红外成像ATR系统中的数字图像处理及识别检测分类技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外成像自动目标识别(ATR)技术在精确武器系统上的广泛应用,世界各国都在加速发展红外成像ATR技术的研究和装备的研制。本文根据“十一五”国防重点预研项目,对红外成像ATR系统研制过程中涉及到的若干问题作了较为深入的研究,主要研究成果如下:
     针对红外焦平面阵列器件(IRFPA)在大动态范围内应用的问题,提出了基于非线性快速卡尔曼滤波的非均匀性校正算法,该算法能对IRFPA实现非均匀性和非线性的双重校正,且运算量较小。为满足系统在某些实际场合应用的需要,针对传统基于场景统计的非均匀性校正算法的不足提出了一种基于平稳小波变换的非均匀性校正算法,该算法能在场景变化不充分的条件下对IRFPA进行非均匀性校正。
     由于红外图像在传输过程中易受到噪声的污染,加之红外成像本身具有图像细节模糊不清的特点,严重影响了后续目标检测以及目标匹配的精度,为此提出了一种基于联合直方图均衡及图像融合的红外图像增强算法,该算法能够有效抑制噪声,提高图像的对比度;另外该算法通过对原始图像进行非线性外推处理得到新的细节成分,在增强对比度的同时增强了图像目标的细节。针对传统帧累加以提高图像信噪比的方法易造成图像中运动目标模糊的情况,提出了一种改进的基于图像序列的图像增强算法,该算法通过准确的提取图像中目标的运动场,通过带有运动补偿的时空域滤波完成红外图像的2D-TDI增强,仿真实验的结果验证了算法的有效性。
     针对复杂背景下低信噪比红外弱小目标检测问题,提出了基于各向异性判决和双边滤波的红外弱小目标检测算法。该算法能对图像背景中精细部分进行有效预测,取得了较好的背景抑制效果。针对红外成像ATR系统需要精确的目标轮廓的要求,提出了一种基于蚁群算法的快速二维模糊熵图像分割算法,该算法使用二维模糊熵的设计思想并将其改进,推导出快速算法,最后使用蚁群算法优化其阈值求解,达到了快速、准确提取目标轮廓的目的。
     由于红外小目标的检测易受到各种虚假目标及随机干扰的影响,为此提出了一种基于模糊D-S证据合成理论的双色红外小目标识别算法,使用双波段红外成像,克服单波段红外成像易受干扰的缺点,并将模糊集理论与D-S证据合成理论融合,提高了对获得的目标信息识别的能力。针对红外面目标识别的问题,着重研究了小波矩不变量在红外成像目标识别方面的应用及其性能,该算法能对位置、尺度和视角发生变化的目标进行识别,仿真实验结果证明了该算法的有效性,取得了较满意的效果。
     此外,针对复杂战场应用环境,设计并研制了一套高帧频的红外成像ATR实时信号处理系统,该系统能实时稳定的完成红外成像ATR系统所需的一系列算法,具有工作帧频高、信号动态范围大、实时性强、处理精度高和灵活性等优点。
Along with the widespread application of infrared imaging automatic target recognition(IR ATR) on precision weapon system, the technology of IR ATR and its equipments are being rapidly developed all over the world. To meet the demand of the national defense key advanced research project for military, some problems regarding the IR ATR system are deeply studied in this dissertation, and some valuable results are obtained which are summarized as follows:
     In view of the application of infrared focal-plane array device (IRFPA) in a large dynamic range, a noniniformity algorithm based on no linear fast Kalman filtering is proposed which can implement both nonuniformity and nonlinearity correction to IRFPA with less calculation. Aiming at the applications in some special environment of the inadequate scene change as well as the meet of system practical application, a correction algorithm based on stationary wavelet transform is presented which can be carried on under such circumstance.
     The infrared imagery is easy contaminated by noise in the transmission process, in addition the infrared imagery has the properties of blurring and Details unclear, which affect the accuracy of target detection and matching seriously. For this reason a new adaptive enhancement algorithm is proposed based on joint histogram equalization with image fusion, which can suppress noise and enhances the contrast effectively. Moreover new details is added by the use of nonlinear filter which enhances the detail while enhances the contrast. Aiming at the shortage of motion target edge blur caused by traditional frame accumulation SNR enhancement method, a new image enhancement algorithm is proposed based on image sequence. This algorithm can extract the motion field accurately of the target and then time-spatial filtering is applied to implement the image enhancement process. The validity of the method is validated by experimental results.
     Facing with difficulties of the infrared dim target detection in the condition of complicated background and low image SNR, a detection algorithm based on anisotropic judgment and bilateral filtering is presented. This algorithm can make an effective prediction of image background with subtle differences, and achieves a good suppression result. In view of the accurate Object Figure which IR ATR system needed, a fast two-dimension fuzzy entropy image segmentation algorithm based on ant colony algorithm is proposed. The formula of the fast two-dimension fuzzy entropy is derived, and then ant colony algorithm is employed to optimize the solving of the image threshold so that the object figure is extracted quickly and accurately.
     As the detection of infrared small target can be easily affected by various false target and random disturbance, a dual band infrared small target recognition algorithm is proposed based on fuzzy Dempster-Shafter evidence theory. The use of dual band infrared imaging overcome the shortage of single band imaging, and the combination of fuzzy sets theory and Dempster-Shafter evidence theory improves the recognition capability on obtained target information. Aiming at large target recognition, the application of wavelet moment invariant in infrared target recognition and its performance are deeply studied in this dissertation. This algorithm is able to recognize target with variations in size, position and orientation effectively. Experimental results show the superiority of the algorithm, and achieve satisfactory results.
     In addition, considering the application in complex battlefield environment, a high frame-rate IR ATR real-time signal processing system is also proposed, which can implement a series of algorithms that IR ATR system needed. This system has the advantage of high frame-rate, large dynamic range, high operation speed and precision, vigorous flexibility and versatility, etc.
引文
[1]周立伟.目标探测与识别[M].北京:北京理工大学出版社,2002.
    [2]李朴莲.自动目标识别(ATR)技术发展述评[J].现代防御技术,2000,28(2):10-14
    [3]刘永昌,朱虹.红外寻的制导技术的发展现状与新趋势[J].红外技术,1999,21(4):7-12
    [4]王自勇,廖朝佩.红外图像自动目标识别技术进展[J].飞航导弹,1996,7:41-48
    [5]韩军利.红外图像目标识别技术研究[D].南京:南京理工大学.2004.
    [6]王祯祥.红外成像制导中地面典型目标的自动识别技术研究[D].航天三院,2004.
    [7]廖朝佩,自动目标识别器的发展现状与应用分析[J].红外与激光技术.1993,2:1-9.
    [8]陈红伟,杨树谦.自动目标识别技术在飞航导弹上的应用.红外与激光工程.全国光电技术学术交流会论文集,2004:822-824
    [9]Antoni Rogalski. Infrared detectors an overview. Infrared Physics& Technology, Vol.43, pp.187-210,2002.
    [10]陈伯良.红外焦平面成像器件发展现状[J].红外与激光工程.2005,34(1):1-7.
    [11]ZIEGLER J, BRUDER M, FINCK M, et al. AdVanced sensortechnologies for high performance infrared detectors[J]. Infrared Physics& Technology,2002.43:239-243.
    [12]TSAO T, WEN Zhiqing. Image-based target tracking through rapid sensor orientation change[J]. Optical Engineering,2002,41(3):697-703.
    [13]CABANSKI W, BREITER,R.MAUK K-H,et al. Status of third generation focal plane array IR detection modules at AIM[C]. Proceedings of SPIE, Infrared Technology and Applications XXIX,2003. Vol 5074:201-209.
    [14]NESHER O, ELKIND S, NEVO I, et at.480×384 element InSb detector with digital Processor[C]. Proceedings of SPIE, Thermosense XXVI,2004,Vol 5406:214-221.
    [15]余静,游志胜.自动目标识别与跟踪技术研究综述.计算机应用研究,2005,1:12-15
    [16]Gianluca Marsiglia, Luca Fortunato. Template matching techniques for automatic IR target recognition in real and simulated scenarios test and evaluations[C]. Proceedings of SPIE,2003, Vol 5094:159-169.
    [17]牛轶峰,伯晓晨,沈林成.基于可变模板的前视目标跟踪算法[J].国防科技大学学报. 2003(5):81-86
    [18]KnowOh-Kyn, Sim Dong-gyn, ParkRae-Hong. Robust hausdorff distance matching algorithms using Py-amidal structures[J]. Parrern Recognition,2001,34(7):2005-2013
    [19]张文景,许晓鸣,苏键锋.基于Hausdorff距离的2D形状匹配改进算法.中国图像图形学报.2000(2):106~109/
    [20]W. Thavmongkon, Ship Outline Feature Selection Using B—Spline Function, AD-A154236, 1984.
    [21]B. A. Parvin, A Binary Tree Classifier for Ship Targets[C]. SPIE. Conf,1983.
    [22]R. W. McLaren, H. Y. Lin. A Knowledge-Based Approach to Ship Idetification[C]. SPIE Vol. 635, pp257-267,1986.
    [23]B. Zvolanek, Autonomous Ship Classification from infrared images[J].IEEE EASCON-80 Record.1980.
    [24]J. Kneckt, J. Kovar, Automatic Classification of Infrared Ship Target[M]. TriServicee Workshop on Missile Ship Targeting,1982.
    [25]卢福刚.红外图像目标识别与跟踪方法研究[D].西北工业大学博士学位论文,西北工业大学,1998
    [26]李补莲.自动目标识别(ATR)技术发展述评[J].现代防御技术,2000.4 Vol(28),10-14.
    [27]J.F. Gilmore, et al. Target Detection in Neural Network Environment[C]. SPIE 1990, Vol.1293,pp301-318
    [28]康耀红,数据融合理论与应用[M].陕西:西安电子科技大学出版社,1997,3-19.
    [29]R.W. Helfrich, Programmable compensation technique for staring arrays[C], SPIE Vol.178:110-121,1979
    [30]A. F. Milton, F. R. Barone, M. R. Kruer, Influence of nonuniformity on infrared focal plane array performance[C], SPIE Opt. Eng, Vol.24(5):855-865,1985
    [31]M. J. Schulze, L. V. Caldwell, Nonuniformity correction and correctability of infrared focal plane arrays[C], Proc. SPIE, Vol.2470:200-211,1995
    [32]D.A. Scribner, K.A. Sarkady, M.R. Kruer, J.T. Caulfield, Adaptive nonuniformity correction for IR Focal Plane Arrays Using Neural Networks[C], Infrared Sensors:Detectors, Electronics, and Signal Processing, SPIE,1991, Vol.1541:100-109
    [33]John G. Harris and Yu-Ming Chiang, Nonuniformity correction of infrared image sequences using the constant-statistics constraint[J], IEEE Transactions on image processing, Vol.8, No.8,August 1999
    [34]Sergio N. Torres, Majeed M. Hayat, Kalman filtering for adaptive nonuniformity correction in infrared focal-plane arrays [J], J.Opt.Soc.Am.A, Vol.20,No.3, March 2003
    [35]Virgil E. Vichers, Plateau equalization algorithm for real-time display of high-quality infrared
    imagery[J], Opt. Eng.35(7) 1921-1926, July 1996
    [36]Silverman J. Signal processing algorithms for display and enhancement of IR images[J], SPIE,1993
    [37]Silverman J, Electro-Optical Displays, New York:M.A. Karim.1992:585-651
    [38]Mehmet K.Ozkan,et al. Adaptive motion-compensated filtering of noisy image sequence[J], IEEE transactions on circuits and systems for video technology, Vol.3, No.4, August 1993
    [39]Richard P. Kleihorst, Reginald L. Lagendijk, Biemond. Noise reduction of severely corrupted image sequences[J], IEEE,1993
    [40]N.Otsu, A threshold selection method from gray-level histogram, IEEE Trans. Systems Man and Cybernet.1978-8:62-66.
    [41]Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer Vision Graphics Image Processing,1985,29: 273-285
    [42]Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy [J]. Computer Vision Graphics Image Processing,1987,47:22-32
    [43]张敬贤,李玉丹,金伟其.微光与红外成像技术[M],北京,北京理工大学出版社,1995.
    [44]D. Saupe and D. V. Vranic.3D Model Retrieval With Spherical Harmonics and Moments. In Proceedings of the DAGM 2001 (editors B. Radig and S. Florczyk), Munich, Germany,2001, pp.392-397.
    [45]M. Novotni.3D Zernike Descriptors for Content Based Shape Retrieval, proceedings of The 8th ACM Symposium on Solid Modeling and applications, June 2003.
    [1]张敬贤,李玉丹,金伟其.微光与红外成像技术[M].北京:北京理工大学出版社,1995
    [2]刘普霖.红外物理与技术发展[J].世界科技研究与发展.2003.25(1):27-37
    [3]江照意;典型目标场景的红外成像仿真研究[D];浙江大学;2007年
    [4]Ben E E, et al. Spectral Radiation ofSky andTerrain at Wavelength land 20 Microns. II.Sky Measurements[J]. Journal ofOptical Society ofAmerica,1960.1313-1320
    [5]李朝晖,陈明.对于杂散背景中的目标红外成像特性研究[J].红外技术,2005,27(2):109-114.
    [6]徐南荣,卞南华.红外辐射与制导[M].北京:国防工业出版社,1997:204-211.
    [7]窦晓牧,岳晓奎,罗建军,等.喷气式飞机全向红外辐射特性计算方法[J].红外技术,1997,(5):5-7.
    [8]徐南荣,瞿荣贞.飞行器的红外特性[J].红外与激光工程,1999,(2):8-14.
    [9]陈炳峰,方亦浩,徐晓刚.飞机的红外辐射特征研究[J].航空兵器,2005,(5):30-32.
    [10]张海兴,张建奇,杨威.飞机红外辐射的理论计算[J].西安电子科技大学学报,1997,24(1):78-81.
    [11]张天序.成像自动目标识别[M],武汉:湖北科学技术出版社,2005.4,10~11.
    [12]艾俐.国外红外探测器的发展及其在制导兵器中的应用[J].红外技术,1996,18(3):5-11
    [13]韩立军.红外图像目标识别技术研究[D].南京理工大学硕士学位论文.2004.
    [14]钟任华,周茂树,何起矛.飞航导弹红外导引头[M].北京:宇航出版社,2003,3-27.
    [1]D. A. Scribner, M. R. Kruer, C. J. Gridley, Physical Limitations to Nonuniformity Correction in Focal Plane Arrays, SPIE, Vol.865:185-201,1987
    [2]R.W. Helfrich, Programmable compensation technique for staring arrays, SPIE vol.178:110-121, 1979
    [3]C. L. Carrison and N. A. Foss, Nonuniformity compensation for staring infrared focal planes, SPIE,Vol.178:99-109,1979
    [4]To R. Hsing, Correction of pixel nonuniformity for solid-state imagers, SPIE Vol.292:218-224, 1981
    [5]A. F. Milton, F. R. Barone, M. R. Kruer, Influence of nonuniformity on infrared focal plane array performance, SPIE Opt. Eng, Vol.24(5):855-865,1985
    [6]刘会通,易新建.红外焦平面阵列非均匀性的两点校正及依据[J].红外与激光工程,2004,33(1):76~78
    [7]June KeunJi, Jae Ryong Yoon, Kyuman Cho, Nonuniformity correction scheme for an infrared camera includeing the background effect due to camera temperature variation, SPIE Opt. 2000,Vol.39,No.4:936-940
    [8]P.M. Narendra, Reference free non-uniformity compensation for staring arrays, SPIE, Vol.252:10-17,1980
    [9]P.M. Narendra, N. A. Foss, Shutterless fixed pattern noise correction for infrared imaging arrays, SPIE Vol.282:44-51,1981
    [10]P.M. Narendra, Scene-based nonuniformity compensation for imaging sensors, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(1):57-61,1982
    [11]D.A. Scribner et al, Nonuniformity correction for staring IR focal plane arrays using scene-based techniques, Infrared Detectors and Focal Plane Arrays, SPIE,1990,1308:224-233
    [12]John G Harris and Yu-Ming Chiang, Nonuniformity correction of infrared image sequences using the constant-statistics constraint, IEEE Transactions on image processing, Vol.8, No.8,August 1999
    [13]Sergio N. Torres, Esteban M. Vera, Rogrigo A. Reeves, et al, Adaptive scene-based nonuniformity correction method for infrared focal plane arrays, SPIE, Vol.5076:130-138,2003
    [14]D.A. Scribner et al, Nonuniformity correction for staring IR focal plane arrays using scene-based techniques, Infrared Detectors and Focal Plane Arrays, SPIE,1990,1308:224-233
    [15]D.A. Scribner, K.A. Sarkady, M.R. Kruer, J.T. Caulfield, Adaptive nonuniformity correction for IR Focal Plane Arrays Using Neural Networks, Infrared Sensors:Detectors, Electronics, and Signal Processing, SPIE[C],1991,1541:100-109
    [16]D.A. Scribner, K.A. Sarkady, M.R. Kruer, et al, Adaptive retine-like preprocessing for imaging detectors arrays, Proc. Of the IEEE international conference on neural networks, Vol.25:1955-1960,1993
    [17]M. M. Hayat, S. N. Torres, E. E. Armstrong, S. Cain, Model Base Real-time nonuniformity correction in focal plane array detectors, SPIE, Vol.3377:122-132
    [18]M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda, Statistical algorithm for nonuniformity
    correction in focal-plane arrays, OSA Applied Optics, Vol.38:772-780,1999
    [19]S. N. Torres, M. M. Hayat, E. E. Armstrong, B. Yasuda, A kalman-filtering approach for nonuniformity correction in focal-plane arrays sensors, SPIE, Vol.4030:196-205,2000
    [20]S. N. Torres, Esteban M. Vera, Rogrigo A. Reeves, et al, Adaptive scene-based nonuniformity correction method for infrared focal plane arrays, SPIE, Vol.5076:130-138,2003
    [21]拜丽萍,刘上乾.基于小波分析的红外焦平面阵列非均匀性校正算法[J].红外与激光工程,2003,32(4):364-367.
    [22]GB/T 17444-1998,红外焦平面阵列特性参数测试技术规范,国标1998.
    [23]D. L. Perry, E. L. Dereniak, Linear theory of nonuniformity correction in infrared staring sensors, SPIE Opt. Eng., Vol.32:1853-1895,1993
    [24]M. J. Schulze, L. V. Caldwell. Nonuniformity Correction and Correctability of Infrared Focal Plane Arrays. Proc. SPIE, Vol.2470, pp.200-211,1995.
    [25]M. J. Schulze, L. Calwell, Nonuniformity correction and correctability of Infrared focal Plan Arrays, Infrared Physics& Technology, Vol.36, pp.763-777,1995.
    [26]Roger Horman S, Hepfer Kenneth C, Zurasky Matthew, Uniformity Compensation for High Quantum Efficiency Focal Arrays [J]. SPIE,1996,2744:154-164
    [27]邓自立.卡尔曼滤波与维纳滤波:现代时间学列分析方法.哈尔滨:哈尔滨工业大学出版社,2001.
    [28]张有为.维纳与卡尔曼滤波理论导论.北京:人民教育出版社,1980.
    [29]丁玉美,高西全.数字信号处理.西安:西安电子科技大学出版社,1994.
    [30]S. N. Torres, M. M. Hayat. Kalman filtering for adaptive nonuniformity correction in infrared focal plane arrays[J]. J. opt. Soc. Am. A.2003.20:470-480
    [31]E.B.邓肯,A.A.尤什凯维奇.马尔可夫过程(定理与问题).北京:科学出版社,1988.
    [32]邓自立.最优估计理论及其应用.哈尔滨:哈尔滨工业大学出版社,2005.
    [33]Nason, GP.; B.W. Silverman (1995), The stationary wavelet transform and some statistical applications[C]. Lecture Notes in Statistics,103, pp.281-299.
    [34]Shensa, M.J. (1992), The discrete wavelet transform:wedding the a trous and Mallat Algorithms[J]. IEEE Trans, on Signal Processing, vol.40,10, pp.2464-2482.
    [35]Eric R.Fossum, Bedabrata Pain. Infrared Readout Electronics for Space Science Sensors:State of the Art and Future Directions[J]. SPIE,1993, vol.2020:262-282
    [36]ZHANG Tian-Xu, SHI Yan, et al. Study on The Property of Spatial Frequency of Nonuniformity Noise in IRFPA and The Improvement of Spatial Adaptive Nonuniformity Correction Technique[J] J.Infrared Millim. Waves,2005,24(4):255-260.
    [1]S.S.Y. Lau, Global image enhancement using local information, Electronics Letters, Vol.30, No.2:122-123,1994
    [2]Joung-Youn Kim, Lee-Sup Kim, and Seung-Ho Hwang, An advanced contrast enhancement using partially overlapped sub-block histogram equalization, IEEE International Symposium on Circuits and Systems:537-540,2000
    [3]K. Wongsritong, K. Kittayaruasiriwat, F. Cheevasuvit, K. Dejhan, and A.Somboonkaew, Contrast enhancement using multipeak histogram equalization with brightness preserving, IEEE 0-7803-5146-0:455-458,1998
    [4]Guillermo Sapiro, Vicent Caselles, Histogram modification via partial differential equations,
    IEEE 0-8186-7310-9:632-635,1995
    [5]J. Alex Stark, Adaptive image contrast enhancement using generalizations of histogram equalization, IEEE TRANSACTIONS ON IMAGE PROCESSING, Vol.9, No.5:889-896,2000
    [6]Virgil E. Vichers, Plateau equalization algorithm for real-time display of high-quality infrared imagery, Opt.Eng.35(7) 1921-1926, July 1996
    [7]Drimitrios S. Kalivas and Alexander A. Sawchuk, Motion compensated enhancement of noisy image sequence, CH2847-2/90/0000-2121,1900 IEEE
    [8]徐军,梁昌洪,张建奇.一种红外图像增强的新方法[J].西安电子科科技大学报,2000,27(5):546-549.
    [9]Ill M. Boyce, Noise reduction of image sequences using adaptive motion compensated frame averaging, IEEE J0-7803-0532-9/92,1992
    [10]Mehmet K. Ozkan, M. Ibrahim Sezan and A.Murat Tekalp, Adaptive motion-compensated filtering of noisy image sequence, IEEE transactions on circuits and systems for video technology,Vol.3, No.4, August 1993
    [11]Richard P. Kleihorst, Reginald L. Lagendijk and Jan Biemond, noise reduction of severely corrupted image sequences, IEEE 0-7803-0946-4/93,1993
    [12]James C. Brailean, Aggelos K. Katsaggelos, Recursive displacement estimation and restoration of noisy-blurred image sequences, IEEE 0-7803-0946-4/93,1993
    [13]章毓晋,图像工程——图像处理与分析(上),第一版,北京,清华大学出版社,1999,PP:73-82
    [14]Lioyd S P. Least Squares Quantization in PCM[J], IEEE Trans on IT,1982,28:129-137.
    [15]Shensa, M.J. (1992), The discrete wavelet transform:wedding the a trous and Mallat Algorithms[J]. IEEE Trans, on Signal Processing, vol.40,10, pp.2464-2482.
    [16]Andrew F Laine, Xuli Zong. A multiscale sub2octave wavelet transform for de2nosing and enhancement [J]. Proceedings of SPIE,1996,2825:238-249.
    [17]Yao Wang, Jorn Ostermann, Ya-Qin Zhang, Video Processing and Communications, Pearson Education, Inc. publishing as Prentice Hall,2002
    [18]Barron J L, Fleet D J, Beauchemin S S, Performance of optical flow techniques[J], International Journal of Computer Vision,12(1):43-77,1994
    [19]B. Alp, P. Haavisto, T. Jarske, K. Oistamo, and Y. Neuvo, Median based algorithms for image sequence processing, Proc. SPIE Visual Communications and Image Processing'90, Lausanne, Switzerland:122-134, Oct.1990
    [20]John M. M. Anderson, Georgios B. Giannkis, Image motion estimation algorithms using cumulants, IEEE Transactions on image processing, Vol.4, No.3, March 1995
    [21]Nader M. Namazi and Chong H. Lee, Nonuniform Image Motion Estimation from Noisy Data, IEEE Transactions on acoustics, speech, and signal processing, Vol.38, No.2, February 1990
    [22]N.M. Namazi and C.M.Fan, Kalman filter formulation of the nonuniform image motion estimation in transformed-domains, IEEE, CH 3381-1,1993
    [23]崔之估,江春,陈丽鑫译.A. Murat Tekalp著,数字视频处理,电子工业出版社,1998,pp.68-218.
    [24]Rafael C, Richard E.数字图像处理,第一版.北京:电子工业出版社,2002
    [25]Elliott C T. New detector for thermal imaging systems, Electron. Letter.,1981,17:312-3
    [1]Tom V T,Peli T,Leung M,et.al Morphology-based algorithm for point target detection in infrared backgrounds.SPIE.Apr 1993,19542-11.
    [2]Kotropoulos C,Pitas I.Adaptive LMS L-Filters for Noise Suppression in Images. IEEE Transactions on Image Processing.December 1996.5(12)1596-1609.
    [3]Matthews K E,Namazi N M.A Bayes Decision Test for DetectingUncovered-Background and Moving Pixels in Image Sequences.IEEE Transactions on Image Processing.May 1998.7(5)720-728.
    [4]Tonissen S M,Bar-Shalom Y.Detection of Low SNR Moving Targets with Time Varying Amplitude.International Symposium on Siganl Processing and its Applications,ISSPA,Gold Coast,Australia,25-30 August,1996.pp.29-32.
    [5]Tonissen S M,Evans R J.Techniques for Low SNR Target Detection and Tracking.International Symposium on Siganl Processing and its Applications,ISSPA, Gold Coast,Australia,25-30 August,1996.pp.21-24.
    [6]Silverman J,Mooney J M,Caefer C E.Temporal filters for tracking weak slow point targets in evolving cloud clutter.Infrared Physics&Technology.1996.37 695-710.
    [7]左震,张天序.基于小波变换的红外成像海面小目标检测算法.红外与激光工程.1998,6.27(3)42~45.
    [8]朱梦宇,赵保军,韩月秋.一种实用的红外弱小目标检测跟踪处理机研究.激光与红外.2002,12.32(6)407 409.
    [9]Burton M,Benning C.Comparison of imaging infrared detection algorithms. SPIE.1981.302 26-32.
    [10]Narayanan K A,Rosenfeld A.Image Smoothing by Local Use of Global Information.IEEE Transaction on Systems.Man.and Cybernetics.Dec 1981. SMC-11 (12)826-831.
    [11]王广君,田金文,柳健.基于局部熵的红外图像小目标检测.红外与激光工程.2000,8.29(4)2629.
    [12]Swanson M D,Tewfik A H. Fast Progressively Refined Image Retrieval[J].Journal of Electronic Imaging,1998,7(3):443-452
    [13]Haralick R M, and Shapiro L G. SURVEY:Image Segmentation Techniques[J]. Computer Vision, Graphics, and Image Processing,1985,29:100-132
    [14]Pal N R, and Pal S K. A Review on Image Segmentation Techniques[J]. Pattern Recognition,1993,26(9):1277-1294
    [15]Ziou D, Tabbone S. A multi-scale edge detector[J]. Pattern Recognition,1993,26(9):1305-1314
    [16]Brown MA, Blackwell KT, and KhalakHG et al. Multi-Scale Edge Detection and Feature Binding:An Integrated Approach[J]. Pattern recognition,1998,31(10):1479-1490
    [17]Brink A B. Gray level thresholding of images using a correlation criterion[J].Pattern Recognition Letters,1989,9:335-341
    [18]Mardia K V and Hainsworth T J. A spatial thresholding method for image segmentation[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1988,10:919-927
    [19]Sahoo P K, Soltani S, Wang AKC, Chen YC. A survey of thresholding techniques[J]. Computer Vision, Graphics and Image Processing,1988,41:233-260.
    [20]HallLO,BensaidAM,ClarkeLP, andVelthuizen RP et al. Acomparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain[J]. IEEE Trans. Neural Networks,1992,3(5):672-681
    [21]Lin J-S,Cheng K-S and Mao C-W. A Fuzzzy Hopfield Neural Network for Medical Image Segmentation[J]. IEEE Trans. Neural Science,1996,43(4):2389-2398
    [22]LimYWandd Lee SU. On the Color Image Segmentation Algorithm Based on the Thresholding and the Fuzzy c-MeansTechniques[J]. Pattern Recognition,1990,23(9):935-952
    [23]SangHo Park, Il Dong Yun, and Sang Uk Lee. Color Image Segmentation Based on 3-D Clustering:Morphological Approach[J]. Pattern Recognition,1998,31(8):1061-1076
    [24]徐军.红外图像中弱小目标检测技术研究[D].西安电子科技大学博士学位论文,西安电子科技大学,2001年.
    [25]M. Gabbouj, E.J. Coyle, N.C. Gallagher. An overview of median and stack filtering. Circuits,Systems, and Signal Processing,1992, 11(1):7-45.
    [26]李吉成,沈振康.强背景杂波条件下运动的弱小目标检测算法[J].红外与激光工程.2005,34(2):208~211
    [27]Tomasi C. Manduchi R. Bilateral filtering for gray and color images[C]. Proc Sixth Inter Conf Computer Vision.1998.839-846.
    [28]Perona P Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans on Pattern Analysis and Machine Intelligence.1990,23(7):1-30.
    [29]Gonzalez R C, Woods R E. Digital Image Processing.3rd. ed., Addison-Wesley,1992
    [30]N.Otsu, A threshold selection method from gray-level histogram, IEEE Trans. Systems Man and Cybernet.1978-8:62-66.
    [31]Pun T. A new method for gray-level picture thresholding using the entropy of histogram[J]. Signal Processing,1980,2:233-237.
    [32]Kapur J N, Sahoo P K, Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics and Image Processing,1985, 29:273-285.
    [33]Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer Vision Graphics Image Processing,1985,29: 273-285
    [34]Abutaleb A S.Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision Graphics Image Processing,1987,47:22-32
    [35]Brink A D.Thresholding of digital images using two-dimensional entropics[J]. Pattern Recognition.1992,25(8):803-808
    [36]刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101~105
    [37]Chen W T, Wen C H, Yang C W. A fast two-dimensional entropic thresholding algorithm[J]. Pattern Recognition,1994,27(7):885-893
    [38]H.D. Cheng, Y.H. Chen, X.H. Jiang. Thresholding using two-dimensional histogram and fuzzy-entropy principle[J]. IEEE Trans on Image Processing. Vol.9, pp.732-735,2000.
    [39]P.K.Sahoo, S.Soltani and A.K.C.Wong. A survey of threshold techniques[J]. Compute Vision Graphics Image Process, Vol.41,pp.233-260,1988.
    [40]L.A.Zadeh. Probability measures of fuzzy events[J]. Math. Anal. And Appl. Vol.23, pp.421-427,1968.
    [41]H.D. Cheng. Threshold selection based on fuzzy c-partition entropy approach[J]. Computer Vision and Image Understanding, Pattern Recognition. Vol.31, No.7, pp.857-870,1998.
    [42]Colorni A,Dorigo M,Maniezzo V.Ant system for job-shop scheduling [J].Belgian Journal of Operations Research,Statistics and Computer Science,1994,34(1):39-54.
    [43]Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem [J].IEEE Transactions on Evolutionary Computation,1997,1 (1):53-66.
    [44]Dorigo M,Bonabeau E.Theraulaz GAnt algorithms and stigmergy[J].Future Generation Computer Systems,2000,16:851-871.
    [1]张敬贤,李玉丹,金伟其.微光与红外成像技术[M],北京,北京理工大学出版社,1995.
    [2]周鼎新.对美国第三代肩射红外防控导弹(STINGER POST)导引头特色的分析[J],红外与激光技术,1984(3):1~10.
    [3]龚建勇,丁明跃,周成平.基于玫瑰线扫描双色信息融合目标识别方法,系统工程与电子技术,1998,20(7):1-6.
    [4]梁海岩.红外双色干扰技术研究.红外与激光技术,1989(1):20~25.
    [5]张奇,罗正发,唐义平.双波段成像及融合技术研究[J],红外技术,1998,20(6):27~31.
    [6]杜少军,陆启生.红外双色探测研究[J].红外技术,2000,22(2):36~38.
    [7]P.K.Sahoo, S.Soltani and A.K.C.Wong. A survey of threshold techniques[J]. Compute Vision Graphics Image Process, Vol.41,pp.233-260,1988.
    [8]L.A.Zadeh. Probability measures of fuzzy events[J]. Math. Anal. And Appl. Vol.23, pp.421-427,1968.
    [9]H.D. Cheng. Threshold selection based on fuzzy c-partition entropy approach[J]. Computer Vision and Image Understanding, Pattern Recognition. Vol.31, No.7, pp.857-870,1998.
    [10]王伟强,顾国昌.利用Shafer证据理论进行决策的改进算法[J].哈尔滨工程大学学报,1997,(2):68~76.
    [11]Shafer G Mathematical theory of evidence[M].Princeton N J:Princeton University Press,1976.
    [12]SMET P. The combination of evidence in the transferable belief model[J], IEEE Trans Pattern Anal Mach Intelligence,1990, (3):257-282.
    [13]CasaSent D,Wang Yu-chang. Automatic target recognition using new support vector machine[C]. IEEE International Joint Conference,2005,(1):84-89.
    [14]付伟,侯振宇,红外干扰弹的干扰机理与战术应用[J].激光与红外,2000,30(3):171-174.
    [15]张忠诚,孟庆华,沈振康.目标红外特性分析[J].红外技术,1999,21(7),26~28.
    [16]Hu.M Visual pattern Recognition by Moment Invariant [J]. IRE Trans. On Inf. Theory,1962,8: 179-187.
    [17]Li Y. Reforming the Theory of Invariant Moments for Pattern Recognition [J]. Pattern Recognition.1992,25(7):723-730.
    [18]C.Teh, R.T.Chin. On Image Analysis by the Method of Moments. IEEE Trans. On Pattern Analysis and Machine Intelligence.1988,10(4):496-513.
    [19]Teague M. Image Analysis by the General Theory of Moments [J].J. Opt. Soc. Amer,1980, 70(8):920-930.
    [20]Shen D, Horace H S Ip. Discriminative Wavelet Shape Descriptors for Recognition of 2-D Patterns [J].PatternRecognition,1999,32(2):151-165.
    [21]T. Adamek, N. O'Connor, Efficient Contour-based Shape representation and Matching, Proceedings of the 5th ACM SIGMM, Berkeley, California,2003, pp.138-143.
    [22]R. Azencott, F. Coldefy, L. Younes, Shape Matching of Two-Dimensional Objects, Proc. of the 13th International Conference on Pattern recognition,1996, pp.687-691.
    [23]D. Saupe and D. V. Vranic.3D Model Retrieval With Spherical Harmonics and Moments. In Proceedings of the DAGM 2001 (editors B. Radig and S. Florczyk), Munich, Germany,2001, pp.392-397.
    [24]M. Novotni.3D Zernike Descriptors for Content Based Shape Retrieval, proceedings of The 8th ACM Symposium on Solid Modeling and applications, June 2003.
    [25]DUDANI SA, BREEDING KJ, MCGHEE RB. Aircraft identification by moment invariants. IEEE Trans. On Computers.1977, Vol. C-26, pp.39-46.
    [26]R.R. Bailey, M. Srinath, Orthogonal moment features for use with parametric and non-parametric classifiers, IEEE Trans. PAMI 18(4) (1996) 389-399.
    [27]Mallat S. A Theory for Multiresolution Signal Decomposition:The Wavelet Representation. IEEE Trans. On Pattern Anal and Machine Intelligence,1989,11 (7):674-693.
    [28]徐旭东,周源华.基于小波矩不变量的模式识别方法.红外与毫米波学报.2000,19(3):215-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700