盐芥(Thellungiella Halophila)耐盐生理及分子生物学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐分胁迫主要包括渗透胁迫及离子胁迫及其造成的一系列次级胁迫如氧化胁迫等,严重干扰植物体内业已存在的细胞及整株水平上的水分及离子稳态,造成植物细胞分子损伤,生长减缓甚至死亡。因而植物对抗盐胁迫的一个重要策略是在高盐环境下重建体内的稳态(homeostasis),包括重建离子稳态(ionic homeostasis)和渗透稳态(osmotic homeostasis)。本实验以与拟南芥近缘的盐芥为材料,构建了一个经过200mmol/L NaCl处理的盐芥叶片的cDNA文库,并从中随机挑选克隆单向测序,获得EST库;比较了盐胁迫下盐芥和拟南芥生长及渗透调节的变化;分析了盐芥P5CS基因在不同胁迫下和不同组织中的表达特性,探讨了其表达与脯氨酸合成、渗透调节之间的关系;分析了各种胁迫对硫氧还蛋白h、肌醇半乳糖苷酶基因表达的影响;构建了硫氧还蛋白h-GST原核表达载体和硫氧还蛋白h双元植物表达载体、肌醇半乳糖苷酶基因双元植物表达载体、SOS3基因双元植物表达载体,并转化拟南芥;同时构建了SOS3基因沉默载体并转化盐芥;分析了过量表达肌醇半乳糖苷酶基因、SOS3基因对拟南芥耐盐性的影响,主要实验结果如下:
     1.盐芥(T.halophila)ESTs库的构建
     构建了一个经过200mmol/L NaCl处理的盐芥叶片的cDNA文库,并从中随机挑选克隆单向测序,获得了1699个EST序列,其中1178个EST序列与以前鉴定的基因序列具有很高的同源性。通过序列分析,鉴定了813个独立的EST序列,其中549个序列与以前鉴定的基因具有同源性,264个为未知基因。所有的EST数据都公布在GeneBank的dbEST中。盐芥和拟南芥cDNA序列的一致性在EST总数和非冗余的克隆中分别达到95.76%、95.36%。耐盐相关或受盐胁迫调控基因的EST划分为8个主要的类别,占EST总数的18.89%。
     2.盐胁迫下盐芥和拟南芥(Arabidopsis thaliana)生长及渗透调节的比较
     用不同浓度的NaCl处理生长四周的盐芥和拟南芥幼苗,测定盐芥的盐度阈值;比较盐胁迫下盐芥、拟南芥干重、鲜重、K~+、Na~+含量以及游离氨基酸、脯氨酸、有机酸、可溶性糖等有机渗透保护物质的变化;比较NaCl对渗透势、MDA含量的影响。盐芥存活率达50%的NaCl浓度(盐度阈值)为300mmol/L,在中、低盐度下(50—150mmol/L NaCl),盐芥生长并没有受到抑制,只有在较高盐度下(250,300mmol/L NaCl),盐芥的生长才受到抑制。而拟南芥生长一开始就随着盐浓度的升高而降低。
    
    盐荞(Thellungiella hal叩hila)耐盐生理及分子生物学墓础研究
     盐胁迫下Na+、K+离子在盐芥、拟南芥中变化趋势不同。相同盐度下拟南芥K+离子
    含量的降低幅度要比盐芥大。盐芥根中Na+含量随着盐浓度的升高变化并不大:而拟南
    芥根中Na+含量一直随盐浓度的升高而升高。拟南芥比盐芥积累更多的脯氨酸和可溶性
    糖,渗透势降低幅度大于盐芥,可能50一300~ol几NaCI没有对盐芥造成明显的渗透胁
    迫。盐胁迫下盐芥叶中MDA含量几乎不变,而拟南芥MDA含量随盐浓度的升高明显增
    加。研究结果表明盐芥耐盐性远高于拟南芥。
     3.盐芥角尸JCS基因克隆及在胁迫条件下的表达分析
     利用EST随机挑取克隆测序的策略从盐芥叶片cDNA文库分离得到编码盐芥△‘一二
    氢毗咯一5一梭酸合成酶基因的部分cDNA序列。该cDNA片段长约824bP,它编码△’一二
    氢毗咯一5一梭酸合成酶近C一端的154个氨基酸。BLAST同源性分析表明,该cDNA与己
    报道的拟南芥尸歹C万基因同源性最高。
     Northem分析表明NaCI、ABA、低温、PEG均诱导尸JC夕基因的表达,而且尸JCS
    基因的表达具有组织特异性和发育阶段特异性。
     4.盐芥ThTRXh,角GOLS和介召以刃基因克隆及功能分析
     利用EST随机挑取克隆测序的策略从盐芥叶片cDNA文库分别分离得到编码盐芥硫
    氧还蛋白h(几2火万h)、肌醇半乳糖昔合酶(ThGOLS)、钙感应蛋白(ThS以竹)的全长
    cDNA序列。盐芥硫氧还蛋白h cDNA序列全长663一bp,编码118个氨基酸残基,分子量约
    12.9 kDa。存在保守的活性中心序列“WCP/GPC”。N。汕em分析表明盐芥Th7天Xh基因表
    达受NaCI、ABA、PEG诱导,不受低温诱导,也没有组织特异性。ThTRXh一GST融合蛋
    白体外表达及活性实验表明,盐芥硫氧还蛋白h的确具有h型的活性,最大反应速度Vmax
    为0.025从650.min一’,Km值为0.437林m。比。同时ThTRXh也在拟南芥中过量表达,并得
    到转基因株系。
     肌醇半乳糖昔合酶(几GOLS)cDNA序列全长1 322一bP,编码337个氨基酸残基。与
    其它物种来源的肌醇半乳糖昔合酶具有较高的氨基酸序列相似性。
     ABA、NaCI均诱导了肌醇半乳糖昔合酶基因在叶中表达;在根中的表达与叶不同,
    明显受ABA诱导,而NaCI的诱导作用非常微弱;PEG、低温既能上调叶中几GOLS的表达,
    又能诱导根中八GOLS的表达,说明肌醇半乳糖昔合酶的表达存在组织差异和胁迫诱导的
    差异。
     肌醇半乳糖合酶基因八GOLS在拟南芥中过量表达提高了转基因拟南芥种子在含
    NaCI、甘露醇培养基上的萌发率,根的相对伸长率以及对LICI的耐受能力也明显好于野
    生型拟南芥。在幼苗生长阶段转基因植株鲜重、干重均高于野生型,尤其是在NaCI胁迫
    下其干物质积累明显较野生型增多。
     经NaCI处理的野生型和转基因拟南芥其净光合
High salt stress disrupts homeostasis in water potential and ion distribution. This disorder of homeostasis occurs at both the cellular and the whole plant levels. Drastic changes in ion and water homeostasis lead to molecular damage, growth inhibition and even death. Therefore, one important strategy for plants to survive under salt stress is to re-establish the homeostasis in high salt environment. Both ionic and osmotic homeostasis must be restored. With salt cress(T. halophila), a halophytic model system, we constructed a NaCl-treated cDNA library and sequenced randomly selected clones and constructed a EST Database; compared the growth and osmotic adjustment of salt cress with Arabidopsis; analyzed the expression of ThP5CS under various stresses and in different plant tissues, and discussed the relation between the expression of ThP5CS with Proline synthesis and osmotic adjustment; analyzed the effects of various stresses on the expression of ThTRX h and ThGOLS; constructed ThTRX h-GST fusion protein and expressed in E. Coli., and completed the constructions of binary Ti vector with ThTRX h, ThGOLS and ThSOS3, and transformed into Arabidopsis, respectively; and also completed the construction of gene silencing vector with ThSOS3 and transformed into salt cress. The transgenic Arabidopsis plants overexpressing ThTRX h, ThGOLS and ThSOS3 were also been analyzed to detect salt tolerance of the transgenic plants, respectively. The results were shown as follows: 1. Construction of EST Database from Salt CressWe constructed a NaCl-treated cDNA library of T. halophila and sequenced randomly selected clones. 1699 ESTs were generated. Among them, 1178 ESTs had significantly homology to previously identified genes. By sequence analysis, 813 unique clones were identified:549 shoewd homology to previous identified genes, 264 sequences matched uncharacterized genes. All our EST Data were submitted to dbEST in GenBank and are available on the internet now. The identity between T. halophila and Arabidopsis thaliana cDNA sequences in our EST collection are 95.76% in total ESTs and 95.36% in non-redundant clones. At least eight classes of genes were related to the salt tolerance, which accounted for about 18.89% of total sequenced ESTs.
    
    2. Comparation of Growth and Osmotic Adjustment of Salt Cress(T. halophila) and Arabidopsis under NaCl stressFour-week-old seedlings of salt cress and Arabidopsis were treated with different concentrations of NaCl, respectively. Salinity threshold for salt cress growth was determined. The changes in dry and fresh weights, K+ and Na+ contents, free amino acid, Proline, organic acid, soluble sugars were compared between salt cress and Arabidopsis. And the effects of NaCl on osmotic potential and MDA content were also compared between the two plants.The results showed that NaCl 300mmol/L was a salinity threshold for salt cress growth which decreased the survival rate by 50% relative to the medium without salt. Low and moderate salinity(50-150mmol/L NaCl) did not inhibit the growth of salt cress and only the high salinity(up to 250-300mmol/L NaCl) could inhibit its growth, while Arabidopsis growth always decreased with the increase in NaCl concentration.Under NaCl stress, Changes in Na+ and K+ content showed different tendency between salt cress and Arabidopsis.The decrease in K+content of Arabidopsis leaves was more than that of salt cress. The Na+ content in salt cress roots increased slightly with the increase in salinity, while the Na+ content in Arabidopsis roots had more increase with salinity increase. Our data also showed that Arabidopsis could accumulated more Proline and soluble sugars and result in more decrease in osmotic potential than salt cress. The MDA content in salt cress leaves almost had no changes under salt stress, while that of Arabidopsis leaves increased significantly with the increase of NaCl concentration. All these data demonstrated that salt cress had more salt tolerance than Arabidopsis. 3.Cloning and Expression Analysis of ThP5CS Gene under Various StressesPartia
引文
[1] 王宝山.(1997).植物液泡膜质子泵的研究.植物学通报 14:25-30
    [2] Flowers, T. J., Troke, P. F. and Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology 28: 89-121
    [3] Greenway, H. and Munns, R. (1980). Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31,149-190
    [4] Wainwrite, S. J. (1980). Plants in relation to salinity. Advances in Botanical Research 8:221-259
    [5] Munns, R. and Termaat, A. (1986). Whole plant responses to salinity. Australian Journal of Plant Physiology 13:143-160
    [6] Munns, R., Fisher, D. B. and Tonnet, M. L. (1986). Na~+ and CI~- transport in the phloem from leaves of NaCl-treated barley. Australian Journal of Plant Physiology 13:757-766
    [7] Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment 25:239-250
    [8] Murms, R., Schachtman, D. P. and Condon, A. G. (1995). The significance of a twophase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology 22:561-569
    [9] Xiong, L. and Zhu, J. -K. (2002a). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment 25:131-139
    [10] Mark T. and Romola D. (2003). Na~+ Tolerance and Na~+ Transport in Higher Plants. Annals of Botany. 503-527.
    [11] Lichtentaler, H. K. (1995). Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology 148:4-14
    [12] Stassart, J. M., Neirinckx, L. and Dejaegere, R. (1981). The interactions between monovalent cations and Ca during their absorption on isolated cell walls and absorption by intact barley roots. Annals of Botany 47: 647-652
    [13] Cramer, G. R., Luchli, A. and Polito, V. S. (1985). Displacement of Ca~(2+) by Na~+ from the plasma membrane of root cells. A primary response to plant stress? Plant Physiology 79:207-211
    [14] Zheng, H. and Luchli, A. (1993). Spatial and temporal aspects of growth in the primary root of cotton seedlings: effects of NaC1 and CaCl2. Journal of Experimental Botany 44:763-771
    [15] Binzel, M. L., Hess, F. D., Bressan, R. A. and Hasegawa, P. M. (1988). Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiology 86:607-614
    [16] Carden, D. E. (1999). The cell physiology of barley salt tolerance. Ph. D. thesis, University of Sussex, U. K.
    [17] Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology 12: 431-434
    [18] Mansour, M. M. F., Lee-Stadlemann, O. Y. and Stadlemann, E. J. (1993). Solute potential and cytoplasmic viscosity in Triticum aestivum and Hordeum vulgare under salt stress. A comparison of salt-resistant and salt-sensitive lines and cultivars. Journal of Plant Physiology 142:623-628
    [19] Murnns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 16:15-24
    [20] Yeo, A. (1998). Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany 49:915-929
    [21] Zhu, J. -K., Liu, J. and Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181-1191
    [22] Zhu, J. -K. (2001). Plant salt tolerance. Trends in Plant Science 6:66-71
    [23] Allen, G. J., Wyn Jones, R. G. and Leigh, R. A. (1995). Sodium transport in plasma membrane vesicles isolated from wheat genotypes differing in K~+/Na~+ discrimination traits. Plant, Cell Environment 18:105-115
    [24] Burdon, R. H., O'Kane, D., Fadzillah, N., Gill, V., Boyd, P. A., and Finch, R.R. (1996). Oxidative stress and responses in Arabidopsis thaliana and Oryza saliva subjected to chilling and salinity stress. Biochemical Society Transactions 24: 469-472
    
    [25] Shen, B., Jensen, R.G. and Bohnert, H. (1997). Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.Plant Physiology 113: 1177-1183
    [26] Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K. and Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195-1206
    [27] Hong, Z., Lakkineni, K., Zhang, Z. and Verma, D.P.S. (2000). Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122: 1129-1136
    [28] Sussman, M.R. and Harper, J.F. (1989). Molecular biology of the plasma membrane of higher plants. Plant Cell 1: 953-960
    [29] Maathuis, F.J.M. and Amtmann, A. (1999). K+nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany 84: 123-133
    [30] Davenport, R.J. and Tester, M. (2000). A weakly voltage-dependent, non-selective cation channel mediates toxic sodium influx in wheat. Plant Physiology 122: 823-834
    [31] Schachtman, D. P. and Schroeder, J. I. (1994). Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 655-658
    [32] Amtmann, A. and Sanders, D. (1999). Mechanisms of Na+ uptake by plant cells. Advances in Botanical Research 29: 75-112
    [33] Gassmann, W. and Schroeder, J.I. (1994). Inward-rectifying K+-channels in root hairs of wheat. A mechanism for aluminium-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiology 105: 1399-1408
    [34] Blumwaid E, Aharon G S, Apse M P. (2000). Sodium transport in plant cells. Biochim Biophys Acta 1465: 140-151
    [35] Tyerman, S.D. and Skerrett, I.M. (1999). Root ion channels and salinity. Science Horticulture 78: 175-235
    [36] Hasegawa, P.M., Bressan, R.A., and Pardo, J.M. (2000a). The dawn of plant salt tolerance genetics. Trends in Plant Science 5:317-319
    [37] Maathuis, F.J.M and Sanders, D. (2001). Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiology 127: 1617-1625
    [38] Demidchik, V. and Tester, M. (2002). Sodium fluxes through non-selective cation channels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiology 128: 379-387
    [39] Demidchik, V., Davenport, R.J. and Tester, M. (2002). Nonselective cation channels in plants. Annual Review of Plant Biology 53: 67-107
    [40] Roberts, D.M. and Tyerman, S.D. (2002). Voltage-dependent cation channels Permeable to NH4+, K+, and Ca2+in the symbiosome membrane of the model legumeLotus japonicus.Plant Physiology 128: 370-378
    [41] White P J. (1999). The molecular mechanism of sodium influx to root cells. Trend Plant Sci 4: 245-246
    [42] Rubio, F., Gassman, W. and Schroeder, J. I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salttolerance. Science 270: 1660-1663
    [43] Gassmann, W., Rubio, F. and Schroeder, J.I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant Journal 10: 869-882
    [44] Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Baker, E.P., Nakamura, T. and Schroeder, J.I. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology 122: 1249-1259
    [45] Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B.H., Matsumoto, T.K., Koiwa, H., Zhu, J.K., Bressan, R.A. and Hasegawa, P.M. (2001). AtHKTl is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98: 14150-14155
    
    [46] Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S. and Shinmyo, S. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant Journal 27: 129-138
    [47] Schachtman, D. P., Kumar, R. Schroeder, J. I. and Marsch, E. L. (1997). Molecular and functional characterisation of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci USA 94: 11079-11084
    [48] Clemens, S, Antosiewicz, D.M., Ward, J.M., Schachtman, D.P. and Schroeder, J.I. (1998). The plant cDNA LCT1 mediates the uptake of calcium and cadmium inyeast. Proc Natl Acad Sci USA 95: 12043-12048
    [49] Yeo, A.R., Yeo, M.E. and Flowers, T.J. (1987). The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. Journal of Experimental Botany 38: 1141-1153
    [50] Peterson, C.A. (1988). Exodermal Casparian bands: their significance for ion uptake by roots. Physiologia Plantarum 72: 204-208
    [51] Garcia, A., Rizzo, C.A., Ud-Din, J., Bartos, S.L., Senadhira, D., Flowers, T.J. and Yeo, A.R. (1997). Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant, Cell and Environment 20: 1167-1174
    [52] Reinhardt, D.H. and Rost, T.L. (1995). Salinity accelerates endodermal development and induces an exodermis in cotton seedlings in cotton seedling roots. Environmental and Experimental Botany 35: 563-574
    [53] Shono M, Wada M, Hara Y, et al. (2001). Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo. Biochim Biophys Acta 1511:193-199
    [54] Bego(?)a B. and Alonso R. (2003). Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. The plant Journal. 36:382-388.
    [55] Niu, X., Bressan, R.A. and Hasegawa, P.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology 109: 735-742
    [56] Blumwald, E., Aharon, G.S. and Apse, M.P. (2000). Sodium transport in plants. Biochimica et Biophysica Acta 1465: 140-151
    [57] Quintero F J, Blatt M R, Parda J M. (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett 471: 224-228
    [58] Bartels, D. and Nelson, D. (1994). Approaches to improve stress tolerance using molecular genetics. Plant, Cell and Environment 17, 659-667
    [59] Shi H, Ishitani M, Kim C, Zhu J K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS 97: 6896-6901
    [60] Qiu, Q.-S., Guo, Y., Dietrich, M.A., Schumaker, K.S. and Zhu J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger, by SOS2 and SOS3. Proc Natl Acad Sci USA 99, 8436-8441
    [61] Qiu, QS., Barkla BJ., Vera-Estrella R., Zhu JK., Schumaker KS. (2003). Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol. 132(2): 1041 -52
    [62] Shi H, Quintero F J, Pardo J M, Zhu J K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 control long distance transport in plant. Plant cell 14:465-477
    [63] Shi H., Lee B., Wu S. J. and Zhu, J.K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter improves salt tolerance in Arabidopsis. Nature Biotechnology 21(l):81-5
    [64] Apse, M.P., Aharon G.S., Snedden, W.A. and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1259
    [65] Gorham, J., Wyn Jones, R.G. and McDonnel, E. (1985). Some mechanisms of salt tolerance in crop plants. Plant Soil 89: 15-40
    [66] Xiong, L. and Zhu, J.-K. (2002b). Salt Tolerance. In: The Arabidopsis Book (Somerville, C.R. and Meyerowitz, E.M., eds.). The American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0048. http://www.aspb.org/publications/arabidopsis
    
    [67] Serrano, R. and Gaxiola, R. (1994). Microbial models and salt stress tolerance in plants. Critical Reviews in Plant Sciences 13: 121-138
    [68] Fukuda, A., Nakaruma, A. and Tanaka, Y. (1999). Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa.Biochimica et Biophysica Acta 1446: 149-155
    [69] Gaxiola, R., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L. and Fink, G.R. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proc Natl Acad Sci USA 98: 11444-11449
    [70] Nass R, Cunningham KW, Rao R. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. J Biol Chem, 272: 26145-26152
    [71] Blumwald, E & Poole, R.J. (1987). Salt tolerance in suspension cultures of sugar beet Induction of Na+/K+ antiport activity at the tonoplast by growth in salt. Plant Physiology 83: 884-887
    [72] Blumwald, E. and Poole, R.J. (1985). Na+/H+ antiport in isolated vesicles from storage tissues of Beta vulgaris. Plant Physiology 78: 163-167
    [73] Gabarino, J. and DuPont, F.M. (1989). Rapid induction of Na+/H+ antiport exchange activity in barley root tonoplast. Plant Physiology 89: 1-4
    [74] Wilson, C. and Shannon, M.C. (1995). Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Science 107: 147-157
    [75] Fukuda, A., Yazaki, Y., Ishikawa, T., Koike, S. and Tanaka, Y. (1998). Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiology 39: 196-201
    [76] Darley, CP, van Wuytswinkel, O.C.M., van der Woude, K., Mager, W.H. and de Boer AH. (2000). Arabidopsis thaliana and Saccharomyces cerevisiae NHXl genes encode amiloride sensitive electroneutral Na+/H+ exchangers. Biochemical Journal 351: 241 -249
    [77] Venema, K., Quintero, F.J., Pardo, J.M. and Donaire, J.P. (2002). The Arabidopsis Na+/H+ exchanger AtNHX1 catalyses low affinity Na+ and K+ transport in reconstituted liposomes. Journal of Biological Chemistry 277: 2413-2418
    [78] Zhang, H.X. and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology 19: 765-768
    [79] Zhang, H.X., Hodson, J.N., Williams, J.P. and Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium ccumulation. Proc Natl Acad Sci USA 98: 12832-12836
    [80] Schachtman, D.P. and Munns, R. (1992). Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Australian Journal of Plant Physiology 19: 331-340
    [81] Schubert, S. and Lauchli, A. (1986). Na+ exclusion, H+ release and growth of two different maize cultivars under NaCl salinity. Journal of Plant Physiology 126: 145-154
    [82] Yeo, A.R., Kramer, D. and Lauchli, A. (1977). Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention, of sodium. Journal of Experimental Botany 28: 17-29
    [83] Lacan, D. and Durand, M. (1995). Na+ and K+ transport in excised soybean roots. Physiologia Plantarum 93: 132-138
    [84] Lacan, D. and Durand, M. (1996). Na+-K+ exchange at the xylem/symplast boundary. Plant Physiology 110: 705-711
    [85] Termaat., A and Munns, R. (1986). Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Australian Journal of Plant Physiology 13: 509-522
    
    [86] Blom-Zandstra, M., Vogelzang, S.A. and Veen, B.W. (1998). Sodium fluxes in sweet pepper exposed to varying sodium concentrations. Journal of Experimental Botany 49: 1863-1868
    [87] Perez-Alfocea F, Balibrea ME, Alarcon JJ, Bolarin MC. (2000). Composition of Xylem and Phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. Journal of plant physiology 156:367-374
    [88] Pierre Berthomieu, Genevieve Conéjéro, Aurélie Nublat, William J. Brackenbury, Cécile Lambert, Cristina Savio, Nobuyuki Uozumi, Shigetoshi Oiki, Katsuyuki Yamada, Francoise Cellier, Francoise Gosti, Thierry Simonneau, Pauline A. Essah, Mark Tester, Anne-Aliénor Véry, Hervé Sentenac and Francine Casse. (2003). Functional analysis of AtHKTl in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal 22:2004-2014
    [89] Haro R., et al. (1993). Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Plant Physiol 89: 868-874
    [90] Ko. C. H. and Gaber R. F. (1991). TRK1 and TRK2 encodes structurally related potassium ion transporters in Saccharomyces cerevisiae. Mol. Cell. Biol 11: 4266-4273
    [91] Jian-Kang Zhu. (2003). Regulation of Ion homeostasis under salt stress. Current Opinion in plant Biology 6:441-445.
    [92] Pilot G, Gaymard F, Mouline K, Cherel 1, Sentenac H.(2003). Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51: 773-787.
    [93] Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ. (2001). Expression and stress-dependent induction of potassium channel transcripts in the common ice plant.Plant Physiol 125:604-614.
    [94] Su H, Golldack D, Zhao C, Bohnert HJ. (2002). The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482-1493.
    [95] Li J, Lee YRJ, Assmann SM. (1998). Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785-795.
    [96] Cherel 1, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB. (2002). Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133-1146.
    [97] Liu W, Fairbaim DJ, Reid RJ, Schachtman DP. (2001). Characterization of two HKT1 homologues from Eucalyptus camaldulmsis that display intrinsic osmosensing capability.Plant Physiol 127:283-294.
    [98] Mulet M. P., et al. (1999). A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trkl-Trk2 potassium transporter. Mol. Cell. Biol 19: 3328-3337
    [99] Mendoza I., et al. (1994). The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem 269: 8792-96
    [100] Czempinski K, Gaedeke N, Zimmermann S, Müller-Ruber B. (1999). Molecular mechanisms and regulation of plant ion channels. J Exp Bot 50: 955-966
    [101] Barkla B J and Pantoja O. (1996). Physiology of ion transport across the tonoplast of higher plant. Annu Rev Plant Physiol Plant Mol Biol 47: 127-157
    [102] Reid, R.A. and Smith, F.A. (2000). The limits of sodium/calcium interactions in plant growth. Australian Journal of Plant Physiology 27: 709-715
    [103] Demarty, M., Morvan, C. and Thellier, M. (1984). Calcium and the cell wall. Plant, Cell and Environment 7: 441-448
    [104] Bush, D.S. (1995). Calcium regulation in plant cells and its role in signalling. Annual Review of Plant Physiology and Plant Molecular 46: 95-122
    [105] Epstein, E. (1998). How calcium enhances plant salt tolerance. Science 208: 1906-1907
    [106] Cramer, G.R. (2002). Sodium-calcium interactions under salinity stress. In: Salinity: Environment- Plants-Molecules (Lauchli, A. and Lüttge, U., eds.). Kluwer Academic Publishers, The Netherlands, pp 205-227.
    [107] Liu, J. and Zhu, J.-K. (1997). An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94: 14960-14964
    
    [108] Lynch, J., Polito, V.S. and L(?)uchli, A. (1989). Salinity stress increases cytoplasmic Ca activity in maize root protoplasts. Plant Physiology 90: 1271-1274
    [109] Knight, H., Trewavas, A.J. and Knight, M.R. (1997). Calcium signaling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal 12: 1067-1078
    [110] Sze H, Liang F, Hwang I, Curran A C, Harper J F. (2000). Diversity and regulationof plant Ca2+ pump: Insights from expression in Yeast. Annu Rev Plant Physiol Plant Mol Biol 51: 433-462
    [111] Hirschi K D, Zhen R G, Cunningham K W, Rea P A, Fink G R. (1996). CAX1: an H+/Ca2+ antiporter from Arabidopsis. PNAS 93: 8782-8786
    [112] Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. (1998). Plants use calcium to resolve salt stress. Trends in Plant Science 3:411-412
    [113] Zhu, J.-.K. (2000). Genetic analysis of salt tolerance using Arabidopsis. Plant Physiology 124: 941-948
    [114] Knight, H. (2000). Calcium signaling during abiotic stress in plants. International Review of Cytology 195: 269-325
    [115] Liu J and Zhu J K. (1998). A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945
    [116] Ishitani M, Liu J, Halfter U, Kim C S, Shi W, Zhu J K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 1667-1677
    [117] Sanders D. (2000). Plant biology: The salty tale of Arabidopsis. Curr Biol 10: 486-488
    [118] Guo Y, Halfter U, Ishitani M, Zhu J K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant cell 13: 1383-1400
    [119] Viswanathan Chinnusamy, Karen Schumaker and Jian-Kang Zhu. (2004). Molecular genetic perspective on cross-talk and specificity in abiotic stress signaling in plants. Journal of Experimental Botany 55:395.
    [120] Liu J, Ishitani M, Halfter U, Kim C-S, Zhu J-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97: 3730-3734
    [121] Zhu J-K. (2002). Salt and drought stress signal transduction in plants. Animal Review of Plant Biology 53: 247-273
    [122] Quintero FJ, Ohta M, Shi H, Zhu, J-K, Pardo JM. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99: 9061-9066
    [123] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. (2000). Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499
    [124] Zhu J K, Hasegawa P M, Bressan R A. (1996). Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16: 253-277
    [125] Solomon A, Beer S, Waisel Y. (1994). Effects of NaCl on the Carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Plant Physiol 90: 198-204
    [126] Galinski E A. (1993). Compatible solutes of halophytic eubacterial: molecular principles, water solutes interaction, stress protection. Experientia 49: 487-496
    [127] Nelson D.E., Shen B., Bohnert H. J. (1998). Salinity tolerance mechanistic models, and the metabolic engineering of complex traits. Genet. Eng 20:153-176
    [128] Hare P.D., Cress W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79-102.
    [129] Jain R. K., Selvaraj G. (1997). Molecular genetic improvement of salt tolerance in plants. Biotech. Annu. Rev 3:245-267
    [130] Romero C, Bellees JM, Vaya JL, Serrano R, Francisco A. Macia C (1997). Expression of yeast trehalose-6-phosphate synthase gene in transgenic tobacoo plants: pleiothopic phenotypes include drought tolerance. Planta 201: 293-297.
    [1
    
    [131] Delauney A. J., et al. (1993). Cloning of omithine delta-aminotransferase cDNA from Vigna aconitifolia by trans- complementation in E. coil and regulation of proline biosynthesis. J Biol Chem 268:18673-8
    [132] Rhodes D, Handa S, Bressan RA. (1986). Effects of three stabilizing agents-proline, betaine and trehalose-on membrane phospholipids. Arch Biochem Biophys 245:134-143
    [133] Arakawa T, Timasheff SN (1985). The stabilization of proteins by osmolytes. Biophys J 47:411-414
    [134] Floyd RA, Nagy ZS (1984). Formation of long lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction. Biotech Bioohys Acta 790:1413-1418
    [135] Blum A, Ebercon A (1976). Genotypic responses in sorghum to drought stress. Ⅲ. Free proline accumulation and drought resistance. Crop Sci 16:428-431
    [136] Ahmad I, Hellebust JA (1988). The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two eurythaline microalgae. Plant Physiol 88:348-354
    [137] Leisinger T (1987). Biosythesis of proline, in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Edited by Neidhardt FC, Ingraham JL, Low K. B, Magasanik B, Schaechter M, and Ubarger HE. pp. 346-351. American Society for Microbilogy, Washington, DC.
    [138] Tokihiko Nanjo, Yoshu Yoshiba, Yukika Sanada, Keishiro Wada, Hirokazu Tsukaya, Yoshitaka Kakubari, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki (1998). Antisense suppression of proline biosynthesis results in an abnormal morphology of leaves and hypersensitivity to osmotic stress in Arabidopsis thaliana. 9th International Conference on Arabidopsis Research, University of Wisconsin-Madison, June 24-29
    [139] Hu CA, Delauney AJ, Verma DPS (1992). A Biofunctional Enzyme (△~1-Pyrroline-5-Carboxylate Synthetase) Catalyzes the First Two Steps in Proline Biosynthesis in Plants. Proc Natl Acad Sci USA 89: 9354-9358
    [140] Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995). Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation proline in Arabidopsis thaliana under osmotic stress. Plant J. 7:751-760
    [141] Savoure A, Jaouas S, Hua XJ, Ardiles W, Van Montagu M, Verbruggen N (1995). Isclation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13-19
    [142] Yoshu Yoshiba, Tomohiro Kiyosue, Kazuo Nakashima, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki (1997). Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant Cell Physiol. 38: 1095-1102
    [143] Ingram, J. and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:377-403
    [144] Garay-Arroyo, A., Colmenero-Flores, J. M., Garciarrubio, A. and Covarrubias, A. A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275:5668-5674
    [145] Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H. D. and Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 110:249-257
    [146] Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999). Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor. Nature Biotechnology 17:287-291
    [147] 吴东儒主编 1987.糖类的生物化学高等教育出版社274-278.
    [148] Peterbauer T, Richter A. (2001). Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 11: 185-197.
    
    [149] Keller F, Matile P. (1985). The role of the vacuole in storage and mobilization of stachyose in tubers of Stachys sieboldii. J Plant Physiol 119: 369-380
    [150] Hendrix DL. (1990). Carbohydrates and carbohydrate enzymes in developing cotton ovules. Physiol Plant 78:85-92
    [151] Madore M. (1992). Nocturnal stachyose metabolism in leaf tissues of Xerosicyos danguyi H. Humb. Planta 187:537-541
    [152] Santarius KA. (1973). The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113: 105-114
    [153] Hinesley LE, Pharr DM, Snelling LK, Funderburk SR. (1992). Foliar raffinose and sucrose in four conifer species: relationship to seasonal temperature. J Am Soc Hortic Sci 117: 852-855
    [154] Ashworth EN, Stirm VE, Volenec JJ. (1993). Seasonal variations in soluble sugars and starch within woody stems of Cornus sericea L. Tree Physiol 13: 379-388
    [155] Wiemken V, Ineichen K. (1993). Effect of temperature and photoperiod on the raffinose content in spruce roots. Planta 190:387-392
    [156] Bachmann M, Matile P, Keller F. (1994). Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Cold acclimation, translocation and sink to source transition. Discovery of chain elongation enzyme. Plant Physiol 105: 1335-1345
    [157] Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. (2002). Important roles of drought and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-426
    [158] Lin T-P, Huang N-H. (1994). The relationship between carbohydrate composition of some tree seeds and their longevity. J Exp Bot. 45: 1289-1294
    [159] Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC, Koornneef M. (2000). Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol 124: 1595-1604
    [160] Buitink J, Hemminga MA, Hoekstra FA. (2000). Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol 122:1217-1224
    [161] Gurusinghe S, Bradford KJ. (2001). Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. Seed Sci Res 11: 121-133
    [162] Xiao L, Koster KL. (2001). Desiccation tolerance of protoplasts isolated from pea embryos. J Exp Bot 364: 2105-2114
    [163] Downie B, Bewley JD. (2000). Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol Plant 110: 1-12
    [164] Hoekstra FA, Crowe JH, Crowe LM. (1991). Effect of sucrose on phase behavior of membranes in intact pollen of Typha latifolia L., as measured with Fourier transform infrared spectroscopy. Plant Physiol 97: 1073-1079
    [165] McDonald MB. (1999). Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27: 177-237
    [166] Koster KL, Leopold AC. (1988). Sugars and desiccation tolerance in seeds. Plant Physiol 88: 829-832
    [167] Lehle L, Tanner W. (1973). The function of myo-inositol in the biosynthesis of raffinose: purification and characterization of galactinol:sucrose 6-galactosyltransferase from Vicia faba seeds. Eur J Biochem 38: 103-110
    [168] Peterbauer T, Mucha J, Mayer U, Popp M, Glo ssl J, Richter A. (1999). Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase. Plant J 20:509-518
    
    [169] Peterbauer T, Richter A. (1998). Galactosylononitol and stachyose synthesis in seeds of adzuki bean: purification and characterization of stachyose synthase.Plant Physiol 117: 165-172
    [170] Peterbauer T, Mach L, Mucha J, Richter A. (2002). Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta 215: 839-846
    [171] Tanner W, Lehle L, Kandler O. (1967). myo-Inositol, a cofactor in the biosynthesis of verbascose. Biochem Biophys Res Commun 29: 166-171
    [172] Kandler O, Hopf H. (1982). Oligosaccharides based on sucrose (sucrosyl oligosaccharides). Encyclopedia of Plant Physiology {New Series) 13A: 348-383
    [173] Bachmann M, and Keller F. (1995). Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Inter- and intracellular compartmentation. Plant Physiol. 109: 991-998
    [174] Braun R, Keller F. (2000). Vacuolar chain elongation of raffinose oligosaccharides in Ajuga reptans. Aust J Plant Physiol 27: 743-746
    [175] Gilbert GA, Wilson C, Madore MA. (1997). Root-zone salinity alters raffinose oligosaccharide metabolism and transport in Coleus. Plant Physiol 115: 1267-1276
    [176] Liu J-J, Odegard W, de Lumen BO. (1995). Galactinol synthase from kidney bean cotyledon and zucchini leaf. Plant Physiol 109: 505-511
    [177] Liu J-J, Krenz DC, Glavez AF, de Lumen BO. (1998). Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci 134: 11-20
    [178] Takahashi R, Joshee N, Kitagawa Y. (1994). Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol Biol 26: 339-352
    [179] Liu J-J, Galvez AF, Krenz DC, de Lumen BO. (1997). Galactinol synthase (GS), a key enzyme in biosynthesis of raffinose family oligosaccharides (RFO): activation of enzyme activity and induction of gene expressionby cold and desiccation. Plant Physiol Suppl 114: 130
    [180] Sprenger N, Keller F. (2000). Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J21:249-25 8
    [181] Bruce Downie, Sunitha Gurusinghe, Petambar Dahal, Richard R. Thacher, John C. Snyder, Hiroyuki Nonogaki, Kyuock Yim, Keith Fukanaga, Vena Alvarado, and Kent J. Bradford (2003). Expression of a GALACTINOL SYNTHASE Gene in Tomato Seeds is Up-Regulated before Maturation Desiccation and Again after Imbibition wenever Radicle Protrusion Is Prevented. Plant Phsiol. 131:1347-1359.
    [182] Llorente F, Oliveros J C, Martinez-Zapater J M, Salinas J. (2000). A freezing-sensitive mutant of Arabidopsis, frsl, is a new aba3 allele. Planta. 211: 648-55
    [183] Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, et al. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBOJ15: 2331-42
    [184] Jacob T, Ritchie S, Assmann S M, Gilroy Koornneef M, L' eon-Kloosterziel K M, Schwartz S H, Zeevaart J A D. (1998). The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol. Biochem 36: 83-89
    [185] Thompson A J, Jackson A C, Symonds R C, Mulholland B J, Dadswell A R, et al. (2000). Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes overproduction of abscisic acid. Plant J23:363-74
    [186] Liotenberg S, North H, Marion-Poll A. (1999). Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol. Biochem 37:341-50
    [187] Seo M, Peeters A J M, Koiwai H, Oritani T, Marion-Poll A, et al. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad Sci USA 97:12908-13
    
    [188] Shinozaki K, Yamaguchi-Shinozaki K. (1997). Gene expression and signal transduction in water stress response. Plant Physiol 115: 327-34
    [189] Yamaguchi-Shinozaki K, Shinozaki K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-64
    [190] Xiong L, Ishitani M, Lee H, Zhu J K. (2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression.Plant Cell 13:2063-83
    [191] Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING-finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Gene Dev 15:912-24
    [192] Xiong L, Ishitani M, Lee H, Zhu J K. (1999). HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. Plant J 19:569-78
    [193]Xiong L, Ishitani M, Zhu J K. (1999). Interaction of osmotic stress, ABA and low temperature in the regulation of stress gene expression in Arabidopsis thaliana. Plant Physiol 119:205-11
    [194] Yokoi S, Bressan R A, Hasegawa P M. (2002). Salt stress tolerance of plants. JIRCAS Working Report 25-33
    [195] Laurent TC, Moore EC, Reichard P. (1964). Enzymatic synthesis of deoxyribonucleotides VI. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli. B. J. Biol. Chem. 239:3436-44
    [196] Holmgren A. (1985). Thioredoxin. Annu. Rev. Biochem. 54:237-71
    [197] Francoise Montrichard, Michelle Renard, Fatima Alkhalfioui, Frederic D. Duval, and David Macherel. (2003). Identification and Differential Expression of Two Thioredoxin h Isoforms in Germinating Seeds from Pea. Plant Physiol 132:1707-1715.
    [198] Christophe Laloi, Dominique Mestres-Ortega, Yves Marco, Yves Meyer, and Jean-Philippe Reichheld. (2004). The Arabidopsis Cytosolic Thioredoxin h5 Gene Induction by Oxidative Stress and Its W-Box-Mediated Response to Pathogen Elicitor. Plant Physiol. 134:1006-1016.
    [199] Meyer Y, Vignols F, Reichheld JP. (2002). Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347:394-402
    [200] Laloi C, Rayapuram N, Chartier Y, Grierienberger JM, Bonnard G, Meyer Y. (2001). Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98: 14144-14149
    [201] Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M. (2003). Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii.FEBS Lett 543: 87-92
    [202] Mestres-Ortega D, Meyer Y. (1999). The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240: 307-316
    [203] Ruelland E, Miginiac-Maslow M. (1999). Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci 4: 136-141
    [204] Schobert C, Baker L, Szederkenyi J, Grossmann P, Komor E, Hayashi H, Chino M, Lucas WJ. (1998). Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta 206: 245-252
    [205] Rivera-Madrid R, Mestres D, Marinho P, Jacquot J-P, Decottignies P, et al. (1995). Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana.Proc. Natl. Acad. Sci USA 92:5620-24.
    [206] Sahrawy M, Hecht V, Lopez-Jaramillo J, Chueca A, Chartier Y, Meyer Y. (1996). Intron position as an evolutionary marker of thioredoxins and thioredoxin domains.J. Mol. Evol 42:422-31.
    [207] Reichheld JP, Mestres-Ortega D, Laloi C, Meyer Y (2002). The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response. Plant Physiol Biochem 40: 685-690
    [208] Kobrehel K, Yee BC, Buchanan BB (1991). Role of the NADP/thioredoxin system in the reduction of alpha-amylase and trypsin inhibitor proteins. J Biol Chem 266: 16135-16140
    
    [209] Kobrehel K, Wong JH, Balogh A, Kiss F, Yee BC, Buchanan BB (1992). Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol 99: 919-924
    [210] Jiao J-A, Yee BC, Kobrehel K, Buchanan BB (1992). Effect of thioredoxinlinked reduction on the activity and stability of the Kunitz and Bowman-Birk soybean inhibitor proteins. J Agric Food Chem 40:2333-2336
    [211] Wong JH, Kobrehel K, Buchanan BB (1995). Thioredoxin and seed proteins. Methods Enzymol 252: 228-240
    [212] Besse I, Wong JH, Kobrehel K, Buchanan BB (1996). Thiocalsin: a thioredoxin-linked, substrate-specific protease dependent on calcium. Proc Nat Acad Sci USA 93: 3169-3175
    [213] Lozano RM, Wong JH, Yee BC, Peters A, Kobrehel K, Buchanan BB (1996). New evidence for a role for thioredoxin h in germination and seedling development. Planta 200: 100-106
    [214] Cho MJ, Wong JH, Marx C, Jiang W, Lemaux PG, Buchanan BB (1999). Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc Nat Acad Sci USA 96: 14641-14646
    [215] Marx C, Wong J-H, Buchanan BB (2003). Thioredoxin and germinating barley: targets and protein redox changes. Planta 216: 454-460
    [216] P. Schumann and J.-P. Jacquot (2000). plant Thioredoxin Systems Revisited. Annu. Rev. Plant Physiol. Plant Mol Biol. 51:371-400.
    [217] Collin, V., Issakidis-Bourguet, E., Marchand, C, Hirasawa, M., Lancelin, J.M., Knaff, D.B. and Miginiac-Maslow, M. (2003). The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J. Biol. Chem. 278: 23747-23752.
    [218] Dietz, K.J., Horling, F., K6nig, J. and Baier, M. (2002). The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation.J. Exp. Bot. 53: 1321-1329.
    [219] Goyer, A., Haslekas, C, Miginiac-Maslow, M., Klein, U., Le Marecdhal, P., Jacquot, J.-P. and Decottignies, P. (2002). Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii. Eur. J. Biochem. 269: 272-282.
    [220] Konig J, Baier M, Horling F, Kahmann U, Harris G, Schumann P, Dietz KJ (2002). The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci USA 99: 5738-5743
    [221] Buchanan BB (1991). Regulation of CO2 assimilation in oxygenic photosynthesis: the erredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1-9
    [222] Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988). An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266: 496-507
    [223] Eduardo A. Pagano, Ana Chueca and Julio Lopez-Gorge (2000). Expression of thioredoxins f and m, and of their targets fructose-1,6-bisphosphatase and NADP-malate dehydrogenase, in pea plants grown under normal and light/temperature stress conditions. Journal of Experimental Botany 51:1299-1307.
    [224] Reichheld JP, Mestres-Ortega D, Laloi C, Meyer Y (2002). The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response. Plant Physiol Biochem 40: 685-690
    [225] Lemaire S, Keryer E, Stein M, Schepens I, Issakidis-Bourguet E, Gerard-Hirne C, Miginiac-Maslow M, Jacquot JP.(1999). Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant physiol 120:773-8
    [226] Pnueli L, Liang H, Rozenberg M, Mittler R (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apxl)-deficient Arabidopsis plants. Plant J 34:187-203
    [2
    
    [227] Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33: 271-283
    [228] Allan AC, Lapidot M, Culver JN, Fluhr R (2001). An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol 126:97-108
    [229] Carmel-Harel O, Storz G (2000). Roles of the glutathione- and thioredoxin dependent reduction systems in the Escherichia coil and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54: 439-461
    [230] Nordberg J, Amer ES (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol Med 31:1287-1312
    [231] Mouaheb N, Thomas D, Verdoucq L, Monfort P, Meyer Y (1998). In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:3312-3317
    [232] Issakidis-Bourguet E, Mouaheb N, Meyer Y, Miginiac-Maslow M (2001). Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. Plant J25:127-135
    [233] Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y (1999). In vive characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chera 274:19714
    [234] Broin M, Cuine S, Eymery F, Rey P (2002). The plastidic 2-cysteine p(?) for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage (?) 14: 1417-1432
    [235] Broin M, Rey P (2003). Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol 132:1335-1343
    [236] Serrato AJ, Crespo JL, Florencio FJ, Cejudo FJ (2001). Characterization of two th(?)redoxins h with predominant localization in the nucleus of aleurone and scutellum cells of ge(?) Mol Biol 46: 361-371
    [237] Serrato AJ, Cejudo FJ (2003). Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392-399
    [238] Jean-Pierre Jacquot, Nicolas Rouhier, and Eric Gelhaye (2002). Redox control by Dithiol-Di(?)de Exchange in Plants. Ann. N. Y. Acad Sci. 973:508-528.
    [239] Bouchez D, Hofte H. (1998). Functional genomics in plants. Plant Physiol 118:725-732.
    [240] Somerville C, Somerville S.(1999). Plant functional genomics. Science 285:380-383.
    [241] Boguski, M. S. et al. (1993). dbEST-database for 'expressed sequence tags'. Nat. Genet 4:332-333
    [242] Rudd, S. et al. (2003). Sputnik: a database platform for comparative plant genomics. Nucleic Acids Res. 31:128-132
    [243] Adams, M. D, et al. (1991). Complementary DNA sequencing: expressed sequence tags and human(?) project. Science 252:1651-1656
    [244] Haas, B. J. et al. (2002). Full-length messenger RNA sequences greatly improve genome annotation. Genorae Biol. 3, RESEARCH0029.1—0029.12
    [245] Brendel, V. and Zhu, W. (2002). Computational modeling of gene structure in Arabidopsis thaliana. Plant Mol. Biol. 48:49-58
    [246] School, H. and Karlowski, W. (2003). Comparison of rice and Arabidopsis annotation. Curr. Opin. Plant Biol. 6:1-7
    [247] Boyer JS. (1982). Plant productivity and environment. Science 218:443-448.
    
    [248] Khush GS. (1999). Green revolution: preparing for the 21st century. Genome 42:646-655
    [249] Flowers TJ, Yeo AR. (1995): Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875-884.
    [250] Ribaut JM, Hosington DA, Deitsch JA, Jiang C, Gonzalez-de-Leon D. (1996). Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905-914.
    [251] Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hosington DA. (1997). Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887-896.
    [252] Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M. (1999). Genetic analysis of drought tolerance in maize by molecular markers. 1 .Yield components. Theor Appl Genet 99:280-288.
    [253] Holmberg N, Bulow L. (1998). Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61-66.
    [254] Smirnoff N. (1998). Plant resistance to environmental stress. Curr Opin Biotechnol 9:214-219.
    [255] Bohnert HJ, Sheveleva E. (1998). Plant stress adaptations - making metabolism move. Curr Opin Plant Biol:267-274.
    [256] Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106.
    [257] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K,. Shinozaki K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-response gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406.
    [258] Winicov I, Bastola DR. (1999). Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120:473-480.
    [259] Bouchez D,Hofte H. (1998). Functional genomics in plants. Plant Physiol 118:725-732.
    [260] Somerville C, Somerville S. (1999). Plant functional genomics. Science 285:380-383.
    [261] Fire, A., Xu, S.-Q., Montgomery,. M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806 - 811.
    [262] Fagard, M., Boutet, S., Morel, J.-B., Bellini, C. and Vaucheret, H. (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA 97:11650 - 11654
    [263] Ming-Bo Wang and Peter M Waterhouse. (2001). Application of gene silence in plants. Current opinion in Plant Biology 5:146-150
    [264] Meins F Jr. (2000). RNA degradation and models for post-transcriptional gene silencing. Plant Mol Biol 43:261-273
    [265] Waterhouse PM, Smith NA, Wang MB. (1999). Virus resistance and gene silencing: killing the messenger. Trends Plant Sci 4:452-457.
    [266] Cogoni, C. and Macino, G. (1999). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166 - 169
    [267] Catalanotto, C, Azzalin, G., Macino, G. and Cogoni, C. (2000). Gene silencing in worms and fungi. Nature 404:245
    [268] Dalmay, T., Hamilton, A., Rudd, S., Angell, S. and Baulcombe, D.C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543 - 553.
    
    [269] Dalmay, T., Horsefield, R., Braunstein, T.H. and Baulcombe, D.C. (2001). SDE3 encodes an RNA helicase required for posttranscriptional gene silencing in Arabidopsis. EMBO J 20:2069 - 2078
    [270] Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293 - 296
    [271] Smardon, A., Spoerke, J.M., Stacey, S.C., Klein, M.E., Mackin, N. and Maine, E.M. (2000). EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 10:169-178
    [272] Bernstein, E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363 - 366
    [273] Knight, S.W. and Bass, B.L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ- line development in Caenorhabditis elegans. Science 293:2269 - 2271
    [274] Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563 - 574.
    [275] Hutvagner, G. and Zamore, P.D. (2002). RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12:225- 232.
    [276] Hamilton, A.J. and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950 - 952.
    [277] Matzke, M., Matzke, A.J.M. and Kooter, J.M. (2001). RNA: guiding gene silencing. Science 293:1080 -1083.
    [278] Hannon, G.J. (2002). RNA interference. Nature 418:244 - 251
    [279] Mourrain, P., Bé clin, C, Elmayan, T., Feuerbach, F., Godon, C, Morel, J.-B., Jouette, D., Lacombe, A.-M.,Nikic, S., Picault, N., Ré moué, K., Sanial, M., Vo, T.-A. and Vaucheret, H. (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533 -542.
    [280] Waterhouse, P.M., Wang, M.-B. and Lough, T. (2001b). Gene silencing as an adaptive defence against viruses. Nature 411:834 - 842.
    [281] Baulcombe, D. (2002). RNA silencing. Curr Biol 12:R82 - R84
    [282] .McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709 - 713
    [283] Park, W., Li, J., Song, R., Messing, J. and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism inArahidopsis thaliana. Curr Biol 12:1484 - 1495
    [284] Schauer, S.E., Jacobsen, S.E., Meinke, D.W. and Ray, A. (2002). DICER-LIKE 1. blind men and elephants in 11:487-491.
    [285] Finnegan, E.J., Margis, R. and Waterhouse, P.M. (2003). Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE 1) mutant, a homolog of Dicer-1 from Drosophila. Curr Biol 13:236 - 240.
    [286] Palatnik, J.F., Allen, E., Wu, X., Schommer, C, Schwab, R., Carrington, J.C. and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425:257 - 263.
    [287] Tang, G., Reinhart, B.J., Bartel, D.P. and Zamore, P.D. (2003). A bioche mical framework for RNA silencing in plants. Gene Dev 17:49-63.
    [288] Waterhouse, P.M. and Helliwell, C.A. (2003). Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29 - 38.
    [289] Waterhouse, P.M., Smith, N.A. and Wang, M.-B. (1999). Virus resistance and gene silencing: killing the messenger. Trend Plant Sci 4:452 - 457.
    [290] B6 clin, C, Boutet, S., Waterhouse, P. and Vaucheret, H. (2002). A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12:684 - 688.
    
    [291] Waterhouse, P.M., Graham, M.W. and Wang, M.-B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959 -13964.
    [292] Stam, M, de Bruin, R., van Blokland, R., van der Hoorn, R.A.L., Mol, J.N.M. and Kooter, J.M. (2000). Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci. Plant J 21:27 - 42.
    [293] Timmons, L. and Fire, A. (1998) Specific interference by ingested dsRNA. Nature 395:854.
    [294] Chuang, C.-F. and Meyerowitz, E.M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985 - 4990.
    [295] Smith, N.A., Singh, S.P., Wang, M.-B., Stoutjesdijk, P.A, Green, A.G. and Waterhouse, P.M. (2000). Total silencing by intronspliced hairpin RNAs. Nature 407:319 - 320.
    [296] Ratcliff, F., Harrison, B.D. and Baulcombe, D.C. (1997). A similarity between viral defense and gene silencing in plants. Science 276:1558 - 1560.
    [297] Kumagai, M.H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K. and Grill, L.K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679 - 1683.
    [298] Baulcombe, D.C. (1999). Fast forward genetics based on virusinduced gene silencing. Curr Opin Plant Biol 2:109- 113.
    [299] Stoutjesdijk, P.A., Singh, S.P., Liu, Q., Hurlstone, C.J., Waterhouse, P.A. and Green, A.G. (2002). hpRNA-mediated targeting of Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723- 1731.
    [300] Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D.P., Zipperlen, P. and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231 - 237.
    [301] Wesley, S.V., Helliwell, C.A., Smith, N.A., Wang, M.-B., Rouse, D.T., Liu, Q., Gooding, P.S., Singh, S.P., Abbott, D., Stoutjesdijk, P.A., Robinson, S.P., Gleave, A.P., Green, A.G. and Waterhouse, P.M. (2001). Construct design for efficient, effective and high-throughput gene silencingin plants. Plant J21:581 -590.
    [302] Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C, Heller, C, Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Horn, E., Karnes, M., Mulholland, C, Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C. and Ecker, J.R. (2003). Genome-wide insertionai mutagenesis of Arabidopsis thaliana. Science 301:653 - 657.
    [303] Lacomme, C, Hrubikova, K. and Hein, I. (2003). Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J 34:543 - 553.
    [304] Lipardi, C, Wei, Q. and Paterson, B.M. (2001). RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297 - 307.
    [305] Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H.A. and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465 - 476.
    [306] Himber, C, Dunoyer, P., Moissiard, G., Ritzenthaler, C. and Vionnet, O. (2003). Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO 722:4523 - 4533.
    [307] Metre, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A. and Matzke, A.J.M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBOJ 19:5194 - 5201.
    [308] Guo, H.-S., Fei, J.-F., Xie, Q. and Chua, N.-H. (2003). A chemicalregulated inducible RNAi system in plants. Plant J 34:383 - 392.
    
    [309] Abbott, J. C., Barakate, A., Pinc on, G., Legrand, M., Lapierre, C., Mila, I., Schuch, W. and Halpin, C. (2002). Simultaneous suppression of multiple genes by single transgenes. Downregulation of three unrelated lignin biosynthetic genes in tobacco. Plant Physiol 128:844-853.
    [310] Pryer, K. M., Schneider, H., Zimmer, E. A. and Banks, J. A. (2002). Deciding among green plants for whole genome studies. TrendPlant Sci 7:550-554.
    [311] Stephen Rudd (2003). Expressed sequence tags:alternative or complement to whole genome sequences? Trends in Plant Science. 8:321-329
    [312] R. A. Bressan, C. Q. Zhang, H. Zhang, P.M. Hasegawa, H. J. Bohnert, J. K. Zhu. (2001). Learning from the Arabidopsis experience. The next genesearch paradigm, Plant Physiol. 127: 1354-1360.
    [313] J. K. Zhu. (1999). Understanding and improving plant tolerance to salinity stress. AgBiotechNet 1:1-5
    [314] L. Zhang, X. L. Ma, Q. Zhang, C. L. Ma, EP. Wang, Y. E Sun, Y. X. Zhao, H. Zhang. (2001). Expressed sequence tags from a NaCl-Treated Suaeda Salsa cDNA library, Gene 267:193-200.
    [315] Xiong, K. S. Schnmaker, J. K. Zhu. (2002). Cell signaling for cold, drought, and salt stresses, Plant Cell 14: 165-183
    [316] L. M. Xiong, J. K. Zhu. (2001). Abiotic stress signal transduction in plants: Molecular and geneticper spectives, Physiol. Plant. 112:152-166.
    [317] M. Koizumi, K. Yamaguchi-Shinozaki, H. Tsuji, K. Shinozaki. (1993). Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175-82
    [318] 王宝山,赵可夫(1995).大麦中片中Na~+、K~+提取方法的比较.植物生理学通讯 31:50-52
    [319] Northwest Agriculture University(西北农业大学) (1985). Experimental Guidebook to basic Biochemistry (基础生物化学实验手册). Xi'an: Shnnxi Science and Technology Press: 51-53.
    [320] Trolly W, Lindaley J. (1955). Proline content determination in plant tissues.J Biol Chem 215:655-660
    [321] Plant physiology and Biochemistry Research Room at Northwest Agriculture University(西北农业大学植物生理和生化研究室) (1986). Experimental Guidebook to Plant physiology (植物生理实验指导). Xi'an: Shanxi Science and Technology Press :122-123.
    [322] Zhang Zh-Q(张振清) (1985). Determination of soluble sugars in plant materials In:Shanghai Society of Plant physiology ed. Experimental handbook for plant physiology (植物生理学实验手册). Shanghai: Shanghai Science and Technology Press: 134-138
    [323] 林植芳,李双顺.林桂珠,孙谷畴,郭俊彦(1984).水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系.植物学报26:605-615
    [324] Gnsu Inan, Quan Zhang, Pinghua Li, Zenglan Wang, Ziyi Cao, Hui Zhang, Changqing Zhang, Tanya M. Quist, S. Mark Goodwin, Jianhua Zhu, Huazhong Shi, Barbara Damsz, Tarif Charbaji, Qingqiu Gong, Shisong Ma, Mark Fredricksen, David W. Galbraith, Matthew A. Jenks, David Rhodes, Paul M. Hasegawa, Hans J. Bohnert, Robert J. Joly, Ray A. Bressan, and Jian-Kang Zhu. (2004). Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles Plant Physiology 135:1718-1737
    [325] Zeng-lan Wang~(a,1) Ping-hua Li~(a,1), Mark Fredricksen~b, Zhi-zhong Gong~c, Kim, C. S~d, Changquing Zhang~d, Hans J. Bohnert~b, Jian-Kang Zhu~d, Ray A. Bressan~e, Paul M. Hasegawa~e, Yan-xiu Zhao~a, Hui Zhang~(a,*) (2004). Expressed Sequence Tags from Thellungiella halophila, a New Model to Study Plant Salt-tolerance. Plant Science 166:609-616.
    [326] Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18:185-193.
    [327] Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning: A laboratory Manual, 2nd Edn, Cold Spring Harbor. NY: Cold Spring Laboratory Press.
    
    [328] Bradford M M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
    [329] Holmgren, A. (1979). Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem 254: 9627-9632.
    [330] Clough, S. J. Bent. AF. (1998). Floral dip: A simplified method for Agrobacterium mediated Arabidopsis thaliana. Plant J 16: 735-743
    [331] Lütcke H A, Chow K C, Mickel F S, Moss K A, Kern H F, Scheele G A. (1987). Selection of AUG initiation codons differs in plants and animals. EMBO J6: 43-48
    [332] Rothnie HM, Reid J, Hohn T. (1994). The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA3'-end formation in plants. EMBO J13: 2200-2210
    [333] Girdhar K. Pandey, Yong Hwa Cheong, Kyung-Nam Kim, John J. Grant, Legong Li, Wendy Hung, Cecilia D'Angelo, Stefan WeinJ, Jorg Kudla, and Sheng Luan. (2004). The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis. The Plant Cell 16:1912-1924

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700