宜昌陡山沱组碳酸盐岩岩石磁学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质时期碳酸盐岩分布面积很广。其中,碳酸盐矿物本身及其微量元素和同位素特征与碳酸盐岩形成的环境密切相关,较详细而准确地记录了古温度、古降水、古盐度以及古生产力等多方面环境要素的变化历史。这些变化也反映在磁性矿物组合和岩石磁性变化方面。因而,利用岩石磁学方法研究碳酸盐岩剖面所记录的古环境变化是一个重要的研究方向。但由于地质作用的复杂性,影响磁参数变化的因素很多,因而,对磁参数影响因素的研究是环境磁学解释的重要前提。
     本次研究对陡山沱组第三岩性段上部20.72m的地层连续采样,制作环境磁学样品2562个。样品的岩石磁学测量结果表明,11.18m—11.65m为一段磁性增强的异常层,其磁化率(χ)、非磁滞剩磁磁化率(χARM)、饱和等温剩磁(SIRM)等均高于其上下层位的样品。而且,该异常层上下层段的磁性特征不同,S-ratio、等温剩磁获得曲线及其退磁曲线的测量表明,异常层之下的硬磁性矿物比异常层之上的硬磁性矿物含量多。
     根据野外和薄片的镜下观察,按照碳酸盐岩结晶粒度的大小,将陡山沱组第三岩性段中上部碳酸盐岩分为粉屑碳酸盐岩和砂屑碳酸盐岩两类。两类碳酸盐岩的非磁滞剩磁(ARM)等磁学参数与碳酸盐颗粒的结晶粒度有很好的相关性。风化作用使样品在King Plot上的投影位置向右下方偏移,总体呈现ARM减小的趋势。
     粉晶X-射线衍射结果表明,宜昌陡山沱组第三岩性段中上部碳酸盐岩中的矿物主要为方解石、铁白云石、石英、钾长石和少量黄铁矿。对部分样品进行了弱酸溶解处理。溶解之后,样品的磁化率随温度变化曲线(χ-T曲线)及粉晶X-射线衍射结果能很好地揭示黄铁矿的存在。但溶解之前,样品的χ-T曲线不能揭示黄铁矿的存在,推测可能样品中大量的方解石、铁白云石等抗磁性矿物,掩盖了碳酸盐岩中铁硫化物的热磁特征。
Carbonate rocks distribute widely through geological history. The mineralogy of carbonate rocks and the character of their trace elements and isotopic element are controlled by the carbonate depositional environment. Thus carbonate sediment may well preserve paleoenvironmental changes, including paleotemperature, paleo-precipitation, paleosalinity, paleoproductivity and so on. These changes can also be traced by the character of magnetic composition in the carbonate sediment and thus its magnetism. Therefore, it is potentially valuable to study a carbonate profile by using rock magnetic methods. But because of the complexity of geological processes, various factors may lead to changes of rock magnetic parameters. It is necessary to find out how these factors effect changes of magnetic parameters before deciphering paleoenvironmental changes.
     20.72 meters carbonate profile was sampled continuously from the upper part of the third member of Doushantuo Formation. 2562 specimens were made for rock magnetic measurements. The profile of magnetic parameters indicates that there exists a special magnetic-enhanced section (SMES) of 11.18~11.65m. Values of mass susceptibility (χ), anhysteretic remanent magnetization susceptibility (χARM) and saturation isothermal remanent magnetization (SIRM) of the SMES are higher than that of the other sections. The magnetic character of the section upon the SMES (the upper section) are different from that of the section below the SMES (the under section). Variations of S-ratio, isothermal remanent magnetization acquision curve and its demagnetic curve suggest that more hard magnetic minerals exist in the upper section than in the under section.
     Two types of carbonate, find-grained and coarse-grained, can be recognized combined with the investigation in the field and the thin observation. Magnetic measurements show that crystal size of carbonate grains correlates well with values of magnetic parameters such as ARM. Weathering diminishes ARM value of specimens. Thus weathered specimens distribute in the under area in King Plot.
     X-ray diffraction spectrum shows the carbonate rocks under study mainly contain calcite, ankerite, quartz, feldspar and a little pyrite. In order to get more detailed mineralogical information, several specimens were selected to be dissolved with 10% HCl. Measurements of temperature-dependence susceptibilities (χ-T curves) and results of X-ray diffraction of the acid-dissolved specimens suggested the existence of pyrite. However, these pyrites can not be discovered in the specimens before dissolved from theχ-T curves. It is supposed that diamagnetic minerals, that are carbonate and ankerite, may cover the mineralogical changes of pyrite during heating.
引文
[1] Alvarenga D, Santos C J S, Dantas R V. C-O-Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambrian Research, 2004, 131: 1~21
    [2] An Z S, Porter S C, Zhou W, et al. Episode of strengthened summermonsoon climate of Younger Dryas age on the Loess Plateau of central China. Quaternary Research, 1993, 39: 45~54
    [3] Andrew P R, Richard W. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 2005, 231: 263~277
    [4] Bernasconi S M, Dobson J, McKenzie J A, et al. Preliminary isotopic and paleomagnetic evidence for Younger Dryas and Holocene climate evolution in NE Asia. Terra Nova, 1997, 9: 246~250
    [5] Chave K E. Recent carbonate sediments: an unconventional view. Journal Geological Education, 1967, 15: 200~214
    [6] Chen F H, Bloemendal J, Wang J M, et al. High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130: 323~335
    [7] Cisowski S. Interacting vs Non-interacting single domain behavior in natural and synthetic samples. Physics of The Earth and Planetary Interiors, 1981, 26: 56~62
    [8] Dean W E. The carbon cycle and biogeochemica dynamics in lake sediments. Journal of Paleolimnology, 1999, 21: 375~393
    [9] Dekkers M J, Environmental magnetism: an introduction, Geologie en Mijnbouw, 1997, 76: 163~192
    [10] Deng C L, Liu Q S, Wang W, et al. Chemical overprint on the natural remanent magnetization of a subtropical red soil sequence in the Bose Basin, southern China. Geophysical Reasearch Letters, 2007, 34, L22308, doi:10.1029/2007Gl031400
    [11] Deng C L, Natasa J V, Kenneth L, et al. Mineral magnetic variationof the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. Journal of Geophysical Reasearch, 2005, 110, B03103, doi: 10.1029/2004JB003451
    [12] Deng C L, Wang Q, Zu R X, et al. Magnetostratigraphic age of the Xiantai Paleolithic site in the Nihewan Basin and implications for early human colonization of Northeast Asia. Earth and Planetary Science Letters, 2006, 244: 336~348
    [13] Dominique L, Ralf E, Agnes K, et al. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry,and thermomagnetic methods. Journal of Geophysical Research, 2006, 111, B12S28, doi: 10.1029 /2006JB004591
    [14] Dunlop D J, ?zdemir ?zden. Rock magnetism: fundamentals and frontiers. CambridgeUniversity Press, 1997, 1~573
    [15] Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 2002a, 107, EPM 4-1-22
    [16] Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rock, sediments and soils. Journal of Geophysical Research, 2002b, 107, EPM 5-1-15
    [17] Ellwood B B, Crick R E, García-Alcalde F J L. Global correlation using magnetic susceptibility data from Lower Devonian rocks. Geology, 2001, 29: 583~586
    [18] Ellwood B B, Crick R E, Hassani A E, et al. The magneto-susceptibility event and cyclostratigraphy (MSEC) method applied to marine rocks: Detrital input versus carbonate productivity. Geology, 2000, 28: 1135~1138
    [19] Ellwood B B, Crick R E, Hassani A E. The magneto-susceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of De-vonian rocks from Anti-Atlas Morocco. American Association of Petroleum Geologists Bulletin , 1999, 83: 1119~1134
    [20] Frankes L A, Sun J Z. A carbon isotope record of the upper Chinese loess sequence: Estimates of plant types during stadial and interstadials. Palaeogeography, Palaeo- climatology, Palaeoecology, 1994, 108: 183~189
    [21] Gu Z Y. The carbonate isotopic composition of the loess-paleosol seuqence and its implication of paleoclimatic change. Chinese Science Bulletin, 1991, 36(20): 1979~1983
    [22] Guo Q J, Shields, Graham A, et al. Trace element chemostratigraphy of two Ediacaran Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194~216
    [23] Guo Z, Liu T, Fedoroff N, et al. Climate extremes in loess of China coupledwith the strength of deep-water formation in the North Atlantic. Global and Planetary Change, 1998, 18: 113~128
    [24] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China. Nature, 1982, 300: 431~433
    [25] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth. Science, 1998, 281: 1342~1346
    [26] Huang S J. Carbon and Sr isotope of late Palaeozoic marine carbonates in the upper Yangtze paltform, southwest China. Acta Geologica Sinica, 1997, 17(3): 282~292
    [27] Hunt A, Jones J, Oldfield F. Magnetic measurements and heavy metals in atmospheric particulated of anthropogenic origin. The Science of the Total Environment, 1984, 33: 129~139
    [28] Jiang G Q, Kennedy M J, Christie-Blick N, et al. Stratigraphy, Sendimentary structures, andTextures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 2006, 76: 978~995
    [29] Jiang G Q, Sohl L E. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications. Geology, 2003, 31: 917~920
    [30] Jing G Q, Kaufman A J, Nicholas C, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 2007, 261: 303~320
    [31] Lanci L, Hirt A M, Lowrie W, et al. Mineral-magnetic record of Late Quaternary climatic changes in a high Alpine lake. Earth and Planetary Science Letters, 1999, 170: 49~59
    [32] Leonardo S, Patrizia M. Environmental magnetism of Antarctic Late Pleistocene sediments and interhemispheric correlation of climatic events. Earth and Planetary Science Letters, 2001, 192: 65~80
    [33] Leonardo S, Pierre R, Mike J, et al. Inter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurements. Physics of the Earth and Planetary Interiors, 2003, 138: 25~38
    [34] Lister G S, Kelts K, Chen K, et a1. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the last Pleistonce. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 84: 141~162
    [35] Liu Q S, Michael J J, Subir K B, et al. Determination of magnetic carriers of the characteristic remanent magnetization of Chinese loess by low-temperature demagnetization. Earth and Planetary Science Letters, 2003, 216: 175~186
    [36] Liu Q S, Roberts A P, Torrent J, et al. What do the HIRM and S-ratio really measure in environmental magnetism? Geochemistry Geophysics Geosystems, 2007, 8, Q09011, doi:10.1029/2007GC001717
    [37] Maher B A, Thompson R, Hounslow M W. Introduction. In: Maher B A, Thompson R, Quaternary Climates, Environments and magnetism. Cambridge: Cambridge University Press, 1999
    [38] Nowaczyk N R. Detailed study on the anisotropy of magnetic susceptibility of arctic marine sediments. Geophysical Journal International, 2003, 152(2): 302~317
    [39] Pauline P K, Mark J D, David H. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent. Earth and Planetary Science Letters, 2001, 189: 269~276
    [40] Peck J A, King J W, Gibson C. Late Cretaceous precessional cycles in double time: A warm-Earth Milankovitch response. Science, 1993, 261: 1431~1434
    [41] Peters C, Thompson R. Magnetic identification of selected natural iron oxides and sulphides. Journal of Magnetism and Magnetic Materials, 1998, 183: 365~374
    [42] Petrovsky E, Kapicka A. On determination of the Cruie point from thermomagnetic curves.Journal of Geophysical Research, 2006, 111, B12S27, doi:10.1029/2006JB004507
    [43] Porter S C, An Z S. Correlation between Climat events in the North Alantic and China during the last glacial. Nature, 1995, 375: 305~308
    [44] Robinson S G. The late Pleistocene paleoclimate record of North Atlantic deep-sea sediments revealed by mineral magnetic measurements. Physics of Earth and Planetary Interior, 1986, 42: 22~47
    [45] Spssov S, Egli R, Heller F, et al. Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophysical Journal International, 2004, 159: 555~564
    [46] Stage M. Magnetic susceptibility as carrier of a climatic signal in chalk. Earth and Planetary Science Letters, 2001, 188: 17~27
    [47] Stage M. Signal analysis of cyclicity in Maastrichtian pelagic chalks from the Danish North Sea. Earth and Planetary Science Letters, 1999, 173: 75~90
    [48] Thompson R, Oldfield F. Environmental magnetism. London: Allen & Unwin, 1986, 1~227
    [49] Williamson D, Jelinowska A, Kissel C, et al. Mineral-magnetic proxies of erosion/oxidation cycles in tropical maar-lake sediments (Lake Tritrivakey, Madagascar): paleoenvironmental implications. Earth and Planetary Science Letters, 1998, 155: 205~219
    [50] Wu H C, Zhang S H, Jiang G Q. Magnetic susceptibility variations of the Edicaran cap carbonates in the Yangtze platform and their implications for paleoclimate. Chinese Journal of Oceanology and Limnology, 2005, 23: 291~298
    [51] Xiao S H, Hagadorn J W, Xie G, et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, south China. journal of paleontology, 2002, 76: 347~376
    [52] Xiao S H, Hagadorn J W, Hou C, et al. Rare helical spheroidal fossils from the Doushantuo Lagerstatte: Edacaran animal embryos come of age? Geology, 2007, 35: 115~118
    [53] Yongjae Yu, Dunlop D J. Decay-rate dependence of anhysteretic remanence: Fundamental origin and paleomagnetic application. Journal of Geophysical Research, 2003, 108, NO. B12, 2550, doi: 10.1029/2003JB002589
    [54] Zhang S H, Jiang G Q, Song B, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473~476
    [55] Zhang S H, Wang X L, Zhu H. Magnetic susceptibility variations of carbonates controlled by sea-level changes. Science in China (Series D), 2000, 43(3): 265~276
    [56] Zhang X L, Jiang L Z. Research on diagenesis of Cambrian shoal facies carbonate rocks in the Xiadong area, Hubei Provience. Acta geologica Sinica, 2001, 75(2): 161~174
    [57] Zhang Y, Yin L, Xiao S H, et al. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Journal of Paleontology, 1998, 50: 1~52
    [58] Zheng H B. The magnetic properties of particle sized samples from the Luochuan loess section: evidence for pedogenesis. Physics of Earth and Planetary Interior, 1991, 68:250~258
    [59] Zhou C M,Xiao S H. Ediacaran δ13C chemostratigraphy of South China. Geology, 2007, 237: 89~108
    [60] 陈敬安,万国江,陈振楼,等. 洱海沉积物化学元素与古气候变化. 地球化学,1999, 28(6):562~570
    [61] 陈明,万方,尹福光. 滇黔桂地区晚震旦世陡山沱期构造-层序岩相古地理. 沉积与特提斯地质,2001,21(1):11~25
    [62] 邓成龙,袁宝印,胡守云,等. 环境磁学某些研究进展评述. 海洋地质与第四纪地质,2000,2:93~101
    [63] 邓成龙,朱日祥,袁宝印. 黄土高源全新世风成沉积的岩石磁学性质及其古气候意义. 海洋地质与第四纪地质,2002,22:37~45
    [64] 丁仲礼,任剑璋,刘东生,等. 晚更新世季风-沙漠系统千年尺度的不规则变化及其机制. 中国科学(D),1996,26(5):385~391
    [65] 郭刚,童金南,张世红,等. 安徽巢湖三叠世印度期旋回地层研究. 中国科学 D 辑,2007,37(12):1571~1578
    [66] 郭庆军,刘从强,Harald Strauss,等. 贵州瓮安陡山沱组剖面碳同位素生物地球化学研究. 矿物岩石,2005,25(2):75~80
    [67] 何镜宇,孟祥化. 沉积岩和沉积相模式及建造. 北京:地质出版社,1987
    [68] 何学贤,彭子成,王兆荣. 珊瑚的古环境信息研究进展. 地球科学进展,1999,14(5):505~512
    [69] 候红明,王保贵. 南海北部沉积物磁化率对古气候非线性变化的响应. 热带海洋,1996,15(3):1~5
    [70] 胡守云,王苏民,Appel E,等. 呼伦湖湖泊沉积物磁化率变化的环境磁学机制. 中国科学 D 辑,1998,28(4):334~339
    [71] 姜立君,张卫华,高慧,等. 贵州新元古代陡山沱期碳酸盐岩帽沉积地球化学特征. 地理学报,2004,25(2):170~176
    [72] 姜月华,殷鸿福,王润华. 环境磁学理论、方法和研究进展[J]. 地球学报,2004,25(3):357~362
    [73] 蒋干清,史晓颖,张世红. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩. 科学通报,2006,51(10):1121~1138
    [74] 介冬梅,吕金福,李志民,等. 大布苏湖全新世沉积岩心的碳酸盐含量与湖面波动. 海洋地质与第四纪地质,2001,2l(2):77~82
    [75] 李海燕,张世红,方念乔,等. 孟加拉湾 MD77-181 岩芯磁学记录及其古环境意义. 科学通报,2006,51(18):2166~2174
    [76] 李海燕,张世红. 黄铁矿加热过程中的矿相变化研究—基于磁化率随温度变化的特征分析. 地球物理学报,2005,48:1384~1391
    [77] 李平,彭子成,洪阿实,等. 福建宁化天鹅洞石笋年代和古温度. 人类活动与岩溶环境,1994:133~139
    [78] 李荣西,魏家庸,杨卫东,等. 用~(87)Sr/~(86)Sr 研究海平面变化与全球对比问题. 地球科学进展,2000,15(6):729~733
    [79] 李铁刚,苍树溪,刘振夏,等. 冲绳海槽末次冰消期浮游有孔虫δ13C 的宽幅低值事件.中国科学,2002,47(4):298~302
    [80] 李忠雄,陆永潮. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理. 古地理学报,2004,6(2):151~162
    [81] 刘东生. 黄土与环境. 北京:科学出版社,1985
    [82] 刘鸿允. 中国震旦系. 北京:科学出版社,1991
    [83] 潘永信. 热处理菱铁矿的岩石磁学性质:[博士学位论文],北京:中科院地质与地球物理研究所,1998
    [84] 沙庆安. 混积岩—滇东震旦系陡山沱组碎屑白云岩的成因. 古地理学报,2001,3(4):56~61
    [85] 孙知明,杨振宇,裴军令,等. 华南陡山沱期古地理环境及“雪球地球”研究新进展. 地质通报,2004,23:728~731
    [86] 田莉丽,邓成龙. 岩石的磁学性质. 地球物理学进展,2001,16:109~117
    [87] 王苏民,冯敏. 内蒙古岱海湖泊环境变化与东南季风强弱变化的关系. 中国科学(B),1991,2l(7):759~768
    [88] 王先锋,刘东生. 洞穴碳酸盐微层研究及其发展方向. 地球科学进展,1999,14(3):286~291
    [89] 王约,王训练. 黔东北新元古代陡山沱期宏体藻类的固着器特征及其沉积环境意义. 微体古生物学报,2006,23(2):154~164
    [90] 旺罗,刘东生,吕厚远. 污染土壤的磁化率特征. 科学通报,2000,45(10): 1091~1094
    [91] 熊国庆. 贵州梵净山西北陡山沱组底部白云岩帽地球化学特征及其成因探讨. 沉积与特提斯地质,2006,26(2):7~11
    [92] 颜佳新,杜远生. 冰川发育对赤道地区碳酸盐沉积环境和沉积作用的影响. 地质科技情报,1994,13(3):48~56
    [93] 杨晓强,李华梅. 泥河湾盆地沉积物磁化率及粒度参数对沉积环境的响应. 沉积学报,1999,17:763~768
    [94] 叶连俊. 生物有机质成矿作用. 北京:海洋出版社,1996,1~283
    [95] 喻美艺,何明华. 贵州江口震旦系陡山沱组沉积层序和沉积环境分析. 地质科技情报,2005,24(3):38~42
    [96] 袁训来,王启飞. 贵州瓮安磷矿晚前寒武纪陡山沱期的藻类化石群. 微体古生物学报,1993,10(4):409~420
    [97] 袁训来,肖书海. 陡山沱期生物群—早期动物辐射前夕的生命. 中国科学技术大学出版社,2002,17~128
    [98] 张春霞,黄宝春,李震宇,等. 高速公路附近树叶的磁学性质及其对环境污染的指示意义. 科学通报,2006,51(12):1459~1468
    [99] 张春霞,黄宝春,骆仁松,等. 钢铁厂附近树木年轮的磁学性质其环境意义. 第四纪研究,2007,27(6):1092~1104
    [100] 张恩楼,沈吉,王苏民,等. 青海湖近 900 年来气候环境演化的湖泊沉积记录. 湖泊科学,2002,14(1):32~38
    [101] 张彭熹,张保珍,钱桂敏,等. 青海湖全新世以来古环境参数的研究. 第四纪研究,1994,3:225~238
    [102] 张启锐. 震旦系陡山沱组的底与待建的末前寒武系的下界. 地质科学,1994,29(1):96~99
    [103] 张世红,李海燕. 地磁学、古地磁学和环境磁学的研究新进展—第 32 届国际地质大会学科总结和评述. 现代地质,2004,18(4):415~423
    [104] 张世红,王训练,朱鸿. 碳酸盐岩磁化率与相对海平面变化的关系—黔南泥盆-石炭系例析. 中国科学(D 辑),1999,29(6):558~566
    [105] 张同钢,储雪蕾,张启锐,等. 陡山沱期古海水的硫和碳同位素变化. 科学通报, 2003,48(8):850~855
    [106] 张振克,吴瑞金. 岱海湖泊沉积物频率磁化率对历史时期环境变化的反映. 地理研究,1998,17(3):297~302
    [107] 章程,袁道先. 洞穴滴石石笋与陆地古环境记录研究进展. 地球科学进展,2001,16(3):374~382
    [108] 赵澄林,朱筱敏. 沉积岩石学. 北京:石油工业出版社,2000
    [109] 赵霞. 从氧、碳同位素组成看蓟县元古宙碳酸盐岩特征. 沉积学报,1995,13(3):46~53
    [110] 郑妍,张世红. 北京市区尘土与表土的磁学性质及其环境意义. 科学通报,2007,52(20):2399~2406
    [111] 周传明,陈哲,薛耀松. 江西上饶朝阳磷矿新元古代陡山沱期微体化石新材料. 古生物学报,2002,41(2):178~192
    [112] 周传明,解古巍,肖书海. 湖北宜昌樟村坪陡山沱组微体化石新资料. 微体古生物学报,2005,22(3):217~224
    [113] 周传明,袁训来,肖书海. 扬子地台新元古代陡山沱期磷酸盐化生物群. 科学通报,2002,2:1734~1739

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700