NiO及相关体系的奇异物性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于d(f)电子的强关联效应,过渡金属氧化物表现出十分丰富有趣的物理化学性质,强电子关联体系的物性研究也因此受到人们的广泛关注。由于d(f)电子的强局域化特征,基于单电子近似的密度泛函理论(DFT)计算不能准确描述强电子关联体系。另一方面,尽管DFT计算能准确地预测常规体系的微观性质和过程,但实际材料的各种性能是由各种微观过程的统计平均及其相互作用来决定。因此为了从原子尺度去预测真实材料的物性,必须运用新的方法,并结合DFT计算和其它理论如热力学来实现对材料的多尺度模拟。
     本论文运用GGA+U方法考虑强电子关联效应,并结合海森堡自旋哈密顿量、热力学等方法对典型强电子关联材料NiO及类似氧化物的高压、缺陷、以及表面等性质进行了深入研究。同时为了清楚认识Ni到NiO的演化过程,本文还利用第一性原理热力学对Ni(110)表面氧化进行了多尺度模拟。研究结果极好地解释了系列实验,并阐明了相关机理。论文主要包括以下内容:
     1.首先基于GGA和GGA+U方法研究NiO在高压下的结构畸变和电子结构。计算发现GGA和早期的LDA计算都不能准确预测NiO的高压畸变,而运用GGA+U方法考虑强关联效应后,计算结果与实验极好地吻合。同时,我们还计算了FeO、MnO在高压下的结构畸变。结果表明,只有考虑强电子关联效应,才能合理描述3d过渡金属单氧化物的高压畸变。
     2.基于海森堡自旋哈密顿量和GGA+U计算,研究了NiO在高压下的磁交换相互作用,并由此得出了尼尔温度,结果表明Bloch法则在NiO中成立。计算极好地解释了实验结果,并分析讨论了NiO的各种物性随压强变化的微观机理。
     3.基于GGA+U方法,研究了不同条件下NiO的空位稳定性及其诱发的磁性。结果表明,化学势和费米能都对NiO中的空位稳定性起着非常重要的作用,NiO中的本征p型电导源自于金属空位。另外,计算还发现在NiO中引入不同离化态的镍离子空位,体系会表现出半金属铁磁或半金属反铁磁性。这种奇特的磁行为能通过缺陷的自旋三态构型来理解。
     4.结合热力学模型和第一性原理计算,系统研究了极性NiO(111)和MgO(111)表面的稳定性,得到了不同温度和压强下最稳定的表面结构,并与不同的实验进行对比。结果表明重构是极性表面稳定的重要因素,而氧化学势即温度和压强效应在极性表面的稳定性中也发挥着十分重要的作用。
     5.为了从原子尺度研究镍表面的氧化过程,我们首先运用第一性原理研究氧在Ni(110)表面的吸附过程,得到了氧吸附在重构以及非重构基底时的最稳定结构,并着重分析吸附前后体系的结构、电子结构以及磁性的变化。另外,还运用第一性原理热力学对Ni(110)表面的氧化过程进行了多尺度模拟,得到了不同条件下O/Ni(110)体系的表面相图。所得结果极好地解释了实验上存在的争议。
     6.最后,基于第一性原理研究了新型Ni基超导体LaNiPO的电子结构及费米面特征。同时运用Bader方法对LaNiPO进行了定量的电荷分析,并通过态密度、带投影的电荷密度和费米面的轨道组成简单分析了其超导机理。
Because of the strong correlations between d (f) electrons, transition metal oxides exhibit very rich and intriguing physical and chemical properties. The studies of strongly correlated electronic system have thus attracted a lot of attention over the last decades. Due to localized d (f) electrons in strongly correlated materials, Density Functional Theory (DFT) based on a one-electron method cannot give an accurate description of strongly correlated system. On the other side, although the separate elementary processes of normal system can be addressed in detail based on DFT calculations, the system functionalities are determined by the statistical interplay of many elementary processes. In order to obtain an atomic-scale understanding of the real materials, new multi-scale modeling methodologies have to be developed, in which DFT should be combined with other theories such as thermodynamics.
     The present dissertation has investigated various physical and chemical properties of a typically strongly correlated materials NiO including high pressure behavior, defect physics, and surface physics using GGA+U method in combination with Heisenberg spin Hamiltonian and thermodynamic formalism. The strong electronic correlations have also been taken into account in GGA+U method. In order to clarify the underlying mechanism from nickel surface to nickel oxide, we also perform a multi-scale modeling for oxidation of nickel surface based on the DFT and thermodynamics. Present results are in excellent agreement with experiments and the related mechanisms are also discussed.
     The main contents of this dissertation are as following:
     1. The structural distortion and electronic properties of NiO under high pressure have been investigated using generalized gradient approximation (GGA) and GGA+U method. The present results show that GGA calculation and earlier LDA calculation do not give a proper description of structural distortion under high pressure. When strong correlations are included in GGA+U method, the calculation results are in good agreement with the experimental measurements. Meanwhile, we also investigate the structural distortion of MnO and FeO under high pressure. The results indicate that the strong electronic correlation plays a very important role in structural distortion of transition metal monoxide under high pressure.
     2. The magnetic exchange interactions and the related properties of NiO under high pressure has been investigated systematically based on GGA+U method and Heisenberg spin Hamiltonian. The Néel temperature under high pressure of NiO is also evaluated. Present results give theoretical evidence that the Bloch’s law is valid under high pressure. These results are consistent with experiments and the related mechanisms are also discussed.
     3. The stability of native vacancy defects in NiO have been investigated using the GGA+U method. The results indicate that both the oxygen chemical potential and Fermi level play a very important role in stability of defect. The native p-type conductivity is found to be originated from the nickel vacancy. In addition, it can be found that introducing different ionization state of Ni vacancy in NiO, a half-metallic anti-ferromagnetic or half-metallic ferromagnetic behavior can be found. This phenomenon can be understood based on the spin-triplet ground state of nickel vacancy.
     4. The stability of polar NiO(111) and MgO(111) surface has been investigated using density functional theory in combination with a thermodynamic formalism. The most stable phases under different temperature and pressure conditions have been determined, which are consistent with recent experiments. The results indicate that surface reconstruction will cancel the polarity and oxygen chemical potential which is determined by temperature and oxygen pressure plays a very important role in the stability of polar surface.
     5. In order to obtain an atomic-scale understanding for the oxidation of nickel surface, we have studied the adsorption process of oxygen on Ni (110) surface firstly. The most stable adsorption structures at different substrates including the reconstructed and unreconstructed surface have been determined. The surface structure, electronic and magnetic structure, and their change induced by oxygen absorption are focused. Furthermore, we also perform a multi-scale modeling to analyze the oxidation of Ni(110) surface. The surface adsorption diagram of O/Ni (110) system over a wide range of temperature and pressure condition has also been determined. These results could effectively solve the debates in different experiments.
     6. Finally, we have investigated electronic structure and Fermi surface character of a novel superconductor LaNiPO based on First-principles calculation. The quantificational binding properties of LaNiPO are obtained based on Bader analysis of the charge density. In addition, we also discuss the superconductivity mechanism through density of sates, band decomposed charge density and orbital components of Fermi surfaces.
引文
[1] Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity[J]. Phys. Rev., 1957,108(5): 1175–1205.
    [2] Mourachkine A, Room-temperature superconductivity[M]. Cambridge UK: Cambridge International Science Publishing,2004.
    [3] Bednorz J G, Müller K A. Possible high-Tc superconductivity in the Ba?La?Cu?O system[J]. Z. Phys. B: Conden. Matter,1986,64(2):189-193.
    [4]赵忠贤,陈立泉,杨乾声. Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报, 1987, 32(4):412-414.
    [5] Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Phys. Rev. Lett., 1987, 58(9):908-910.
    [6] Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363(6424):56-58.
    [7] Johannes M. The iron age of superconductivity[J]. Physics, 2008,1(1):28(1-3).
    [8] Kamihara Y, Hiramatsu H, Hirano M, et al. Iron-Based layered superconductor: LaOFeP[J]. J. Am. Chem. Soc. ,2006, 128(31):10012-10013.
    [9] Chen G F, Li Z, Wu D, et al. Superconductivity at 41 k and its competition with Spin-Density-Wave instability in layered CeO1-xFxFeAs[J]. Phys. Rev. Lett., 2008, 100(24):247002(1-4).
    [10] Chen X H, Wu T, Wu G, et al. Superconductivity at 43K in SmFeAsO1-xFx[J]. Nature. 2008,453(7196):761-762.
    [11] Cheng P, Fang L, Yang H, et al. Superconductivity at 36 K in gadolinium-arsenide oxides GdO1? x F x FeAs [J]. Sci.China Ser. G, 2008,51(6):719-722.
    [12] Ren Z-A, Yang J, Lu W, et al. Superconductivity at 52 K in Iron based F doped layered quaternary compound PrO1-xFxFeAs[J]. Mater. Res. Innov., 2008, 12:105-106.
    [13] Ren Z-A, Che G-C, Dong X-L, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-x (Re = rare-earth metal) without fluorine doping[J]. EPL (Europhysics Letters), 2008,83(1):17002(1-4).
    [14] Ren Z-A, Yang J, Lu W, et al. Superconductivity in the iron-based F-doped layered quaternary compound NdO1-x FxFeAs[J]. EPL (Europhysics Letters),2008, 82(5):57002(1-2).
    [15] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Phys. Rev. Lett., 1988, 61(21): 2472 - 2475.
    [16] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B, 1989,39(7): 4828 - 4830.
    [17] Coyne K E, Smith E. Giant magnetoresistance: The really big idea behind a very tiny tool. Available from: http://www.magnet.fsu.edu/education/tutorials/magnetacademy/gmr/.
    [18] von Helmolt R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance inperovskitelike La2/3Ba1/3MnOx ferromagnetic films[J]. Phys. Rev. Lett., 1993, 71(14): 2331- 2333.
    [19] Jin S, Tiefel T H, McCormack M, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J]. Science, 1994,264(5157):413-415.
    [20] Salamon M B, Jaime M. The physics of manganites: structure and transport[J]. Rev. Mod. Phys., 2001, 73(3): 583-628.
    [21] Humphreys C J. Electrons seen in orbit[J]. Nature. 1999,401(6748):21-22.
    [22] ?uti? I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications[J]. Rev. Mod. Phys. ,2004,76(2): 323 - 410.
    [23] de Groot R A, Mueller F M, Engen P G v, et al. New class of materials: Half-metallic ferromagnets[J]. Phys. Rev. Lett., 1983,50(25): 2024 - 2027.
    [24] Korotin M A, Anisimov V I, Khomskii D I, et al. CrO2: A self-doped double exchange ferromagnet[J]. Phys. Rev. Lett., 1998, 80(19): 4305 - 4308.
    [25]王銀國、郭光宇.以第一原理理論計算來尋找新穎材料-反鐵磁半金屬-[J].物理雙月刊, 2005, 27(4):578-587.
    [26] van Leuken H, de Groot R A. Half-Metallic antiferromagnets[J]. Phys. Rev. Lett., 1995, 74(7): 1171 - 1173.
    [27] Nogues J, Sort J, Langlais V, et al. Exchange bias in nanostructures[J]. Phys. Rep., 2005, 422(3):65-117.
    [28] Wu J, Nan C-W, Lin Y, et al. Giant dielectric permittivity observed in Li and Ti doped NiO[J]. Phys. Rev. Lett. ,2002,89(21):217601(1-4).
    [29] Zhao W, Ma W, Chen C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc. ,2004,126(15):4782-4783.
    [30] Dudarev S L, Botton G A, Savrasov S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B,1998,57(3): 1505-1509.
    [31] Rohrbach A, Hafner J, Kresse G. Molecular adsorption on the surface of strongly correlated transition-metal oxides: A case study for CO/NiO(100) [J]. Phys. Rev. B, 2004, 69(7):075413(1-13).
    [32] Savrasov S Y, Kotliar G. Linear response calculations of lattice dynamics in strongly correlated systems[J]. Phys. Rev. Lett. ,2003, 90(5):056401(1-4).
    [33] Chung E M L, Paul D M, Balakrishnan G, et al. Role of electronic correlations on the phonon modes of MnO and NiO[J]. Phys. Rev. B, 2003, 68(14):140406(1-4).
    [34] Eto T, Endo S, Imai M, et al. Crystal structure of NiO under high pressure[J]. Phys. Rev. B, 2000,61(22): 14984 - 14988.
    [35] Sasaki T. Lattice distortion of NiO under high pressure[J]. Phys. Rev. B, 1996, 54(14): R9581 - R9584.
    [36] Hoeft J T, Kittel M, Polcik M, et al. Molecular adsorption bond lengths at metal oxide surfaces: Failure of current theoretical methods[J]. Phys. Rev. Lett., 2001, 87(8):086101(1-4).
    [37] Di Valentin C, Pacchioni G, Bredow T, et al. Bonding of NO to NiO(100) and NixMg1- xO(100) surfaces: A challenge for theory[J]. J. Chem. Phys,2002, 117(5):2299-2306.
    [38] Noguera C. Polar oxide surfaces[J]. J. Phys.:Condens. Matter, 2000,12(31):R367-R410.
    [39] Wolf D. Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem[J]. Phys. Rev. Lett.,1992, 68(22): 3315 - 3318.
    [40] Wang J, Cai J, Lin Y, et al. Room-temperature ferromagnetism observed in Fe-doped NiO[J]. Appl. Phys. Lett., 2005, 87:202501(1-3).
    [41] Tegel M, Bichler D, Johrendt D. Synthesis, Crystal structure and superconductivity of LaNiPO[J]. Solid State Sci., 2008, 10(2):193-197.
    [42] Li Z, Chen G, Dong J, et al. Strong-coupling superconductivity in the nickel-based oxypnictide LaNiAsO 1 - xF x[J]. Phys. Rev. B,2008,78(6):060504(1-4).
    [43] Perdew J P, Schmidt K. Jacob’s Ladder of Density Functional Approximations for the Exchange-Correlation Energy// Van Doren V E, Van Alsenoy K, Geerlings P. Density Functional Theory and Its Applications to Materials[M], Melville, NY:AIP, 2001:1-20.
    [44] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J. Phys. Chem., 1994, 98(45):11623-11627.
    [45] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992, 46(11): 6671 - 6687.
    [46] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865 - 3868.
    [47] Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond[J]. J. Comput. Chem., 2008, 29(13):2044-2078.
    [48] Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I[J]. Phys. Rev. B, 1991, 44(3): 943 - 954.
    [49] White S R. Density matrix formulation for quantum renormalization groups[J]. Phys. Rev. Lett., 1992, 69(19): 2863 - 2866.
    [50] Wang X, Xiang T. Transfer-matrix density-matrix renormalization-group theory for thermodynamics of one-dimensional quantum systems[J]. Phys. Rev. B, 1997, 56(9): 5061-5064.
    [51] Anisimov V, Aryasetiawan F, Lichtenstein A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method[J]. J. Phys-condens. Mat., 1997, 9(4):767-808.
    [52] Georges A, Kotliar G, Krauth W, et al. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions[J]. Rev. Mod. Phys., 1996, 68(1):13-125.
    [53] Reuter K, Stampfl C, Scheffler M. Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions[J]. Handbook of Materials Modeling,2005, 1:1-4020.
    [54]曾谨言,量子力学,卷I[M].第三版.北京:科学出版社, 1985.
    [55]徐光宪,量子化学[M].北京:科学出版社, 1985.
    [56] Rajagopal A K, Callaway J. Inhomogeneous electron gas[J]. Phys. Rev. B, 1973,7(5): 1912-1919.
    [57] Hartree D. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods[J]. Proc. Cambridge Phil. Soc.,1928, 24(1): 89-110.
    [58] Fock V. Original-zitate zum hartree-fock-ansatz[J]. Zeits. F. Physik.1930, 61(1-2):126-148.
    [59] M?ler C, Plesset M S. Note on an approximation treatment for many-electron systems[J]. Phys. Rev., 1934,46(7): 618 - 622.
    [60] Roos B, Taylor P, Siegbahn P. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach[J]. Chem. Phys., 1980, 48(2):157–173.
    [61] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964,136(3B): B864 - B871.
    [62]谢希德,陆栋,固体能带理论[M].上海:复旦大学出版社, 1998.
    [63] Kohn W, Sham L J. Self-Consistent equations including exchange and correlation effects[J].Phys. Rev., 1965, 140(4A): A1133 - A1138.
    [64] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett.,1980,45(7): 566 - 569.
    [65] Vosko S, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Can. J. Phys., 1980,58(8):1200-1211.
    [66] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992, 45(23): 13244 - 13249.
    [67] Frisch M, Trucks G, Schlegel H, et al. Gaussian 03, Revision C. 02, Gaussian. Inc., Wallingford, CT, 2004.
    [68] Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. J. Phys.:Condens. Matter, 2002,14(11):2745-2779.
    [69] Hafner J. Materials simulations using VASP--a quantum perspective to materials science[J]. Comput. Phys. Commun., 2007,177(1-2):6-13.
    [70] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations[J]. Phys. Rev. B, 1991,43(3): 1993 - 2006.
    [71] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990, 41(11): 7892 - 7895.
    [72] Blaha P, Schwarz K, Madsen G, et al. WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Institute of Physical and Theoretical Chemistry, Vienna University of Technology, 2001.
    [73] Bl?chl P E. Projector augmented-wave method[J]. Phys. Rev. B,1994,50(24): 17953 - 17979.
    [74] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B,1999,59(3): 1758 - 1775.
    [75] Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Phys. Rev. Lett.,1985, 55(22): 2471 - 2474.
    [76] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169 - 11186.
    [77] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp. Mater. Sci., 1996, 6(1):15-50.
    [78] Teter M P, Payne M C, Allan D C. Solution of Schr?dinger's equation for large systems[J]. Phys. Rev. B,1989, 40(18): 12255 - 12263.
    [79] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B, 1981,23(10): 5048 - 5079.
    [80] Hammer B, Hansen L B, N?rskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys. Rev. B,1999,59(11): 7413 - 7421.
    [81] Bengone O, Alouani M, Bl?chl P, et al. Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO[J]. Phys. Rev. B, 2000,62(24): 16392 - 16401.
    [82] Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators[J]. Phys. Rev. B, 1995, 52(8): R5467 - R5470.
    [83] Reuter K, Scheffler M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure[J]. Phys. Rev. B, 2001, 65(3):035406(1-11).
    [84] Rogal J, Reuter K, Scheffler M. First-Principles statistical mechanics study of the stability of a subnanometer thin surface oxide in reactive environments: CO Oxidation at Pd(100) [J]. Phys. Rev. Lett.,2007,98(4):046101(1-4).
    [85]汪志诚,热力学·统计物理[M].第二版.北京:高等教育出版社, 2003.
    [86] Lide D, CRC Handbook of Chemistry and Physics [M].85th ed .Boca Raton, FL: CRC press,2004.
    [87] Stull D, Prophet H. JANAF Thermochemical Tables[M]. 2nd ed. Washington, DC: U.S. National Bureau of Standards, 1971.
    [88] Yoo C S, Maddox B, Klepeis J H P, et al. First-Order isostructural mott transition in highly compressed MnO[J]. Phys. Rev. Lett.,2005,94(11):115502(1-4).
    [89] Fang Z, Terakura K, Sawada H, et al. Inverse versus normal NiAs structures as High-Pressure phases of FeO and MnO[J]. Phys. Rev. Lett.,1998,81(5): 1027 - 1030.
    [90] Sawatzky G A, Allen J W. Magnitude and origin of the band gap in NiO[J]. Phys. Rev. Lett.,1984, 53(24):2339-2342.
    [91] Fender B E F, Jacobson A J, Wedgwood F A. Covalency parameters in MnO, alpha-MnS, and NiO[J]. J. Chem. Phys., 1968,48(3):990-994.
    [92] Cheetham A K, Hope D A O. Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1-xO[J]. Phys. Rev. B, 1983, 27(11): 6964 - 6967.
    [93] Fujimori A, Minami F. Valence-band photoemission and optical absorption in nickel compounds[J]. Phys. Rev. B, 1984,30(2): 957 - 971.
    [94] Hüfner S, Osterwalder J, Riesterer T, et al. Photoemission and inverse photoemission spectroscopy of NiO[J]. Solid State Commun., 1984, 52(9):793-796.
    [95] Tjernberg O, S?derholm S, Karlsson U O, et al. Resonant photoelectron spectroscopy on NiO[J]. Phys. Rev. B,1996, 53(15): 10372 - 10376.
    [96] Schuler T M, Ederer D L, Itza-Ortiz S, et al. Character of the insulating state in NiO: A mixture of charge-transfer and Mott-Hubbard character[J]. Phys. Rev. B,2005, 71(11):115113 (1-7).
    [97] Towler M D, Allan N L, Harrison N M, et al. Ab initio study of MnO and NiO[J]. Phys. Rev. B,1994,50(8): 5041 - 5054.
    [98] Aryasetiawan F, Gunnarsson O. Electronic Structure of NiO in the GW Approximation[J]. Phys. Rev. Lett., 1995, 74(16):3221-3224.
    [99] Massidda S, Continenza A, Posternak M, et al. Quasiparticle energy bands of transition-metal oxides within a model GW scheme[J]. Phys. Rev. B, 1997, 55(20): 13494 - 13502.
    [100] Svane A, Gunnarsson O. Transition-metal oxides in the self-interaction-corrected density-functional formalism[J]. Phys. Rev. Lett.,1990, 65(9):1148-1152.
    [101] Szotek Z, Temmerman W M, Winter H. Application of the self-interaction correction to transition-metal oxides[J]. Phys. Rev. B,1993,47(7): 4029 - 4032.
    [102] Becke A. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,1993, 98:5648-5652.
    [103] Huang E. Compression behavior of NiO in a diamond cell[J]. High Pressure Res., 1995,13(6):307-319.
    [104] Noguchi Y, Uchino M, Hikosaka H, et al. Equation of state of NiO studied by shock compression[J]. J. Phys. Chem. Solids, 1999,60(4):509-514.
    [105] Clendenen R L, Drickamer H G. Lattice parameters of Nine Oxides and Sulfides as a function of pressure[J]. J. Chem. Phys.,1966,44(11):4223-4228.
    [106] Shukla A, Rueff J-P, Badro J, et al. Charge transfer at very high pressure in NiO[J]. Phys. Rev. B, 2003,67(8):081101(1-4).
    [107] Cohen R E, Mazin I I, Isaak D G. Magnetic collapse in transition metal oxides at high pressure: Implications for the Earth[J]. Science, 1997, 275(5300):654-657.
    [108] Feng X-B, Harrison N M. Metal-insulator and magnetic transition of NiO at high pressures[J]. Phys. Rev. B, 2004, 69(3):035114(1-5).
    [109] Rohrbach A, Hafner J, Kresse G. Electronic correlation effects in transition-metal sulfides[J]. J. Phys.:Condens. Matter,2003, 15(6):979-996.
    [110] Rohrbach A, Hafner J, Kresse G. Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations[J]. Phys. Rev. B,2004,70(12):125426(1-17).
    [111] Rollmann G, Rohrbach A, Entel P, et al. First-principles calculation of the structure and magnetic phases of hematite[J]. Phys. Rev. B, 2004,69(16):165107(1-12).
    [112] Lampis N, Franchini C, Satta G, et al. Electronic structure of PbFe1/2Ta1/2O3: Crystallographic ordering and magnetic properties[J]. Phys. Rev. B,2004,69(6):064412(1-12).
    [113] Trimarchi G, Binggeli N. Structural and electronic properties of LaMn O3 under pressure: An ab initio LDA+U study[J]. Phys. Rev. B,2005,71(3):035101(1-9).
    [114] Rohrbach A, Hafner J. Molecular adsorption of NO on NiO(100): DFT and DFT+U calculations[J]. Phys. Rev. B, 2005,71(4):045405(1-7).
    [115] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B,1976, 13(12): 5188 - 5192.
    [116] Jepson O, Anderson O K. The electronic structure of h.c.p. Ytterbium[J]. Solid State Commun.,1971,9(20):1763-1767.
    [117] Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals[J]. Phys. Rev. B,1989, 40(6): 3616 - 3621.
    [118] Bl?chl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev. B, 1994, 49(23): 16223 - 16233.
    [119] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1944,30(9):244-247.
    [120] Toussaint C. A high-temperature X-ray diffraction study of the NiO-Li2O system[J]. J. Appl. Crystallogr., 1971,4(4):293-297.
    [121] Pask J E, Singh D J, Mazin I I, et al. Structural, electronic, and magnetic properties of MnO[J]. Phys. Rev. B, 2001,64(2):024403(1-7).
    [122] Oguchi T, Terakura K, Williams A R. Band theory of the magnetic interaction in MnO, MnS, and NiO[J]. Phys. Rev. B, 1983, 28(11): 6443 - 6452.
    [123] de P. R. Moreira I, Illas F, Martin R L. Effect of Fock exchange on the electronic structure and magnetic coupling in NiO[J]. Phys. Rev. B,2002,65(15):155102(1-14).
    [124] Shanker R, Singh R A. Analysis of the exchange parameters and magnetic properties of NiO[J]. Phys. Rev. B, 1973,7(11): 5000 - 5005.
    [125] Raymond Jeanloz T J A. Equations of state of FeO and CaO[J]. Geophys. J. Int.,1980, 62(3):505-528.
    [126] Yagi T, Fukuoka K, Takei H, et al. Shock compression of Wüstite[J]. Geophys. Res. Lett.,1988, 15(8):816-819.
    [127] Yagi T, Suzuki T, Akimoto S-I. Static compression of Wüstite (Fe0.98O) to 120 GPa[J]. J. Geophys. Res., 1985,90(B10):8784–8788.
    [128] Mao H-k, Shu J, Fei Y, et al. The wüstite enigma[J]. Phys. Earth. Planet. In., 1996, 96(2-3):135-145.
    [129] Fei Y, Mao H. In situ determination of the NiAs phase of FeO at high pressure and temperature[J]. Science,1994,266(5191):1678-1680.
    [130] Jeanloz R, Rudy A. Static compression of MnO manganosite to 60 GPa[J]. J. Geophys. Res.,1987, 92(B11): 11433-11436.
    [131] Noguchi Y, Kusaba K, Fukuoka K, et al. Shock-Induced phase transition of MnO around 90GPa[J]. Geophys. Res. Lett., 1996, 23(12):1469-1472.
    [132] Kondo T, Yagi T, Syono Y, et al. Phase transition of MnO under static compression[J]. in Rev. High Pressure Sci. Technol.,1998, 7(1):148-150.
    [133] Fang Z, Solovyev I V, Sawada H, et al. First-principles study on electronic structures and phase stability of MnO and FeO under high pressure[J]. Phys. Rev. B, 1999, 59(2): 762 - 774.
    [134] Isaak D G, Cohen R E, Mehl M J, et al. Phase stability of wüstite at high pressure from first-principles linearized augmented plane-wave calculations[J]. Phys. Rev. B,1993, 47(13):7720 - 7731.
    [135] Zhang W-B, Hu Y-L, Han K-L, et al. Pressure dependence of exchange interactions in NiO[J]. Phys. Rev. B, 2006, 74(5):054421(1-5).
    [136] Zhang W-B, Hu Y-L, Han K-L, et al. Structural distortion and electronic properties of NiO under high pressure: An ab initio GGA+U study[J]. J. Phys.:Condens. Matter, 2006, 18(42):9691-9701.
    [137] Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method[J]. Phys. Rev. B, 2005,71(3):035105(1-16).
    [138] Tsuchiya T, Wentzcovitch R M, da Silva C R S, et al. Spin transition in Magnesiow[u-umlaut]stite in earth's lower mantle[J]. Phys. Rev. Lett.,2006,96(19):198501(1-4).
    [139] Mattheiss L F. Electronic structure of the 3d transition-metal monoxides. I. Energy-Band results[J]. Phys. Rev. B, 1972,5(2): 290 - 306.
    [140] McCammon C A, Liu L-g. The effects of pressure and temperature on nonstoichiometric wüstite, FexO: The iron-rich phase boundary[J].Phys. Chem. Miner., 1984,10(3):106-113.
    [141] Battle P, Cheetham A. The magnetic structure of non-stoichiometric ferrous oxide[J]. J. Phys. C(Solid State Phys.), 1979, 12(2):337-345.
    [142] Franchini C, Bayer V, Podloucky R, et al. Density functional theory study of MnO by a hybrid functional approach[J]. Phys. Rev. B, 2005, 72(4):045132(1-6).
    [143] Shaked H, Faber J, Hitterman R L. low-temperature magnetic structure of mno: a high-resolution neutron-diffraction study[J]. Phys. Rev. B, 1988, 38(16): 11901 - 11903.
    [144] Willis B T M, Rooksby H P. Change of structure of ferrous oxide at low temperature[J]. Acta Crystallogr. A,1953, 6(11-12):827-831.
    [145] Kanamori J. Theory of the magnetic properties of ferrous and cobaltous oxides[J], I. Prog. Theor. Phys., 1957,17(2):177-196.
    [146] Rodbell D S, Owen J. Sublattice magnetization and lattice distortions in MnO and NiO[J]. J. Appl. Phys.,1964, 35(3):1002-1003.
    [147] Mott N F. The basis of the electron theory of metals, with Special Reference to the Transition Metals[J]. Proceedings of the Physical Society. Section A, 1949,62(7):416-422.
    [148] Anderson P W. Theory of magnetic exchange interactions - exchange in insulators and semiconductors[J]. Solid State Phys., 1963,14(1): 99-214.
    [149] Anderson P W. New approach to the theory of superexchange interactions[J].Phys. Rev. ,1959, 115(1):2-13.
    [150] Greenwald S, Smart J S. Deformations in the crystal structures of Anti-ferromagnetic compounds[J]. Nature, 1950, 166(4221):523-524.
    [151] Bloch D. The law for the volume dependence of superexchange[J]. J. Phys. Chem. Solids, 1966, 27(5):881-885.
    [152] Fisher D S, Millis A J, Shraiman B, et al. Zero-Point motion and the isotope effect in oxide superconductors[J]. Phys. Rev. Lett., 1988, 61(4):482-485.
    [153] Massey M J, Chen N H, Allen J W, et al. Pressure dependence of two-magnon Raman scattering in NiO[J]. Phys. Rev. B, 1990, 42(13): 8776 - 8779.
    [154] Sidorov V A. Differential thermal analysis of magnetic transitions at high pressure: Néel temperature of NiO up to 8 GPa[J]. Appl. Phys. Lett., 1998, 72(17):2174-2175.
    [155] Hutchings M T, Samuelsen E J. Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties[J]. Phys. Rev. B, 1972, 6(9): 3447 - 3461.
    [156] K?dderitzsch D, Hergert W, Temmerman W M, et al. Exchange interactions in NiO and at the NiO(100) surface[J]. Phys. Rev. B, 2002, 66(6):064434(1-9).
    [157] Slack G A. Crystallography and domain walls in antiferromagnetic NiO crystals[J]. J. Appl. Phys., 1960,31(9):1571-1582.
    [158] Kunes J, Ku W, Pickett W. Exchange coupling in Eu monochalcogenides from first principles[J]. J. Phys. Soc. Japan,2005,74(5):1408-1411.
    [159] Chiuzb?ian S G, Ghiringhelli G, Dallera C, et al. Localized electronic excitations in NiO studied with resonant inelastic X-Ray scattering at the Ni M threshold: Evidence of Spin Flip[J]. Phys. Rev. Lett., 2005, 95(19):197402(1-4).
    [160] Shi Z-P, Levy P M, Fry J L. Interlayer magnetic coupling in metallic multilayer structures[J]. Phys. Rev. B,1994, 49(21): 15159 - 15178.
    [161] ?a??o?lu E, Sandratskii L M, Bruno P. Pressure dependence of the Curie temperature in Ni2 MnSn Heusler alloy: A first-principles study[J]. Phys. Rev. B, 2005,71(21):214412(1-7).
    [162] Burns G, Axe J D. Pressure dependence of ligand field splittings (10Dq) [J]. J. Chem. Phys.,1966, 45(11):4362-4363.
    [163] Lines M E. Antiferromagnetism in the Face-Centered cubic lattice. I. The Random-Phase Green's function approximation[J]. Phys. Rev., 1965, 139(4A): A1304 - A1312.
    [164] Mitoff S. Electrical conductivity and thermodynamic equilibrium in Nickel oxide[J]. J. Chem. Phys., 1961, 35(3): 882-889.
    [165] Bransky I, Tallan N. High-Temperature defect structure and electrical properties of NiO[J]. J. Chem. Phys., 1968, 49(3):1243-1249.
    [166] Farhi R, Petot-Ervas G. Electrical conductivity and chemical diffusion coefficient measurements in single crystalline nickel oxide at high temperatures[J]. J. Phys. Chem. Solids, 1978,39(11):1169-1173.
    [167] Farhi R, Petot-Ervas G. Thermodynamic study of point defects in single crystalline nickel oxide: Analysis of experimental results[J]. J. Phys. Chem. Solids, 1978, 39(11):1175-1179.
    [168] Choi S, Koumoto K, Yanagida H. Electrical conduction and effective mass of a hole in single-crystal NiO[J]. J. Mater. Sci., 1986, 21(6):1947-1950.
    [169] Nowotny J, Sadowski A. Chemical diffusion in nickel oxide[J]. J. Am. Ceram. Soc., 1979, 62(1-2):24-28.
    [170] Tripp W C, Tallan N M. Gravimetric determination of defect concentrations in NiO[J]. J. Am. Ceram. Soc.,1970, 53(10):531-533.
    [171] Haugsrud R, Norby T. Determination of thermodynamics and kinetics of point defects in NiO using the Rosenburg method[J]. Solid State Ionics, 1998, 111(3-4):323-332.
    [172] Mrowec S, Grzesik Z. Oxidation of nickel and transport properties of nickel oxide[J]. J.Phys. Chem. Solids,2004,65(10):1651-1657.
    [173] Sockel H, Schmalzried H. Coulometric titration of transition metal oxides[J]. Ber. Bunsenges. Phys. Chem., 1968,72(7):745-753.
    [174] Tretyakov Y, Rapp R. Nonstoichiometries and defect structures in pure nickel oxide and lithium ferrite[J]. Trans. Metall. Soc. AIME,1969, 245(6):1235–1241.
    [175] Shim M, Moore W. Diffusion of nickel in single crystals of NiO[J]. J. Chem. Phys.,1957, 26(4):802-804.
    [176] Volpe M, Reddy J. Cation self-diffusion and semiconductivity in NiO[J]. J. Chem. Phys.,1970, 53(3):1117-1125.
    [177] Atkinson A, Taylor R. The diffusion of Ni in the bulk and along dislocations in NiO single crystals [J]. Philos. Mag. A, 1979, 39(5):581-595.
    [178] Atkinson A, Taylor R. The diffusion of 63 Ni along grain boundaries in nickel oxide [J]. Philos. Mag. A,1981, 43(4):979-998.
    [179] Moya E, Deyme G, Moya F. Experimental evidence for grain boundary diffusion of nickel in NiO[J]. Scripta Metall. et Mater.,1990, 24(12):2447-2452.
    [180] Fueki K, Wagner Jr J. Studies of the oxidation of nickel in the temperature range of 900°to 1400°C[J]. J. Electrochem. Soc., 1965,112(4): 384-388.
    [181] Atkinson A, Taylor R, Goode P. Transport processes in the oxidation of Ni studied using tracers in growing NiO scales[J]. Oxid. Met.,1979,13(6):519-543.
    [182] Song S, Xiao P. Electrical properties of the oxide film formed on nickel during high-temperature oxidation[J]. Mater. Sci. Eng. A, 2002,323(1-2):27-31.
    [183] Lin Y-H, Wang J, Cai J, et al. Ferromagnetism and electrical transport in Fe-doped NiO[J]. Phys. Rev. B,2006,73(19):193308(1-4).
    [184] Lin Y, Zhao R, Nan C, et al. Enhancement of ferromagnetic properties of NiO: Fe thin film by Li doping[J]. Appl. Phys. Lett.,2006, 89(20): 202501(1-3).
    [185] K?deritzsch D, Hergert W, Szotek Z, et al. Vacancy-induced half-metallicity in MnO and NiO[J]. Phys. Rev. B, 2003, 68(12):125114(1-5).
    [186] Lany S, Osorio-Guillén J, Zunger A. Origins of the doping asymmetry in oxides: Hole doping in NiO versus electron doping in ZnO[J]. Phys. Rev. B, 2007,75(24):241203(1-4).
    [187] Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J]. Phys. Rev. B, 2001, 63(7):075205(1-7).
    [188] Rom I, Jantscher W, Sitte W. Conductivity relaxation experiments on Ni1-xO[J]. Solid State Ionics,2000, 135(1-4):731-736.
    [189] van Elp J, Eskes H, Kuiper P, et al. Electronic structure of Li-doped NiO[J]. Phys. Rev. B, 1992, 45(4): 1612 - 1622.
    [190] Rose B, Halliburton L. ESR hyperfine investigation of the V0 centre in MgO[J]. J. Phys. C: Solid State Phys.,1974, 7(21):3981-3987.
    [191] Osorio-Guillen J, Lany S, Barabash S V, et al. Magnetism without magnetic ions: Percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO[J]. Phys. Rev. Lett., 2006, 96(10):107203(1-4).
    [192] Soeya S, Nakamura S, Imagawa T, et al. Rotational hysteresis loss study on exchange coupled Ni 81Fe19/NiO films[J]. J. Appl. Phys., 1995, 77(11):5838-5842.
    [193] Barbier A, Renaud G. Structural investigation of the NiO(111) single crystal surface[J]. Surf. Sci., 1997, 392(1-3):L15-L20.
    [194] Barbier A, Renaud G, Mocuta C, et al. Structural investigation of the dynamics of the NiO(111) surface by GIXS[J]. Surf. Sci., 1999, 433-435(1-3):761-764.
    [195] Warren O L, Thiel P A. Structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis[J]. J. Chem. Phys., 1994,100(1):659-663.
    [196] Rohr F, Wirth K, Libuda J, et al. Hydroxy1 driven reconstruction of the polar NiO(111) surface[J]. Surf. Sci., 1994,315(1-2):L977-L982.
    [197] Cappus D, Xu C, Ehrlich D, et al. Hydroxyl groups on oxide surfaces: NiO(100), NiO(111) and Cr2O3(111) [J]. Chem. Phys., 1993,177(2):533-546.
    [198] Ventrice C A, Bertrams T, Hannemann H, et al. Stable reconstruction of the polar (111) surface of NiO on Au(111) [J]. Phys. Rev. B, 1994, 49(8): 5773 - 5776.
    [199] Barbier A, Mocuta C, Kuhlenbeck H, et al. Atomic structure of the polar NiO(111)- p(2 x 2) surface[J]. Phys. Rev. Lett.,2000, 84(13):2897-2900.
    [200] Barbier A, Mocuta C, Renaud G. Structure, transformation, and reduction of the polar NiO(111) surface[J]. Phys. Rev. B, 2000,62(23): 16056 - 16062.
    [201] Fisher C A J. Molecular dynamics simulations of reconstructed NiO surfaces[J]. Scripta Mater., 2004, 50(7):1045-1049.
    [202] Wander A, Bush I J, Harrison N M. Stability of rocksalt polar surfaces: An ab initio study of MgO(111) and NiO(111) [J]. Phys. Rev. B, 2003,68(23):233405(1-4).
    [203] Bengone O, Alouani M, Hugel J, et al. LDA+U calculated electronic and structural 2p4ro(1pe-2rt)i:e1s9 2o-1f 9 8N. iO(001) and NiO(110) p(2×2) surfaces[J]. Comp. Mater. Sci., 2002,
    [204] Finocchi F, Barbier A, Jupille J, et al. Stability of Rocksalt (111) polar surfaces: Beyond the Octopole[J]. Phys. Rev. Lett., 2004,92(13):136101(1-4).
    [205] Plass R, Egan K, Collazo-Davila C, et al. Cyclic Ozone Identified in magnesium oxide (111) surface reconstructions[J]. Phys. Rev. Lett.,1998, 81(22):4891-4894.
    [206] Dean John A. Lange's Handbook of Chemistry[M]. New York: McGraw-Hill. 1999.
    [207] Erdman N, Warschkow O, Ellis D E, et al. Solution of the p(2x2) NiO(1 1 1) surface structure using direct methods[J]. Surf. Sci., 2000,470(1-2):1-14.
    [208] Franchini C, Bayer V, Podloucky R, et al. Density functional study of the polar MnO(111) surface[J]. Phys. Rev. B, 2006,73(15):155402(1-14).
    [209] Zhu K, Hu J, Richards R, et al. Efficient preparation and catalytic activity of MgO(111) nanosheets[J]. Angew. Chem., Int. Ed., 2006, 45(43):7277-7281.
    [210] Hu J, Zhu K, Chen L, et al. MgO(111) nanosheets with unusual surface activity[J]. J. Phys. Chem. C, 2007, 111(32):12038-12044.
    [211] Goniakowski J, Noguera C, Giordano L. Using polarity for engineering oxide nanostructures: Structural phase diagram in free and supported MgO(111) ultrathin films[J]. Phys.Rev. Lett., 2004, 93(21):215702(1-4).
    [212] Henrich V E. Thermal faceting of (110) and (111) surfaces of MgO[J]. Surf. Sci., 1976, 57(1):385-392.
    [213] Plass R, Feller J, Gajdardziska-Josifovska M. Morphology of MgO(111) surfaces: artifacts associated with the faceting of polar oxide surfaces into neutral surfaces[J]. Surf. Sci., 1998, 414(1-2):26-37.
    [214] Subramanian A, Marks L D, Warschkow O, et al. Direct observation of charge transfer at a MgO(111) surface[J]. Phys. Rev. Lett., 2004,92(2):026101(1-4).
    [215] Goniakowski J, Noguera C. Microscopic mechanisms of stabilization of polar oxide surfaces: Transition metals on the MgO(111) surface[J]. Phys. Rev. B, 2002, 66(8):085417(1-9).
    [216] Goniakowski J, Noguera C. Characteristics of Pd deposition on the MgO(111) surface[J]. Phys. Rev. B,1999,60(23): 16120 - 16128.
    [217] He J-W, M?ller P J. Epitaxial and electronic structures of ultra-thin copper films on MgO crystal surfaces[J]. Surf. Sci.,1986,178(1-3):934-942.
    [218] Refson K, Wogelius R A, Fraser D G, et al. Water chemisorption and reconstruction of the MgO surface[J]. Phys. Rev. B, 1995, 52(15): 10823 - 10826.
    [219] Lazarov V K, Plass R, Poon H C, et al. Structure of the hydrogen-stabilized MgO (111) - (1 x1) polar surface: Integrated experimental and theoretical studies[J]. Phys. Rev. B, 2005, 71(11):115434(1-9).
    [220] Hermansson K, Baudin M, Ensing B, et al. A combined molecular dynamics--ab initio study of H2 adsorption on ideal, relaxed, and temperature-reconstructed MgO(111) surfaces[J]. J. Chem. Phys., 1998, 109(17):7515-7521.
    [221] Xue M, Guo Q. Layer-by-layer growth of polar MgO(111) ultrathin films[J]. J. Chem. Phys.,2007, 127(5):054705(1-5).
    [222] Kiguchi M, Entani S, Saiki K, et al. Atomic and electronic structure of an unreconstructed polar MgO(111) thin film on Ag(111) [J]. Phys. Rev. B,2003, 68(11):115402(1-5).
    [223] Pojani A, Finocchi F, Goniakowski J, et al. A theoretical study of the stability and electronic structure of the polar{111} face of MgO[J]. Surf. Sci.,1997, 387(1-3):354-370.
    [224] Baudin M, Wójcik M, Hermansson K. A molecular dynamics study of MgO (111) slabs[J]. Surf. Sci., 1997,375(2-3):374-384.
    [225] Tsukada M, Hoshino T. On the electronic structure of the polar surface of compound crystals[J]. J. Phys. Soc. Jpn., 1982,51(8):2562-2567.
    [226] Wang X-G, Chaka A, Scheffler M. Effect of the environment on alpha -Al2O3 (0001) surface structures[J]. Phys. Rev. Lett., 2000, 84(16):3650-3653.
    [227] Wang X G, Weiss W, Shaikhutdinov S K, et al. The hematite ( alpha - Fe2O3) (0001) surface: Evidence for domains of distinct chemistry[J]. Phys. Rev. Lett., 1998, 81(5):1038-1041.
    [228] Cappus D, Hassel M, Neuhaus E, et al. Polar surfaces of oxides: reactivity and reconstruction[J]. Surf. Sci., 1995, 337(3):268-277.
    [229] Guo H, Zaera F. Reactivity of hydroxyl species from coadsorption of oxygen and water on Ni(110) single-crystal surfaces[J]. Catal. Lett., 2003, 88(3):95-104.
    [230] Schuster M, Varelas C. Surface analysis by spectroscopy of Auger electrons induced by surface channeled ions[J]. Surf. Sci.,1983, 134(1):195-222.
    [231] Bu H, Roux C D, Rabalais J W. Oxygen induced added-row reconstruction of the Ni{110} surface[J]. J. Chem. Phys.,1992,97(2):1465-1470.
    [232] Bar A M, Binnig G, Rohrer H, et al. Real-Space observation of the 2x1 structure of chemisorbed oxygen on Ni(110) by Scanning Tunneling Microscopy[J]. Phys. Rev. Lett., 1984, 52(15):1304-1307.
    [233] Baberschke K, D?bler U, Wenzel L, et al. Local bonding geometry of O(2 x 1) on Ni(110): A surface extended x-ray-absorption fine-structure study[J]. Phys. Rev. B,1986, 33(8): 5910 - 5913.
    [234] Eierdal L, Besenbacher F, Lgsgaard E, et al. Interaction of oxygen with Ni(110) studied by scanning tunneling microscopy[J]. Surf. Sci., 1994,312(1-2):31-53.
    [235] Voigtl?der B, Lehwald S, Ibach H. Symmetry and structure of the reconstructed Ni(110)-(2x1)O surface[J]. Surf. Sci.,1990, 225(1-2):162-170.
    [236] Masuda S, Nishijima M, Sakisaka Y, et al. Structures of oxygen-covered Ni(110) surfaces[J]. Phys. Rev. B, 1982, 25(2): 863 - 874.
    [237] Stuckless J T, Wartnaby C E, Al-Sarraf N, et al. Oxygen chemisorption and oxide film growth on Ni{100}, {110}, and {111}: Sticking probabilities and microcalorimetric adsorption heats[J]. J. Chem. Phys., 1997, 106(5):2012-2030.
    [238] Yagi-Watanabe K, Ikeda Y, Ishii Y, et al. Reaction kinetics and mechanism of oxygen adsorption on the Ni (110) surface[J]. Surf. Sci., 2001, 482-485 (1):128-133.
    [239] Pollak P, Courths R, Witzel S. Angle-resolved UPS study of the electronic structure of the chemisorption system Ni(110)-p(2 x1)O[J]. Surf. Sci.,1991, 255(1-2):L523-L528.
    [240] Suzuki K, Yamane A, Ozawa R, et al. Angle-resolved photoemission of oxygen chemisorbed Ni(110) surfaces: 2x1-O(1/2 ML) and 3x1-O(2/3 ML) [J]. Surf. Sci., 1996,365(2):248-254.
    [241] Courths R, Huner S, Kemkes P, et al. Electronic structure investigation of Cu(110), Ag(110) and Ni(110) surfaces covered with chemisorbed oxygen up to half a monolayer[J]. Surf. Sci.,1997, 376(1-3):43-59.
    [242] Lindner T, Somers J. Polarization dependence of the near-edge x-ray-absorption fine structure for oxygen adsorbed on Ni(110) [J]. Phys. Rev. B,1988, 37(17): 10039 - 10044.
    [243] Clauberg R, Gudat W, Kisker E, et al. Spin polarized threshold-photoemission from Ni(110) with transverse sample magnetization[J]. Z. Phys. B :Condens. Matter,1981,43(1):47-54.
    [244] Schmitt W, Hopster H, Güntherodt G. Influence of adsorbates on surface magnetism studied by spin-resolved photoemission spectroscopy[J]. Phys. Rev. B,1985,31(6): 4035 - 4038.
    [245] Schmitt W, K?mper K P, Güntherodt G. Effect of adsorbates on the spin-polarized photoemission of itinerant ferromagnets[J]. Phys. Rev. B,1987,36(7):3763.
    [246] Seiler A, Feigerle C S, Pea J L, et al. Chemisorption-induced changes in surface magnetism and electronic structure: Oxygen on Ni(110) [J]. Phys. Rev. B,1985, 32(12): 7776 - 7778.
    [247] Abraham D L, Hopster H. Magnetic probing depth in spin-polarized secondary electron spectroscopy[J]. Phys. Rev. Lett.,1987,58(13):1352-1355.
    [248] Seiler A, Feigerle C S, Pena J L, et al. Connection between surface magnetism and electronic structure of oxygen on Ni(110) (invited) [J]. J. Appl. Phys., 1985,57(8):3638-3640.
    [249] Feder R, Hopster H. Chemisorption and surface ferromagnetism: Theoretical analysis of spin-resolved photoemission data from Ni(110)(2x1)-O[J]. Solid State Commun., 1985, 55(11):1043-1047.
    [250] Weimert B, Noffke J, Fritsche L. Missing-row reconstructed O p(2x1)/Ni(110) and O p(2x1)/Cu(110): an electronic structure study[J]. Surf. Sci.,1992, 264(3):365-379.
    [251] Mittendorfer F, Eichler A, Hafner J. Structural, electronic and magnetic properties of nickel surfaces[J]. Surf. Sci.,1999, 423(1):1-11.
    [252] Li T, Bhatia B, Sholl D S. First-principles study of C adsorption, O adsorption, and CO dissociation on flat and stepped Ni surfaces[J]. J. Chem. Phys.,2004,121(20):10241-10249.
    [253] Ge Q, Jenkins S J, King D A. Localisation of adsorbate-induced demagnetisation: CO chemisorbed on Ni{110}[J]. Chem. Phys. Lett., 2000,327(3-4):125-130.
    [254] Jenkins S J, Ge Q, King D A. Covalent origin of adsorbate-induced demagnetization at ferromagnetic surfaces[J]. Phys. Rev. B, 2001,64(1):012413(1-4).
    [255] Pick S, Dreyss H. Calculation of gas adsorption effect on magnetism of Co(0001) [J]. Surf. Sci.,2001,474(1-3):64-70.
    [256] Jenkins S J. Dissociative adsorption and adsorbate-induced reconstruction on Fe{211}[J]. Surf. Sci., 2006, 600(7):1431-1438.
    [257] Xu M L, Tong S Y. Multilayer relaxation for the clean Ni(110) surface[J]. Phys. Rev. B,1985,31(10): 6332 - 6336.
    [258] Yamagishi S, Jenkins S J, King D A. First principles studies of chemisorbed O on Ni{111}[J]. Surf. Sci.,2003,543(1-3):12-18.
    [259] Yalisove S M, Graham W R, Adams E D, et al. Multilayer relaxations of Ni(110): New medium energy ion scattering results[J]. Surf. Sci., 1986, 171(2):400-414.
    [260] Michaelson H B. The work function of the elements and its periodicity[J]. J. Appl. Phys.,1977,48(11):4729-4733.
    [261] Olivier S, Tréglia G, Saúl A, et al. Influence of surface stress in the missing row reconstruction of fcc transition metals[J]. Surf. Sci., 2006, 600(24):5131-5135.
    [262] Frechard F, van Santen R A. Theoretical study of the adsorption of the atomic oxygen on the Cu(110) surface[J]. Surf. Sci., 1998,407(1-3):200-211.
    [263] Gravil P A, White J A, Bird D M. Chemisorption of O2 on Ag(110) [J]. Surf. Sci.,1996, 352-354(1):248-252.
    [264] Sorg C, Ponpandian N, Scherz A, et al. The magnetism of ultrathin Ni films grown with O surfactant[J]. Surf. Sci., 2004,565(2-3):197-205.
    [265] Germer L H, May J W, Szostak R J. Thermally ordered oxygen on a nickel surface[J]. Surf. Sci., 1967, 7(3):430-447.
    [266] May J W, Germer L H. Incipient oxidation of (110) nickel[J]. Surf. Sci.,1968,11(3):443-464.
    [267] Demuth J E, Rhodin T N. Chemisorption on (001), (110) and (111) nickel surfaces: A correlated study using LEED spectra, Auger spectra and work function change measurements[J]. Surf. Sci.,1974,45(1):249-307.
    [268] Becker G E, Hagstrum H D. Orbital energy spectra of electrons in chemisorption bonds: O, S, Se ON Ni(110) and Ni(111) [J]. Surf. Sci., 1972, 30(3):505-524.
    [269] Germer L H, MacRae A U. Oxygen-Nickel Structures on the (110) Face of Clean Nickel[J]. J. Appl. Phys., 1962, 33(10):2923-2932.
    [270] Park R L, Farnsworth H E. Interaction of Oxygen with (110) Nickel[J]. J. Appl. Phys., 1964, 35(7):2220-2226.
    [271] Mac Rae A U. Adsorption of oxygen on the {111}, {100} and {110} surfaces of clean nickel[J]. Surf. Sci., 1964,1(4):319-348.
    [272] Busch M, Blauth D, Winter H. Adsorption and NiO(100) formation by atomic and molecular oxygen on Ni(110) [J]. Surf. Sci., 2008, 602(16):2808-2815.
    [273] Shi H, Stampfl C. First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111) [J]. Phys. Rev. B,2007,76(7):075327(1-14).
    [274] Soon A, Todorova M, Delley B, et al. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation[J]. Phys. Rev. B, 2006,73(16):165424(1-12).
    [275] Johnson V, Jeitschko W. ZrCuSiAs: A "filled" PbFCl type[J]. J. Solid State Chem.,1974, 11(2):161-166.
    [276] Zimmer B I, Jeitschko W, Albering J H, et al. The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure[J]. J. Alloy. Compd., 1995,229(2):238-242.
    [277] Kaczorowski D, Albering J H, Noel H, et al. Crystal structure and complex magnetic behaviour of a novel uranium oxyphosphide UCuPO[J]. J. Alloy. Compd., 1994, 216(1):117-121.
    [278] Albering J, Jeitschko W. Quaternary Thorium transition metal pnictide oxides: ThCu 1-xPO, ThCuAsO, And Th2 Ni3-XP3O[J]. Z. Naturforsch. B: Chem. Sci.,1996,51(2):257-262.
    [279] Nientiedt A T, Jeitschko W. Equiatomic quaternary rare earth element zinc pnictide oxides RZnPO and RZnAsO[J]. Inorg. Chem., 1998, 37(3):386-389.
    [280] Takano Y, Komatsuzaki S, Komasaki H, et al. Electrical and magnetic properties of LnOZnPn (Ln=rare earths; Pn=P, As, Sb) [J]. J. Alloy. Compd., 2008, 451(1-2):467-469.
    [281] Nientiedt A, Jeitschko W, Pollmeier P, et al. Quaternary equiatomic manganese pnictide oxides AMnPO(A= La-Nd, Sm, Gd-Dy), AMnAsO(A= Y, La-Nd, Sm, Gd-Dy, U), and AMnSbO(A= La-Nd, Sm, Gd) with ZrCuSiAs Type Structure[J]. Z. Naturforsch. B: Chem. Sci.,1997,52(5):560-564.
    [282] Kabbour H, Cario L, Boucher F. Rational design of new inorganic compounds with the ZrSiCuAs structure type using 2D building blocks[J]. J. Mater. Chem., 2005,15(34):3525-3531.
    [283] Liang C Y, Che R C, Yang H X, et al. Synthesis and structural characterization of LaOFeP superconductors[J]. Supercond. Sci. Technol.,2007, 20(7):687-690.
    [284] Kamihara Y, Watanabe T, Hirano M, et al. Iron-Based layered superconductorLaO1-xFxFeAs (x = 0.05;0.12) with Tc = 26 K[J]. J. Am. Chem. Soc., 2008, 130(11):3296-3297.
    [285] Wen H-H, Mu G, Fang L, et al. Superconductivity at 25K in hole-doped La1-xSrxOFeAs[J]. EPL (Europhysics Letters), 2008, 82(1):17009(1-5).
    [286] Krellner C, Geibel C. Single crystal growth and anisotropy of CeRuPO[J]. J. Cryst. Growth., 2008, 310(7-9):1875-1880.
    [287] Watanabe T, Yanagi H, Kamiya T, et al. Nickel-Based oxyphosphide superconductor with a layered crystal structure, LaNiOP[J]. Inorg. Chem., 2007, 46(19):7719-7721.
    [288] Kokalj A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale[J]. Comp. Mater. Sci., 2003,28(2):155-168.
    [289] Boeri L, Dolgov O V, Golubov A A. Is LaFeAsO1-xFx an Electron-Phonon Superconductor? [J]. Phys. Rev. Lett., 2008, 101(2):026403(1-4).
    [290] Singh D J, Du M H. Density functional study of LaFeAsO1-xFx: A low carrier density superconductor near itinerant magnetism[J]. Phys. Rev. Lett.,2008, 100(23):237003(1-4).
    [291] Yin Z P, Lebegue S, Han M J, et al. Electron-Hole symmetry and magnetic coupling in antiferromagnetic LaFeAsO[J]. Phys. Rev. Lett.,2008,101(4):047001(1-4).
    [292] Lebegue S. Electronic structure and properties of the Fermi surface of the superconductor LaOFeP[J]. Phys. Rev. B, 2007,75(3):035110(1-5).
    [293] Haule K, Shim J H, Kotliar G. Correlated electronic structure of LaO1-xFxFeAs[J]. Phys. Rev. Lett., 2008,100(22):226402(1-4).
    [294] Bader R. Atoms in molecules: a quantum theory[M]. Oxford:Oxford University Press, 1990.
    [295] Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density[J]. Comp. Mater. Sci.,2006, 36(3):354-360.
    [296] Kimura T, Sekio Y, Nakamura H, et al. Cupric oxide as an induced-multiferroic with high-TC[J]. Nature Mater.,2008,7(4):291-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700