G. Effect of intracerebroventricular injection of IGF-1 on circulating growth hormone levels in sheep. Domest. Anim. Endocrinol. 8:155-160, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700