钢结构磁力耦合应力检测基本理论及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从一个新的角度,即以铁磁材料的磁特性和应力耦合关系为核心,研究钢结构构件应力检测问题,目的在于解决钢结构磁力耦合应力检测所涉及的基本原理、理论依据、磁力学模型、应用技术、实现的关键技术等问题,从而把这种“磁”法检测技术应用到钢结构工程的应力检测中来。研究得到以下结论:
     (1) 依据铁磁学基础理论分析了应力对磁畴及磁畴壁的影响机理,指出了应力的存在改变了磁畴的结构,引起了畴壁的移动和磁畴磁矩的转动,使得畴壁能以及畴壁厚度发生了改变,从而使铁磁材料的磁特性发生了改变,其技术磁比曲线在不同应力下呈现出不同的特征。通过测试铁磁材料磁特性的变化,可以测出构件的应力。指明了实施土木建筑钢结构应力检测的关键在于解决应力对钢构件磁参量的影响关系,即建立钢结构材料磁力效应本构关系。
     (2) 对钢结构材料磁力学模型进行研究,提出了钢结构拉压杆磁力耦合本构关系表达式,该本构关系揭示了钢结构受力构件的磁性变化与应力之间的函数关系,可反映磁力特性的传递函数关系。
     (3) 在磁力耦合场隋况下提出了耦合参数A,该参数考虑了力磁耦合作用,并在试验的基础上,采用正交试验的数值回归分析方法,得到了耦合场参数经验公式。显著性分析表明,应力对耦合参数A的影响比外磁场大,这对钢结构拉压杆磁力耦合本构关系的简化与应用非常有意义。
     (4) 针对建筑钢结构中常用的Q235钢拉压杆试件进行了磁力耦合试验研究,寻找出了应力对Q235钢磁滞回线影响的变化规律,建立了不同外磁场下Q235钢拉压杆应力与磁导率关系试验结果图。确定出了最佳的测试激励外磁场区间。Q235钢拉压杆的磁导率受应力和外磁场两个参数变化的影响,根据试验数据结果,采用正交试验的数值回归分析方法,得到了磁导率随应力和外磁场两个变量的双参数回归计算公式,由该回归公式的计算结果,建立了磁导率随应力和外磁场变化而变化的三维对应关系图。显著性分析表明,外磁场变化对磁导率的影响比应力大。计算结果与试验结果吻合较好。
     (5) 使用理论建立的本构关系,代入耦合场参数,得到了不同外磁场和不同应力下的H-B关系模型,用ANSYS有限元程序进行计算。通过设定跑道型线圈,设定线圈匝数,由线圈通电流产生磁场,钢杆件置于感生磁场中被磁化加载的计算方法,得到了不同外磁场和不同应力条件下的磁导率计算结果。分析了不同的线圈匝数产生的外磁场的大小,计算表明在试件条件下线圈8000匝时的感生磁场已经容纳了最佳的测试外磁场区间。分析比较表明,理论计算、试验结果与有限元计算得到的应力对磁导率影响的变化规律一致,数据符合较好,说明采用这种有限元计算的方法是可行的。在确定本构关系的条件下,采用这种模拟计算方法,计算结果可
From a new perspective, focusing on the relationship between the magnetic properties and stress of ferromagnetic material, the stress NDT&E for steel structure are researched in the thesis. This problem includes as follows: basic principle and theory, magneto-mechanical coupling model, application method, key realizing technology and so on. The dissertation research on NDT&E theory and application based on magnetic-mechanical coupling effect for steel structure is a daring explorations, which compensate the lack that there haven't been application of magnetic NDT&E to test stress for steel structure in civil engineering in China. Compared with other non-destructive techniques, the magnetic NDT&E for steel structure is a new promising technique in the future. The summary is listed below:(1)According to the ferromagnetic basic theory, the basic principle of magnetic NDT E for steel structure is analyzed. Theoretical major analyzes the influence of stresses on movement and change modes of magnetic domains in ferromagnetic materials and points out that the main modes stress influence movement of domains is the movement of domain wall and rotation of magnetic torque of domain. So the magnetic characteristic will be changed, and magnetic hysteresis loops have different feature. It is key that how to solve the relationship between the magnetic properties of steel structure and stress, or how to deduce the constitutive relation.(2)The model for steel structure stress NDT&E is set up and a simply constitutive relation expression of magnetic-mechanical coupling effect according to much theory deduction and analysis is deduced in the paper. The formula reveals the function relationship between magnetic properties change and stress of steel structure & member under external force. The constitutive relation is foundation of theory for experiment research and can guide stress testing for practical steel structure.(3)In coupling situation, a coupling parameter is put forward, which thinks over magnetic-mechanical coupling effect. Based on experiment, an experience formula of the coupling parameter is gained by numerical regression analysis methods of orthogonal experiment calculation, which has important significance for revising the magnetic-mechanical coupling constitutive relation formula The stress has more influence than magnetic on the coupling parameter.(4)The magnetic-mechanical coupling experiment of Q235 steel rod in building structure is completed in the paper for the first time. Q235 steel is a ferromagnetic material and is most extensively used for structure engineering. But there is few research on the magnetic properties changes by applying external loads for this sort of low carbon steel. Experimental measurements of magnetization curve are
    presented, and magnetic hysteresis loops have changes due to undergoing an external variable stress for Q235 Steel Rod. When in the stage of the level of magnetization saturation hasn't been arrived, the experimental results showed that the permeability under 0 stress is smaller than under tensile stress and bigger than the permeability under compressive stress. While magnetization arrived at the level of saturation, the permeability under 0 stress is bigger than both under tensile stress and under compressive stress. If the tensile stress increase, the permeability of Q235 steel rod tends to decrease, if the compressive stresses increase, the permeability of Q235 steel rod tends to increase. This mutual influence relation provides an experimental foundation for the magnetic NDT&E of steel structure later. The theory analysis of the simplified constitutive relation expression is an agreement with the experimental results of magnetic hysteresis according to the qualitative analysis. Both of them are mutually confirmed. From quantitative analysis and contrast, in different external magnetic situation, the experimental result figure of Q235 steel rod magnetic-mechanical constitutive relation is set up for the first time. A best numerical range of exciting magnetic is determined. The permeability is a function of both external magnetic and stress. According to experiment results, an experience formula of the permeability is gained by regression analysis methods of orthogonal experiment numerical calculation, in which calculation error is very small. The change of magnetic field has more influence than stress on the permeability. A three dimension figure of permeability-stress corresponding relation is gained according to the result of numerical calculation. If there were many times reference of experimental results, and the experience formula of the permeability-stress corresponding relation will be made a demarcate according to these data, then a more exact testing result will be obtained.(5) In different external magnetic situation and different stress situation, the H-B constitutive relation model have been gained by the theoretical constitutive relation expression formula of magnetic-mechanical coupling effect and by the coupling parameter that is revised by the experiment The H-B constitutive relation model is numerical calculation by the commercial finite element program ANSYS, which is attempts to simulate die increasing part of the H-B curve of Q235 steel which is in uniaxial stress stage. By setting up the runway coil, an external magnetic can be induction by the runway coils. When the coil's number is 8000, the induction external magnetic has included the best numerical range of measure external magnetic. The ANSYS numerical calculation results show that the H-B curve can be gained, and permeability-stress corresponding relation can be gained according to the result of numerical calculation. The change regularity of permeability influenced by stress can be reflected according to calculation results. According to the calculation analysis, the theory and experiment and ANSYS calculation are identical and are mutually confirmed. The numerical method by amending ANSYS program is available. The error is mainly corrected with the numerical of constitutive relation
    model. If the numerical value that is selected has more representation character, the calculation results are closer to real values.(6) How to measure magnetic is another key technology. Aim at magnetizing and measure magnetic, several concretized suggest that can be suitable for testing stress of building steel structure are posed according to section shape of steel structure member, which is Hie basement of how to develop testing equipments by magnetic-mechanical coupling for steel structure.(7)Several key technologies that how to realize stress NDT&E by magnetic-mechanical coupling for steel structure are discussed, and the accuracy of stress testing result is very depended on the magnetizing and magnetic signal measure and processing. A initial route of how to realize stress testing technology is put forward, whose most key problem is how to measure the value of magnetic characteristic parameter of steel structure member under coupling influenced by stress and magnetic. The magnetizing technology is the first key step, whose key problem is to determine the best numerical range of measure external magnetic. Magnetic signal measurement is the second key step, which includes how to produce magnetic signal and how to measure magnetic signal, and the transformation of magnetic signal is core, in which the key problem is how to define the magnetic-mechanical coupling constitutive relation. The processing technology is the third key step, which includes how to magnify and filter magnetic signal and other key segment. The anti-inference and demagnetization technology are of necessity.
引文
[1] 李国栋编著.当代磁学[M].合肥:中国科技大学出版社,1999年
    [2] 宛德福编著.磁性理论及其应用[M].武汉:华中理工大学出版社,1996年1月第1版
    [3] 戴道生,钱昆明.铁磁学(上册)[M].北京:科学出版社,2000年6月
    [4] 钟文定.铁磁学(中册)[M].北京:科学出版社,2000年6月
    [5] 廖绍彬.铁磁学(下册)[M].北京:科学出版社,2000年6月
    [6] 田民波编著.磁性材料[M].清华大学,2001年4月第1版
    [7] 姜寿亭,李卫编著.凝聚态磁性物理[M].北京:科学出版社,2003年10月第1版
    [8] 李科杰主编.新编传感器技术手册[M].北京:国防工业出版社,2002年1月第1版
    [9] 冯端等著.金属物理学,第四卷 超导电性和磁性[M].北京:科学出版社,1998年6月第—版
    [10] 冯雪.铁磁材料本构关系的理论和实验研究[D].清华大学博士学位论文,2002年11月
    [11] 王社良.磁-力耦合式检测系统的基本理论与工程应用技术研究.国家自然科学基金申请书,2002年
    [12] D.L.Atherton, D.C.Jiles, Effects of stress on magnetization[J].NDT International, 1986,19(1):15-19
    [13] D.C.Jiles, Review of magnetic methods for nondestructive evaluation[J]. NDT International, 1988,21 (5):311-319
    [14] D.C.Jiles, Review of magnetic methods for nondestructive evaluation (Part2) [J].NDT International, 1990, 23(2):83-92
    [15] MOHAMMED SARBIR, CONSTITUTIVE RELATIONS FOR MAGNETOMECHANICAL HYSTERRESIS IN FERROMAGNETIC MATERIALS[J], Int. J. Engng Sci,1995,33(9): 1233-1249
    [16] J. Pearson,P.T.Squire,M.G. Maylin, and J.G.Gore, Biaxial Stress Effects on the Magnetic Properties of Pure Iron[J], IEEE TRANSACTIONS ON MAGNETIC,36(2000)5:3251-3253
    [17] K.J.Stevens, Stress dependence of feeromagnetic hysteresis loops for two grades of steel[J], NDT&E International,33(2000) 111-121
    [18] 陈慧余.磁无损检测和评估[J].实验力学,1991,6(1):96-115
    [19] 王威,王社良,苏三庆.钢铁材料结构构件工作应力的检测方法及特点[J].钢结构,19(5):43-46,2004.10
    [20] 王威,王社良,苏三庆,徐金兰.基于磁特性的钢结构无损检测理论初探[J].工业建筑(增刊),34卷(第370期):572-574转568,2004年6月
    [21] 王威,王社良,苏三庆,徐金兰.Barkhausen效应检测铁磁类材料结构构件应力的机理和应用[J].工业建筑(增刊),34卷(第370期):548-552,2004年6月。
    [22] 王威,王社良,苏三庆.钢铁材料结构磁力耦合检测机理[J].建筑技术开发,31(7):16-17,2004.7
    [23] 倪振行.钢网架球管焊缝超声波检测[J].无损检测,2001,23(10):449-451
    [24] 周在杞,夏樑,刘松平.钢网架结构超声波检测及其质量分级[J].无损检测,2001,23(6):243-253
    [25] 沈建中,李宗津,张之勇.土木工程结构的无损检测技术及其应用[J].无损检测,2000,22(11):497-500
    [26] 刘征,花崎绂一等.无损检测技术的发展及其研究领域[J].中国仪器仪表,97.5
    [27] 李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,第22卷第3期,2002年6月
    [28] 王仲生主编,万小鹏副主编.无损检测诊断现场实用技术[M].北京:机械工业出版社,2002年9月第1版
    [29] 秦树人主编,张洪鹏,罗德扬副主编.机械工程测试原理与技术[M],重庆大学出版社,2002年4月第1版
    [30] 侯兆欣.钢结构工程施工质量验收规范GB50205-2001内容简介[J].施工技术,2002,31(2):20-22
    [31] 侯兆欣,闫莉.钢结构工程施工质量验收规范编制简介[J].施工技术,2001,30(11):42-44
    [32] 石振铎.钢焊缝射线照相检验验收质量分级探讨[J].无损检测,1995,17(6):160-163
    [33] 尚庆祥,唐宏伟.高层钢结构现场安装焊缝的超声波探伤[J].施工技术,1999,28(6):23-24
    [34] 吴新旋,张仁瑜.无损检测技术在建设工程中的应用与发展[J].施工技术,1998.119-10
    [35] 陈积懋.无损检测新技术20年回顾[J].无损检测,1998,20(7):181-185
    [36] 罗刚,施养抗.钢筋混凝土构件中钢筋锈蚀量的无损检测方法[J].福建建筑,2002年4期:55-57
    [37] 刘沐宇,袁卫国.桥梁无损检测技术的研究现状与发展[J].中外公路,2002,22(6):34-38.
    [38] 田迎春,杜守军,无损检测技术在土木工程中的新发展[J].无损检测,2002,25(5)增刊:296-298
    [39] 李建文,徐彦霖,王增勇.焊缝无损检测技术进展[J].CNIC-01645,CAEP-0107
    [40] 霍凯成.建筑结构无损检测方法简介[J].无损检测,2002,24(3):137-138
    [41] 林维正.从15届世界无损检测会议看土木工程无损检测的进展[J].无损检测,2002,24(3):123-125
    [42] 国家标准:钢结构工程施工质量验收规范[M].GB50205-2001
    [43] 徐伟生主编.建筑工程质量检测手册[M].中国建工出版社,2003年7月第1版
    [44] 中国钢结构协会编著.建筑钢结构施工手册[M].中国计划出版社,2002年5月第1版
    [45] 康宜华,武新军,杨叔子.磁性无损检测技术中的磁化技术[J].无损检测,21(5):206-209转225,1999
    [46] 解源,彭超男.磁性无损检测技术[J].集美大学学报,6(4):322-326,2001
    [47] 康宜华,武新军,杨叔子.磁性无损检测技术中的磁信号测量技术[J].无损检测,21(8):340-343,1999
    [48] 康宜华,武新军,杨叔子,磁性无损检测技术中的信号处理技术[J],无损检测,22(6):255-259,2000
    [49] 何岭松,周义刚,康宜华.数字化电磁无损检测信号的频域数字滤波[J].无损检测,25(4):195-197,2003
    [50] 解源,康宜华.磁性无损检测装置抗干扰技术[J].无损探伤,27(4):10-13,2003
    [51] 刘兴民.关于退磁方法的讨论[J].宇航计测技术,22(5):13-15,2002
    [52] 金建华.录井钢丝裂纹定量检测原理及装置的研究[D].华中科技大学硕士学位论文,1997
    [53] 杨叔子,康宜华.钢丝绳断丝定量检测原理与技术[M].北京:国防工业出版社,1995
    [54] 刘兴明.仪表材料[J].1976(2):18
    [55] 软磁材料音频损耗和磁导率测量标准[R].北京:中国计量科学研究院,1979.
    [56] 梁伟.软铁磁材料的裂纹问题和SAW传感器的声传播研究[D].西安交通大学博士学位论文,2000年4月
    [57] F.Tang, A.L.Lu, H.Z.Fang, J.F.Mei, Effect of magnetic treatment on magnetostrictive behaviour of HT70 steel[J], Materials Science and Engineering A248(1998)98-100
    [58] 唐非,鹿安理,梅俊峰,方慧珍.磁场处理降低残余应力过程中应力应变的测量[J].中国机械工程,1997年8卷6期:107-108
    [59] 杨东利.超磁致伸缩执行器及其在主动振动控制中的应用研究[D].浙江大学硕士学位论文,2002.3
    [60] 胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅰ)[J].稀土金属材料与工程,2000,29(6):366-369
    [61] 胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅱ)[J].稀土金属材料与工程,2001,30(1):1-4
    [62] 吴安国.零磁致伸缩非晶磁性传感器—磁性传感器的现状和未来(一)[J].磁性材料及器件,1994,25(1):42-47
    [63] 吴安国.磁致伸缩型非晶磁性传感器—磁性传感器的现状和未来(二)[J].磁性材料及器件,1994,25(3):34-40
    [64] 吴安国.磁致伸缩型其他磁性传感器和传动器—磁性传感器的现状和未来(三)[J].磁性材料及器件,1995,26(1):32-36
    [65] 吴安国.磁电阻元件及其相关传感器—磁性传感器的现状和未来(四)[J].磁性材料及器件,1995,26(2):15-22
    [66] 吴安国.其他磁性传感器—磁性传感器的现状和未来(五)[J].磁性材料及器件,1995,26(2):29-33
    [67] L. Gros, G. Reyne, C. Body, G. Meunier, Strong Coupling Magneto Mechanical Methods Applied to Model Heavy Magnetostrictive Actuators, IEEE TRANSACRIONS ON MAGNETICS[J], 1998, 34(5): 3150-3153
    [68] G. Reyne(Sie), J. C. Sabonnadiere etal, A SURVEY OF THE MAIN ASPECTS OF MAGNETIC FORCES AND MECHANICAL BEHAVIOUR OF FERROMAGNETIC MATERIALS UNDER MAGNETISATION[J], IEEE TRANSACRIONS ON MAGNETICS,VOL.MAG-23,NO.5,SEPTEMBER 1987
    [69] F.Liorzou,D.LAtherton, Effects of compressive stress on a steel cube using tensor magnetization and magnetostriction analysis[J], Journal of Magnetism and Magnetic Materials195(1999)174-181
    [70] M.Besbes, Z. Ren and A. Razek, Finite Element Analysis of Magneto-Mechanical Coupled Phenomena in Magnetostrictive Materials[J], IEEE TRANSACRIONS ON MAGNETICS, 1996, 32(3): 1058-1061
    [71] Jerzy Kaleta, Slawomir Tumanski, Jacek Zebracki, Magnetoresistors as a tool for investigating the mechanical properties of ferromagnetic materials[J], Joumal of Magnetism and Magnetic Materials160(1996) 199-200
    [72] 郭沛飞,贾振元等.压磁效应及其在传感器中的应用[J].压电与声光,2001,23(1)
    [73] 单成祥主编.传感器的理论与设计基础及其应用[M].国防工业出版社,1999年
    [74] 袁希艺.传感器技术手册[M].国防工业出版社,1986年
    [75] 王昭林.利用铁磁材料的逆磁致伸缩效应进行应力在线检测方法的研究[D].中国矿业大学博士学位论文,1998年
    [76] 王先冲.电场磁场理论及应用[M].北京:科学出版社,1986
    [77] 谢大吉,冯升波,王增梅.双向载荷作用下试件应力分布的理论和实验分析[J].实验力学,1997,12(1):139-144
    [78] 谢大吉,王增梅,冯升波.超高压壁厚钢管冷弯大变形残余应力的研究[M].全国第8届实验力学学术会议论文集,哈尔滨:哈尔滨工业大学,1995年
    [79] 杨大智主编.智能材料与智能系统[M].天津大学出版社,2000年12月第1版
    [80] 王威,王社良,苏三庆,徐金兰,磁致伸缩材料的应力感知机理,工业建筑,34(9):57-60,2004
    [81] 俞丽蓉编译.磁致伸缩传感器技术探测钢管隔热层下缺陷的研究[J].无损探伤,2002(4):36-38
    [82] 赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,1985
    [83] 王昭林.铁磁材料应力的磁弹性检测方法[J].煤矿机械,1998年第1期:36-37
    [84] 文西芹,刘成文.基于逆磁致伸缩效应的残余应力检测方法[J].传感器技术,2002,21(3):42-44
    [85] 罗建豪.无损残余应力测量技术及其新技术[J].力学与实践,25(4):7-10转11,2003
    [86] J.M.Makar, A preliminary analysis of failures in grey cast iron water pipes [J], Engineering Failure Analysis 7(2000)43-53
    [87] J.M.Makar, B.K.Tanner, The effect of stresses approaching and exceeding the yield point on the magnetic properties of high strength pearlitic steels[J], NDT&E International,31 (1998)117-127
    [88] J.M.Makar, B.K.Tanner, The in situ measurement of the effect of plastic deformation on the magnetic properties of steel Part Ⅰ-Hysteresis loops and magnetostriction [J], Journal of Magnetism and Magnetic Materials , 184(1998) 193-208
    [89] J.M.Makar, B.K.Tanner, The in situ measurement of the effect of plastic deformation on the magnetic properties of steel Part Ⅱ-Permeability curves [J], Journal of Magnetism and Magnetic Materials[J], 187(1998)353-365
    [90] J.M.Makar, B.K.Tanner, The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels[J], Joumal of Magnetism and Magnetic Materials,222(2000)291-304
    [91] J.M.Makar, Magnetic field techniques for the inspection of steel under concrete cover[J], NDT&E International,34(2001)445-456
    [92] 李强.磁弹性基本理论及应用研究[D].北方交通大学博士学位论文,1995年11月
    [93] 穆向荣.巴克豪森效应在无损检测中的应用[J].无损检测,1989,11(8):229-232
    [94] 李强,刘志明,缪龙秀,袁祖贻.高速客车转向架残余应力的试验研究[J].实验力学,1999,14(2): 260-266
    [95] K Tiitto, Use of Barkhausen effect in testing for residual stress and material defect[J]. Nondestrucive Testing-Australia, 1989, 26(2): 36-41
    [96] 祁欣,于石生,赵亚舒.Barkhausen效应测定铁磁材料内应力[J].哈尔滨科学技术大学学报,1993,17(3):56-59
    [97] 王存龙,王新力.巴克豪森效应在无损检测领域的应用[J].兵器材料科学与工程,1994,17(1):63-68
    [98] 庄又青.利用巴克豪森效应综合评价材料表面质量[J].无损检测,1994,16(2):41-43
    [99] 彭志方,王立光,杜凤牧,徐约黄.焊接贝氏体—奥氏体钢管贝氏体钢侧的巴克豪森效应[J].电力建设,1999年3期:14—16转25
    [100] 穆向荣,王绍纯,姜志高.关于多功能磁弹性仪的研制[J].仪器仪表学报,1995,16(2):161-167
    [101] 穆向荣,何敬礼,姜志高,王绍纯.多功能磁弹性仪及其工程应用[J].无损检测,1996,18(2):339-342
    [102] 陈慧余,张晓卫.用磁性探头检测承受偏心荷载的开口钢环的应力分布[J].实验力学,1993,8(2):119-124
    [103] 马咸尧,孙大千.巴克豪森应力效应的研究[J].华中理工大学学报,1994,22(9):29-33
    [104] 王学文,陈刚,李华屏.用500C型应力仪测定球罐焊接残余应力[J].石油化工设备,1998,27(5):24-27
    [105] 李强,周则恭.基于磁弹性仪实测加工残余应力改进曲轴加工工艺[J].山西机械,1994年2期:4-6
    [106] 姚玲森编著.桥梁工程[M].北京:人民交通出版社,1985年12月第一版,2003年7月印刷
    [107] 史家钧,兰海,郭志明.桥梁健康监测中的若干问题[R].中日结构减振及健康监测研讨会暨第三届中国结构抗振控制年会,上海,2002年12月
    [108] 任吉林等编著.金属磁记忆检测技术[M].中国电力出版社,2000年12月第1版
    [109] 林俊明,林景春,林发炳,萨辉.基于磁记忆效应的一种无损检测新技术[J].无损检测,2000,22(7):297-299
    [110] 高春法,宋凯,任吉林,朱辉,周宇,唐囡.电站铁磁构件早期损伤无损检测方法的研究[J].南昌航空工业学院学报,2002,16(4):77-80
    [111] 王威等,磁力效应及其在应力检测中的应用,第二届全国土木工程研究生学术论坛会议论文集:497-501,结构工程师(增刊),上海,同济大学,2004年11月
    [112] 黄松龄,李路明,汪来富,刘时风.用金属磁记忆方法检测应力分布[J].无损检测,2002,24(5):212-214
    [113] 任吉林等.金属磁记忆检测技术[J].无损检测,2001,23(4):154-156
    [114] 耿荣生.磁记忆检测技术在飞机结构构件早期损伤监测中的应用前景[J].无损检测,2002,24(3):118-122
    [115] 丁辉,张寒,李晓红,文习山.磁记忆检测裂纹类缺陷的理论模型[J].无损检测,2002,24(4):78-80
    [116] 任吉林等.金属磁记忆检测机理的探讨[J].无损检测,2002,24(1):29-31
    [117] 林俊明,林发炳,林春景,林胜福.EMS-2000金属磁记忆诊断仪的研发[J].无损检测,2002,24(4):168-170
    [118] 戴光,王文江,李伟.不同构件的磁记忆检测及分析方法研究[J].无损检测,2002,24(6):262-266
    [119] 王文江.磁记忆检测技术与应用方法研究[D].大庆石油学院硕士学位论文,2003年2月
    [120] 袁琪,焦民,徐允谦.金属磁记忆方法在焊缝质量检测中的应用[J].无损检测,2002,24(12):39-541
    [121] 林俊明,余兴增,林春景,林发炳.多通道金属磁记忆数据分析处理系统[J].无损检测,2002,24(11):492-493
    [122] 池永滨,刘宇哲,胡先龙,马德举.汽轮机叶片金属磁记忆诊断技术[J].无损检测,2002,24(10):440-442
    [123] 刘三江,李邦宪,周宇峰,康记黔.金属磁记忆检测技术概况及初步应用[J].无损检测,2002,24(9):400-402
    [124] 任吉林等.磁记忆检测技术在飞机起落架检测中的应用[J].无损检测,2002,24(8):346-348
    [125] 朱孝谦.磁声发射[J].实验力学,1991,6(3):327-332
    [126] 李家伟,陈积懋主编.无损检测手册[M].北京:机械工业出版社,2004年2月第1版
    [127] 侯炳麟,周建平,彭湘,许子龙.磁声发射在钢轨性能无损检测中的应用研究[J].实验力学,1998,13(1):98-104
    [128] 徐约黄,杜凤牡,沈功田.无损检测内应力的新方法—磁声发射[J].无损检测,11(5):136-139,1989.
    [129] 郭盈,徐约黄,杜凤牡.磁声发射源及其机制的研究[J].武汉大学学报,1990年4期:39-45
    [130] 马成尧,孙大千,邱保文,甘翠化.利用磁声发射测量钢铁材料表面应力[J].华中理工大学学报,1996,24(7):40-42
    [131] 马咸尧,孙大千,邱保文,甘翠华.利用磁声法测量钢铁构件表面应力[J].华中理工大学学报,1996,24(7):40-42
    [132] 马咸尧,孙大千,肖建中,朱孝谦.拉应力对磁畴壁运动及磁声发射行为的影响[J].华中理工大学学报,1992,20(6):25-30
    [133] 马咸尧,邱保文,孙大千,陶景光.弯曲应力状态的磁声发射效应[J].华中理工大学学报,1995,23(12):109-113
    [134] 马咸尧,孙大千,肖建中,陈嘉林.16Mn钢中残余应力的磁声发射效应[J].华中理工大学学报,1992,20(3):51-55
    [135] 马咸尧,孙大千,肖建中,朱孝谦.45钢扭转过程中磁声发射效应的研究[J].华中理工大学学报,1995,23卷增Ⅰ:37-43
    [136] Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength[J]. NDT&E Intemational, 1981,14(5):255-262
    [137] Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength-Part 2: Biaxial stress[J]. NDT&E International, 1982, 15(2): 91-97
    [138] Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength-Part 3: Practical applications[J]. NDT&E Intemational, 1983, 15(2): 59-65.
    [139] 唐一凡.《碳素结构钢》(GB700-800)标准编制情况综述[J].钢结构,2001,16(1).
    [140] Mohammed Sarbir, Constitutive relations for Magnetomechanieal Hysteresis in Ferromagnetic Materials[J],Int. J. Engng Sci, 1995, 33(9).
    [141] Jiles D.C. Theoretical modeling of the effects of anisotropy and stress on the magnetization and magnetostriction of TbDyFe[J]. J.Magn.Magn. Mater. 1994, 134: 143-160.
    [142] 唐兴伦,范群波,张朝晖,李春阳编著.ANSYS工程应用教程—热与电磁学篇[M].北京:中国铁道出版社,2003年第1版
    [143] 龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003年4月第1版
    [144] ANSYS入门手册(上)[M].美国ANSYS北京办事处,2000年1月
    [145] ANSYS入门手册(下)[M].美国ANSYS北京办事处,2000年1月
    [146] ANSYS基本过程手册[M].美国ANSYS北京办事处,2000年1月
    [147] ANSYS建模及分网指南[M].美国ANSYS北京办事处,2000年1月
    [148] ANSYS非线性分析指南[M].美国ANSYS北京办事处,2000年1月
    [149] ANSYS动力学分析指南[M].美国ANSYS北京办事处,2000年1月
    [150] ANSYS高级技术分析指南[M].美国ANSYS北京办事处,2000年1月
    [151] 王国强主编.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999年8月第1版
    [152] 小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004年6月第1版
    [153] 汪荣鑫编.数理统计[M].西安:西安交通大学出版社,1986年10月第1版
    [154] 赵选民,徐伟,师义民等编.数理统计[M].北京:科学出版社,2002年10月第2版
    [155] 冯士雍编.回归分析方法[M].北京:科学出版社,1974年7月第1版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700