新疆巴楚—伽师地震液化初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震液化是地震作用后所引起的最显著的震害形式之一,对于地震液化现场的调查与勘察试验,是液化判别方法的基本来源。目前我国规范中的液化判别方法,是以30年前我国几次大地震液化调查数据建立起来的经验方法,对于我国不同地区工程地质条件的适用性还需要验证。
     2003年新疆巴楚地区发生6.8级地震,伴随大面积砂土液化发生,除极震区外,在北东方向距宏观震中40公里的地区及北北西方向距宏观震中50公里的地区均有分布,造成农田毁坏、道路裂缝、建筑物破坏和河流沟渠塌岸等灾害,是唐山、海城地震后近30年我国出现的最具规模的液化现象。
     本文主要工作和成果包括:
     (1)阐述了砂土液化问题研究发展过程和进展,介绍了2003年新疆巴楚-伽师6.8级地震基本概况和液化问题概况,阐明了此次地震液化问题的研究意义,提炼出了需要研究的科学问题。
     (2)对巴楚地区现有调查资料进行收集整理,并通过与唐山、海城地震液化宏观现象和液化震害对比,获取了此次巴楚-伽师地震液化及其震害特征的认识。
     (3)通过对现有地质资料进行整理,并与唐山、海城地震液化场地工程地质条件进行对比,获取了此次巴楚-伽师地震液化场地工程地质特征和液化发生条件的认识。
     (4)对巴楚液化区进行了勘察设计,确定了选取液化场地和非液化场地勘察点的基本原则,选取了勘察指标和设备,完成了41个场地的多指标测试,并通过典型剖面结果分析了测试结果的可靠性。
     (5)利用多指标现场试验数据,结合试验点土层柱状图判定了液化深度,研究了此次地震液化土层特征及与以往地震液化的异同,用本次地震现场标准贯入试验数据对《建筑抗震设计规范》GB50011-2001液化判别式进行了检验,对判别成功率问题进行了分析。
Liquefaction is one of the typical damages caused by earthquakes. Investigation of liquefied sites is the basic source of methods for estimating liquefaction potential. At present, the empirical methods for estimating liquefaction in aseismic design codes adopted in China is based on several major earthquakes occurred 30 years ago in China, thus the feasibility and applicability of the methods need to be verified in different geological conditions.
     Bachu-Jiashi earthquake (Ms6.8) which occurred in 2003 caused wide soil liquefaction. Except for the meizoseismic zone, areas which were 40km North-East to the epicenter and 50km North North-West to the epicenter have been observed with severe liquefaction phenomena, resulting in damage to farmland, roads and buildings and collapse of river and canal banks. Which is the most severe liquefaction after Tangshan, Haicheng earthquake nearly 30 years.
     The main contents and achievements of this dissertation include:
     (1) It describes the research progress and achievements on soil liquefaction, and introduces Bachu–Jiashi earthquake and earthquake-induced liquefaction. Also it explains the research significance on liquefaction and proposes scientific questions.
     (2) It collects the existing survey data of Bachu–Jiashi earthquake, and compares the liquefaction phenomena with those in Tangshan, Haicheng earthquakes to obtain the knowledge of liquefaction characteristics and hazard in Bachu–Jiashi earthquake.
     (3) The existing geological data is collected and compared with those in Tangshan, Haicheng earthquakes to obtain the knowledge of geological characteristics of liquefied sites in Bachu–Jiashi earthquake.
     (4) Investigation of liquefied sites in Bachu area was conducted. The principles to select liquefied sites and non-liquefied sites were determined. Selecting proper indices and equipments, multi-index tests were completed in 41 sites. The reliability of the results is assured by analyzing typical profiles.
     (5) Using the data of multi-index tests and site histograms, the depths of liquefied soils are determined. The characteristics of soil conditions are analyzed and compared with those in previous earthquakes. Using the standard penetration test data, the formula for estimating sandy soil liquefaction employed in" Code for Seismic Design of Buildings GB50011-2001" in China is verified. The results of successful judgments are discussed.
引文
[1]艾买提·乃买提.2003年2月24日新疆巴楚-伽师Ms6.8级地震加速度记录简介[J].内陆地震,2004,18(3): 254-259.
    [2]陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动,2002,22(1): 141-151.
    [3]陈国兴,张克绪,谢君斐.以剪切波速为指标的液化判别方法及其适用性[J].哈尔滨建筑大学学报,1996,29(1): 97-108.
    [4]陈国兴,李方明.基于径向基函数神经网络模型的砂土液化概率判别方法[J].岩土工程学报,2006,28(3): 301-305.
    [5]陈跃庆,吕西林.几次大地震中地基基础震害的启示[J].工程抗震,2001,2: 8-15.
    [6]陈希哲.土力学地基基础(第三版) [M].北京:清华大学出版社,1997.
    [7]曹振中.基于可靠性理论的砂土液化判别方法研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [8]戴洪军,郭孔中,Damien L'EXCELLENT.几种不同液化计算方法的对比分析[J].工程勘查,2006,9: 44-49.
    [9]方鸿琪,王锺琦,赵树栋等.唐山强震区地震工程地质研究[R].中国建筑科学研究院研究报告.1981.
    [10]范士凯,粟怡然.砂土液化工程地质判别法[J].资源环境与工程,2006,28(36): 595-600.
    [11]符圣聪,江静贝.基于静力触探的液化势概率估计和判别标准[J].工程抗震与加固改造,2005,27(1): 70-74.
    [12]高广运,水伟厚.上海苏州河故道砂质粉土液化综合判别[J] .工程勘查,2002,5: 35-37.
    [13]郭子雄.关于日本阪神地震震害现象的几点讨论[J] .华侨大学学报(自然科学版) ,1996,17(2): 157-161.
    [14]黄博,陈云敏,殷建华等.基于动三轴试验的现场液化判别剪切波速法[J] .水利学报, 2002,10: 21-26.
    [15]蒋玉谦.海城7.3级地震破坏特征及震害预测[J].地震研究,1985,8(1): 81-90.
    [16]刘恢先.唐山大地震震害[M].北京:地震出版社,1985.
    [17]刘颖,谢君斐等.砂土震动液化[M].北京:地震出版社,1984.
    [18]刘松玉,方磊,李仁民.SASW法在液化地基加固处理中的应用研究[J].东南大学学报(自然科学版),2000,30(5): 86-90.
    [19]刘红军,薛新华,乔社等. SASW法在粉土液化判别中的应用[J].地质与勘探,2004,40(4): 93-96.
    [20]刘康和,魏树满.瞬态面波勘探及应用[J].水利水电工程设计,2001,20(2): 31-33.
    [21]柳家海,柳家海,王富华.静力触探在岩土工程勘察中的应用体会[J].江苏煤炭,2001,3: 34-36.
    [22]李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报, 2005,14(2): 108-114.
    [23]鲁晓兵,谈庆明等.饱和砂土液化研究新进展[J].力学进展, 2004,34(1): 87-96.
    [24]罗福忠,胡伟华,赵纯青等.巴楚-伽师6.8级地震地质灾害及未来地震地质灾害[J].内陆地震,2006,20(1): 33-39.
    [25]马宝柱.2003年2月24日新疆巴楚-伽师地区6.8级地震[J].山西地震,2004,4: 42-44.
    [26]潘健,刘利艳.地震抗液化能力评估方法讨论[J].地震工程与工程振动,2006,26(3): 242-244
    [27]任红梅,吕西林,李培振.饱和砂土液化研究进展[J].地震工程与工程振动,2007,27(6): 166-167.
    [28]石兆吉,郁寿松,丰万玲.土壤液化势的剪切波速判别法[J].岩土工程学报, 1993,115(1): 74-80.
    [29]石兆吉,张荣祥,顾宝和.砂土液化判别和评价综合方法研究[J].地震工程与工程振动,1997,17(1): 82-88.
    [30]佘跃心,刘汗龙,高玉峰.场地液化势评价概率模型[J].工程勘察,2002,5: 4-7.
    [31]佘跃心,刘汗龙,高玉峰.关于场地液化评价的几点认识[J].地质与勘察,2003,39(4): 85-89.
    [32]佘跃心.关于饱和砂土液化判别方法的几点思考[J].公路,2002,8: 52-55.
    [33]谢君斐.关于修改抗震规范砂土液化判别式的几点意见[J].地震工程与工程振动,1984,4(2): 95-125.
    [34]谢君斐,江近仁.与编制样板规范有关的基础研究[R].中国地震局工程力学研究所研究报告.2000.
    [35]尹荣一,刘运明,李有利等.唐山地区地震液化与地貌之间的关系[J].水土保持研究,2005,12(4): 110-112.
    [36]喻萍,袁苏跃,王海莹.昆明地区粉、砂土液化判别存在问题的讨论[J].昆明理工大学学报,2004,29(2): 99-102.
    [37]袁钟.以剪切波速评价岩土工程特性[J].港工技术,2003,4: 48-51.
    [38]张克绪,谢君斐.土动力学[M].北京:地震出版社,1980.
    [39]张忠利.建设工程场地剪切波速的统计分析[D].哈尔滨:中国地震局工程力学研究所,2007.
    [40]张继红,顾国荣.双桥静力触探法判别上海薄夹层粘土地基液化研究[J].岩土力学,2005,26(10): 1652-1656.
    [41]朱小林,杨桂林.土体工程[M].上海:同济大学出版社,1996.
    [42]祝龙根,刘利民,耿乃兴.地基基础测试新技术[M].北京:机械工业出版社,1999.
    [43]中华人民共和国行业标准,建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [44]中华人民共和国行业标准,岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2001.
    [45]中华人民共和国国家标准,土工试验方法标准(GB/T50123-1999)[S].北京:中国计划出版社,1999.
    [46]中国科学院工程力学研究所,河北省地震局抗震组.唐山地震震害调查初步总结[M].北京:地震出版社,1978.
    [47]中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社,1979.
    [48] C.Hsein Juang, Sunny Ye Fang, Eng Hui Khor. First-Order Reliability Method for Probabilistic Liquefaction Triggering Analysis Using CPT[J]. ASCE,March 2006:337-350.
    [49] C.Hsein Juang, Haiming Yuan, Der-Her Lee. Simplified Cone Penetration Test-based Method for Evaluation Liquefaction Resisitance of Soils[J]. Journal of geotechnical and geoenvironmental engineering, January 2003: 66-80.
    [50] C.Hsein Juang, Tao Jiang, Ronald D. Andrus. Assessing Probability-based Methods for Liquefaction Potential Evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering. July 2002: 580-589.
    [51] Chih-Sheng Ku, Der-Her Lee, Jian-Hong Wu. Evaluation of soil liquefaction in the Chi-Chi Taiwan earthquake using CPT[J]. Soil Dynamics and Earthquake Engineering, 2004: 659-673.
    [52] Farhang Ostadan,Nan Deng,Ignacio Arango. Energy-Based method for liquefaction potential evaluation, Phase 1-feasibility study[J]. NIST GCR, August 1996: 96-701.
    [53] J. Ohbayashi, K. Harada, H. Fukada H.Tsuboi. Trends and Development of Countermeasure Against Liquefaction in Japan[J]. Proceedings of the 8th U.S. National Conference on Earthquake Engineering. No.1936, April 18-22, 2006.
    [54] K. Onder Cetin, Raymond B. Seed, Armen Der Kiureghian et. Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential[J]. Journal of geotechnical and geoenvironmental engineering, December 2004.
    [55] R.B. Seed, K.O. Cetin, R.E.S. Moss, A.M. Kammerer, R.E. Kayen, et. Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framwork[R]. Earthquake Engineering Research Center. EERC 2003.
    [56] Robb Eric S. Moss. CPT-Based Probability Assessment of Seismic Soil Liquefaction Initiation[D]. University of California at Berkeley. May, 2003.
    [57] R.D.Andrus , K.H.Stokoe. Evaluation of liquefaction Resistance of soils[J]. National Center for Earthquake Engineering Research (NCEER) Workshop. January 5-6,1996.
    [58] R.D.Andrus, K.H.Stokoe, R.M.Chung, J.A.Bay. Liquefaction evaluation of densified sand at approach to pier 1 on Treasure Island, California, using SASW method[S]. NISTIR6230, October 1998.
    [59] Rosenblueth E, Estra L. Probabilistic design of reinforced concrete buildings[J]. ACI Special Publication 1972.
    [60] Sheng-Yao Lai, Wen-Jong Chang, Ping-Sien Lin. Logistic Regression Model for Evaluation Soil Liquefaction Probability Using CPT Data[J]. Journal of geotechnical and geoenvironment engineering, June 2006: 694-704.
    [61] T. Leslie Youd, and Thomas L.Holzer. Piezometer Performance at Wildlife Liquefaction Site, California[J]. Journal of Geotechnical Engineering, Vol 120, No.6, June, 1994.
    [62] T.L.Youd,I.M.Idriss,Ronald D.Audrus. Liquefaction Resistance of Soil:Summary Report From The 1996 NCCEER and 1998 NCEER/NSF Workshops On Evaluation of Liquefaction Resistance of Soil[J]. Journal of geotechnical and geoenvironment engineering, October 2001: 817-833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700