BMSCs移植联合应用IN-1抗体修复大鼠急性脊髓损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells, BMSCs)移植联合髓鞘生长阻逆蛋白抗体IN-1(monoclonal antibody IN-1)对大鼠皮质脊髓束横断后脊髓损伤修复的影响及意义。
     方法:采用密度梯度离心与贴壁筛选法相结合制备大鼠骨髓间充质干细胞,选用清洁级健康Sprague-Dawley(SD)大鼠180只,体重250-300g,雌雄不限,随机分成手术对照组(n=60)、BMSCs移植组(n=60)、BMSCs移植联合IN-1组(n=60),每组又按照手术后时间随机平均分为1d、4d、7d、14d、21d和28d六个小组,每个小组10只。所有大鼠首先行蛛网膜下腔置管,然后在相当于T8椎板水平用做好标记的显微剪刀剪断脊髓的背侧2/3,建立大鼠皮质脊髓束横断损伤模型。其中手术对照组通过置管每次注入生理盐水5μl,而BMSCs组每次注入骨髓间充质干细胞悬液(5μl),IN-1和BMSCs联合作用组,每次注入IN-12.5μl和骨髓间充质干细胞悬液2.5μl,每天分为早、中、晚三次注射,最长持续1 w。每组中取5只,在手术前及手术后1d、1w、2w、3w及4w,采用BBB (Basso, Beattle, Bresnahan)评分评价运动功能,然后取出脊髓组织检测胶质纤维酸性蛋白(glial fibrillry acidic protein, GFAP)表达的变化。其余对照组及BMSCs移植组、BMSCs移植联合IN-1组动物于损伤后1d、4d、7d、14d、21d和28d六个时间点取出伤段脊髓,分别行RT-PCR(reverse transcription -polymerase chain reaction)检测GAP-43基因表达的变化,所得数据采用单因素方差分析进行统计学处理,P<0.05结果有统计学差异。
     结果:1、脊髓损伤后GAP-43 mRNA的表达呈现先升高后降低的趋势,其表达的高峰分别在脊髓损伤后7d、14d、21d时间点;2、移植BMSCs后三者mRNA的表达上调,联合应用IN-1后效果更加明显,各组相比有统计学意义(P<0.05)。3、脊髓损伤后双后肢瘫痪,BBB评分,2w、3w和4w点BMSCs移植组、BMSCs移植联合IN-1组移植组明显高于损伤对照组,有显著统计学差异(P<0.05);BMSCs移植联合IN-1组高于BMSCs移植组,有统计学差异(P<0.05)。4、GFAP免疫组化结果显示,BMSCs移植联合IN-1组平均灰度值明显小于其他两组,有显著统计学差异(P<0.05)。
     结论:(1)脊髓损伤后GFAP表达增加,而IN-1、BMSCs可以抑制GFAP表达,从而抑制胶质细胞的反应性增生。(2)IN-1、BMSCs可能通过上调GAP-43 mRNA的表达,从而对脊髓损伤后轴突再生起一定的促进作用。(3)BMSCs移植联合IN-1可促进损伤的脊髓神经的存活和再生,并互相协同作用,较单一应用BMSCs能更好的促进脊髓损伤修复和大鼠后肢功能恢复。
Objective:To study the bone marrow mesenchymal stem cell transplantation combined myelin growth IN-lon the rat corticospinal tract after transection of spinal cord injury repair and significance.
     Methods:By density gradient centrifugation and adherent filter prepared by combining bone marrow mesenchymal stem cells, Use of clean healthy Sprague-Dawley (SD) rats were 180, weight 250-300g, male or female, were divided randomly into operated group (n= 60), BMSCs transplantation group (n= 60), BMSCs transplantation in combination with IN-1 group (n= 60), each group was in accordance with the time after surgery were randomly divided into the 1d,4d,7d,14d, 21d and 28d of six groups, each 10. All rats first line of subarachnoid catheter, then the equivalent of T8 vertebral level and marked with micro scissors cut the spinal cord dorsal 2/3 rat corticospinal tract transection injury model. Including operon control group injeaticted with normal saline through the catheter every 5μl, and BMSCs injected into each group of bone marrow mesenchymal stem cell suspension (5μl), IN-1 and BMSCs joint action group, each injection and bone marrow IN-12.5μl mesenchymal stem cell suspension 2.5μl, every day is divided into early, middle, late third injection, the longest 1 w. Taking five in each group, before surgery and after surgery 1d, 1w,2w,3w, and 4w, with BBB (Basso, Beattle, Bresnahan) score assessment of motor function, and then remove the spinal cord tissues of glial fibrillary acidic protein (glial fibrillry acidic protein, GFAP) expression changes. The remaining control group and BMSCs transplantation group, BMSCs transplantation combined IN-1 animals after injury 1d,4d,7d,14d,21d and 28d out of six time points of injured spinal cord, respectively row RT-PCR (reverse transcription-polymerase chain reaction) detection of GAP-43 gene expression data obtained by single factor analysis of variance for statistical analysis, P<0.05 significantly different results.
     Results:1, spinal cord injury in GAP-43 mRNA expression increased firstly and then decreased, the peak of their expression after spinal cord injury at 7d,14d,21d time point; 2, after BMSCs transplantation increases the expression of three mRNA, combined with post-IN-1 was more obvious than in each group was statistically significant (P<0.05).3, paralysis of the posterior limbs after spinal cord injury, BBB score,2w,3w and 4w point BMSCs transplantation group, BMSCs transplantation and graft IN-1 group was significantly higher than the injured control group, there was a significant difference (P <0.05); BMSCs transplantation in combination with IN-1 group than in BMSCs transplantation group, significantly different (P<0.05).4, GFAP immunohistochemistry showed that, BMSCs transplantation in combination with IN-1 group, the average gray value lower than the other two groups, there was a significant difference (P<0.05).
     Conclusions:(1) GFAP expression after spinal cord injury, while the IN-1, BMSCs can inhibit the expression of GFAP, which inhibit the proliferation of reactive glial cells. (2) IN-1, BMSCs upregulated GAP-43mRNA expression, and thus on axonal regeneration after spinal cord injury play a role in promoting. (3) BMSCs transplantation in combination with IN-1 can promote the survival of spinal cord injury and regeneration, and mutual synergies, better than the single application of BMSCs to promote spinal cord repair and functional recovery of rat hind limb.
引文
[1]Homer PJ, Cage FH.Regenerating the damaged central nervous system [J]. Nature,2000,407(6807):963-970
    [2]Ye J, Wang ZhG, Zhu PF. Expression and localization of Nogo-A mRNA in rat nerve tissue [J]. Nat Med J China,2002,82(7):498-500
    [3]Wang XX, Guo XM, Yi LH, et al. Expression of Nogo-A protein and its significance in the central nervous of adult mice [J].Chin J Traum,2003,19 (11): 673-676
    [4]Schwab M E, Thoenen H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors [J].Neurosci,1985, 5(9):2415-2423
    [5]Josephson A, Trifunovski A,Widmer HR,et al.Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and human [J]. Comp Neurol,2002,453(3):292-304
    [6]Woolf CJ,Bloechlinger S.It takes more than two to Nogo [J].Science, 2002,297(5584):1132-1134
    [7]Chen MS,Huber AB,vander Haar ME,et al.Nogo-A is a myelin associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature,2000,403(6768):434-439
    [8]姜俊杰,陈树栋等.Nogo-A的研究进展[J].医学分子生物学杂志,2004,1(3):178-181
    [9]Schwab ME, Brosamle C. Regeneration of lesioned corticospinal tract fibers in the adult rat spinal cord under experimental conditions[J]. Spinal Cord,1997,35: 469-473
    [10]Brosamle C, Huber AB, Fiedler M, et al. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment[J]. J Neurosci,2000,20(21):8061-8068
    [11]王星星,查伟光,易林华等.生物素葡聚糖胺皮质脊髓束顺行示踪技术在大鼠脊髓损伤模型中的应用[J].中华神经外科杂志,2004,20(1):51~54
    [12]Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats [J]. Neurotrauma,1995,12(1):1-21
    [13]Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues J. Science,1997,276(5309):71—74
    [14]Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method J. Exp Hematol, 1974,2(2):83—92
    [15]Waller EK, Huang S, Terstappen L. Changes in the growth properties of CD34+, CD38-bone marrow progenitors during human fetal development J. Blood, 1995,86:710—718
    [16]Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1 J. Blood,1991,78:55 —62
    [17]Healy L, May G, Gale K, Grosveld F, Greaves M, Enver T. The stem cell antigen CD34 functions as a regulator of hematopoietic cell adhesion J. Proc Natl Acad Sci USA,1995,92(26):12240—12244
    [18]Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow J. Blood,1991,78:2848—2853
    [19]Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons J. Neurosci Res,2000,61(4):364 370
    [20]Hofstetter CP,Schwarz EJ,Hess D,et al.Marrow stromal cells from guiding strands in the injured spinal cord and promote recovery [J].Proc Natl Acad Sci USA,2002,99(4):2199-2204
    [21]Ankeny DP,McTigue DM,Jakeman LB,et al.Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats [J].Exp Neurol,2004,190(1):17-31
    [22]Satake K,Lou J,Lenke LGMigration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue [J].Spine,2004,29(18):1971-1979
    [23]Okano H,Ogawa Y,Nakamura M,et al.Transplantation of neural stem cell into the spinal cord after injury [J].Semin Cell Dev boil,2003,14(3):191-198
    [24]王星星,查伟光,易林华等.生物素葡聚糖胺皮质脊髓束顺行示踪技术在大鼠脊髓损伤模型中的应用[J].中华神经外科杂志,2004,20(1):51~54
    [25]Kobayashi NR,Fan DP,Giehl KM,et al.BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy,stimulate GAP-43 and Talphal-tubulin mRNA expression,and promote axonal regeneration.J Neurosci 1997;17(24):9583-95
    [26]CARRASCO J, PENKOWA M, GIRALT M, et al. Role of metallothionein-Ⅲ following central nervous system damage[J]. Neurobiol Dis,2003.13(1):22—36
    [27]MCLLVAIN V A, ROBERTSON D R, MAIMONE M M, et al. Abnormal thalamocortical pathfinding and term inalarbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice[J]. J Comp Neurol,2003.462(2):252—264
    [28]HIGO N, MURATA Y, OISHI T, et al. Developmental changes in the expression of growth -associated protein-43 mRNA in the monkey thalamus:northern blot and in situ hybridization studies[J]. Neuroscience,2005,136(2):497—507
    [29]CARULI D, BUFFO A, STRATA P. Reparative mechanisms in the cerebellar cortex [J]. Prog Eurobiol,2004,72(6):373—398
    [30]ONDARZA A B, YE Z, HULSEBOSCH C E. Direct evidence of primary afferent sprouting in distant segments following spinal cord injury in the rat: colocalization of GAP-43 and CGRP[J]. Exp Neurol,2003,184(1):373—380
    [31]MIELKE J G, COMAS T, WOULFE J, et al. Cytoskeletal, synaptic. and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development[J]. Brain Res Dev Brain Res,2005,160(2):275—286
    [32]MISHRA R, GUPTA S K, MEIRI K F, et al. GAP-43 is key to mitotic spindle control and centrosome—based polarization in neurons[J]. Cell Cyele,2008, 7(3):348-357
    [33]CEHN B, WANG J F, SUN X. Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells[J]. Biol Psychiatry, 2003,53(6):530—537
    [34]Sayer FT, Oudega M, Hagg T. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord[J]. Exp Neurol,2002,175(1):282-296.
    [35]Madsen JR, MacDonald P, Irwin N, et al. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats[J]. Exp Neurol,1998,154:673-683.
    [36]王刚,刘世清.高压氧对鼠损伤脊髓内神经生长相关蛋白表达的影响[J]。中华物理医学与康复杂志,2004,26(12):712—714。
    [37]赵凡,杨有庚,王江.大鼠完全脊髓横断动物模型的建立及完整胚胎脊髓移植后GAP-43 mRNA的表达[J].中国老年学杂志.2007,27(2):145—147.
    [38]KWON B K, LIU J, LAM C, et al. Brain—derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration—associated gene expression after acute cervical spinal cord injury[J]. Spine,2007,32(11):1164-1173.
    [39]Nakamura M, Toyama Y, Okano H, et al. Transplantation of neuralstem cells for spinal cord injury J. Rinsho Shinkeigaku 2005,45(11):874-876
    [40]Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of invitro-expanded fetal neural progenitor cells results in neurogenesisand functional recovery after spinal cord contusion injury in adultrats J.Neurosci Res 2002,69 (6):925-933
    [41]Levenberg S, Burdick JA, Kraehenbuehl T, et al.Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds J. Tissue Eng 2005,11(3-4):506-512
    [42]Oudega M, Moon LD, de Almeida leme RJ. Schwann cells for spinal cord repair J.Braz J Med Biol Res 2005,38 (6):825-835
    [43]Ramon-Cueto A, Cordero MI, Santos-Benito FF,et al. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory enshe athing glial J.Neuron,2000,25(2):425-435
    [44]Imaizumi T, Lankford KL, Locsis JD. Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord J. Brain Res 2000,854(1-2):70-78
    [45]Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro J. ExpNeurol 1976,4 (2):247-56
    [46]Inoue M,Honmou O, Oka S, et al. Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord J.Glia 2003,44(2):111-18
    [47]Ullian EM, Harris BT,Wu A, et al. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture J. Mol Cell Neurosci 2004,25 (2):241-51
    [48]Garcia R, Aguiar J, Alberti E, et al. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors J. Biochem Biophys Res Commun 2004,316(3):753-754
    [49]Yang YL,Liu HZ,Li ZW.Zhongguo Zuzhi Gongcheng Yanjiu Yu Linchuang Kangfu 2006; 10(17):4-6杨永利,刘宏志,李佐文.成鼠骨髓间充质干细胞移植治疗脊髓损伤[J].中国组织工程研究与临床康复,2006,10(17):4-6
    [50]Guo SZ,Ren XJ.Zhongguo Linchuang Kangfu 2005;9(17):154-155郭树章,任先军.组织工程脊髓种子细胞[J].中国临床康复,2005,9(17):154-155
    [51]Ankeny D P, McTigue D M, Jakeman L B, et al. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats [J]. Exp Neurol,2004,190(1):17-31
    [52]Satake K, Lou J, Lenke L G Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue [J].Spine,2004,29(18):1971-1979
    [53]王相利,夏萍,张宇新等。骨髓间充质干细胞体外诱导为神经细胞的研究。神经解剖学杂志,2004,20(6):607-612
    [54]Kuan WL,Barker RA. New therapeutic approaches to Parkinson's disease including neural transplants.Neurorehabil Neural Repair,2005,19(3):155-181
    [55]Hill CE,Moon LD, Wood PM, et al. labeled Schwann cell transplantation:cell loss, host chwann cell replacement, and strategies to enhance survival. Glia 2006,53(3):338-343
    [56]Lu P,Jones LL, Snyder EY, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol,2003,181(2):115-119
    [57]Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007,40(7):609-619
    [58]Pisati F, Bossolasco P, Meregalli M, et al. Induction of neurotrophin expression via human adult mesenchymal stem cells:implication for cell therapy in neurodegenerative diseases. Cell Transplant,2007,16 (1):41-55
    [59]Hamada H, Kobune M, Nakamura K,et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 2005,96 (3):149-156
    [60]Hofstetter CP, Schwarz EJ, Hess D. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery.Proc Natl Acad Sci USA,2002, 99(4):2199-2204
    [61]Lu P, Jones LL, Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury [J]. Exp Neurol 2007,203(1):8-21
    [62]Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine [J]. Cell Physiol 2007,213(2):341-347
    [63]Kang SK, Jun ES, Bae YC, et al.Interactions between human adipose stromal cells and mouse neural stem cells in vitro [J].Brain Res Dev Brain Res,2003,145 (1):141-149
    [64]Gerdoni E, Gallo B, Casazza S, et al. Mesenchymal stem cells effectively modulate athogenic immune respone in experimental autoimmune encephalomyelitis [J]. Ann Neurol,2007,61(3):219-227
    [65]Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein:GFAP-thirty-one years(1969-2000). Neurochem Res,2000,25(9-10):1439-1451
    [66]Bigini P, Bastone A, Mennini T. Glutamate transporters in the spinal cord of the wobbler mouse. Neuroreport,2001,12(9):1815-1820
    [67]Cheng H, Wu JP, Tzeng SF. Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res,2002,69(3):397-405
    [68]Baldwin SA, Broderick R, Blades DA, et al. Alterations in temporal/spatial distribution of GFAP- and vimentin- positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. J Neurotrauma,1998,15(12): 1015-1026
    [69]Leme RJ, Chadi G Distant microglial and astroglial activation secondary to experimental spinal cord lesion. Arq Neuropsiquiatr,2001,59(3-A):483-492
    [70]Ruitenberg MJ, Plant GW, Hamers FP, et al. Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord[J]. J Neurosci,2003,23(18):7045-7058
    [71]傅强等.大鼠胸段脊髓损伤后后肢运动功能不同评价标准的比较研究[J].中国脊柱脊髓杂志,2001,11(5):278—281
    [72]Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats J.Neurotrauma,1995,12(1):1-21
    [1]Marchand R, Woerly S, Bertrand L, et al. Evaluation of two Cross-linked collagen gels implanted in the transeeted spinal cord [J]. Brain Res Bull,1993,30 (3—4):415—22
    [2]章庚媛,罗卓荆,李明全,等.神经组织工程基体材料的研制及其生物相容性研究[J].脊柱外科杂志,2004,2:158-162
    [3]King VR, Phillips JB, Brown RA, et al. The effects of treatment with antibodies to transforming growth factor betal and beta2 fol-lowing spinal cord damage in the adult rat[J]. Neuroscience,2004,126(1):173—183
    [4]Li X.Yang Z, Zhang A, et al. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats [J]. Biomaterials,2009,30(6):1121—1132
    [5]Yoshii S, Ito S, Shima M. et al. Functional restoration of rabbit spinal cord using collagen-filament scaffold [J]. J Tissue Eng Regen Med,2009,3(1):19-25
    [6]崔颜宏.王穆彬,陈静.等.纤维蛋白支架移植对大鼠脊髓损伤后神经再生和胶质瘢痕形成的影响[J],神经解剖学杂志,2009,25(2):121—128
    [7]Itosaka H. Kuroda S. Shichinohe H, et al. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord:a novel material for CNS tissue engineering [J]. Neuropathology,2009,29(3):248-257
    [8]Novikov LN, Novikova LN, Mosahebi A, et al. A novel biode-gradable implant for neuronal rescue and regeneration after spinal cord injury[J]. Biomaterials, 2002,23(16):3369—3376
    [9]Novikov LN. Novikova LN, Mosabebi A. et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury [J]. Biomaterials,2002,23(16):3369-3376
    [10]Novikova LN, Pettersson J, Brohlin M. et al. Biodegradable poly—beta— hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair [J]. Biomaterials,2008.29(9):1198-1206
    [11]程映华,梁晶,王晓冬,等.壳聚糖神经干细胞复合物修复大鼠完全性脊髓损伤的组织学观察[J].中华实验外科杂志。2004.21:26—27
    [12]侯巍,冯世庆,孔晓红,等.转基因雪旺细胞与壳聚糖的相容性[J].中华实验外科杂志2006,23:1146
    [13]张雪娇,杨朝阳.李晓光.壳聚糖对大鼠脊髓损伤后小胶质细胞,巨噬细胞的影响[J].中国康复理论与实践,2009,15(4): 321-323
    [14]Cheng H, Huang YC, Chang PT, et al. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury [J]. Biochem Biophys Res Commun 2007,357(4):938-944
    [15]Suzuki Y, Kitaura M, Wu S, et al. Electrophysiological and horseradish peroxidase—tracing studies of nerve regeneration through alginate-filled gap in adult rat spinal cord [J]. Neurosci Lett,2002,318(3):121-124
    [16]Kataoka K, Suzuki Y, Kitada M, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats [J]. Tissue Eng.2004,10(3-4): 493-504
    [17]Prang P, Muller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by aiginatebased anisotropic capillary hydrogels [J]. Biomaterials,2006.27(19):3560—3569
    [18]Stokols S. Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury [J]. Biomaterials.2006,27(3):443—451
    [19]Deng QY, Li SR, Cai WQ, et al. Poly-lactic acid and agarose gelatin play an active role in the recovery of spinal cord injury [J]. Neurosci Bull.2006,22(2): 73-78
    [20]Olsen HE, Rooney GE, Gross L. et al. Neural stem cell and Schwann cell loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord [J]. Tissue Eng.2009,15(7):1797—1805
    [21]Nisbet DR, Pattanawong S. Ritchie NE. et al. Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering [J]. J Neural Eng.2007,4(2):35-41
    [22]Bakshi A. Fisher O. Dagci T, et al. Mechanically engineered hydmgel
    scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury [J] J Neurosurg Spine.2004,1(3):322—329
    [23]Hejcl A, Urdzikova L, Sedy J, et al. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat [J] J Neurosurg Spine,2008,8(1):67-73
    [24]Luo J, Borgens R, Shi R. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury [J]. J Neurochem,2002,83(2):471--480
    [25]Luo J. Shi R. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol [J]. Neurosci Lett,2004,359(3): 167—170
    [26]Laverty PH, Leskovar A, Breur GJ, et al. A preliminary study of intravenous surfactants in paraplegic dogs:polymer therapy in canine clinical SCI [J]. J Neurotrau ma,2004,21(12):1767-1777
    [27]Shi R, Borgens RB, Blight AR. Functional reconnection of severed mammalian spinal cord axons with polyethylene glycol [J]. J Neurotrauma,1999, 16(8):727-738.
    [28]Luo J,Shi R. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury [J]. Brain Res,2007,1155:10-16
    [29]Das M, Patil S. Bhargava N, et al. Auto—catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons[J]. Biomaterials,2007,28(10): 1918—1925
    [30]Kreuter J, Ramge P, Petrov V, et al. Direct evidence that poly-serbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles [J]. Pharm Res, 2003,20(3):409-416
    [31]Comolli N, Neuhuber B, Fischer I, et al. In vitro analysis of PNIPAAm-PEG:a novel injectable scaffold for spinal cord repair [J]. Acta Biomater.2009, 5(4):1046—1055
    [32]侯天勇.伍亚民.龙在云.RAD16-Ⅱ的物理特性及其在神经干细胞假体构建中的应用[J].中国脊柱脊髓杂志,2006,16(10):781-784
    [34]Chen J, Bernreuther C, Dihne M, et al. Cell adhesion molecule 11-transfected embryonic stem cells with enhanced survival support egrowth of corticospinal tract axons in mice after spinal cord injury [J]. Neurotrauma,2005, 22(8):896-906
    [35]Hamada M, Yoshikawa H, Ueda Y, et al. Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury [J]. Neurobiol Dis,2006,22(3):509-522
    [36]Hasegawa K, Chang YW, Li H, et al. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury [J].Exp Neurol,2005,193(2):394-410
    [37]Ishii K, Nakamura M, Dai H, et al. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury [J]. Neurosci Res,2006, 84(8):1669-1681
    [38]Keirstead HS, Nistor G, Bernal G. et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury [J]. J Neurosci.2005,25(19):4694--4705
    [39]Levenberg S, Burdick JA. Kraehenbuehl T, et al. Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds [J]. Tissue Eng,2005,11(3_4):506—512
    [40]Xie J, Willerth SM, Li X, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages [J]. Biomaterials,2009,30(3): 354—362
    [41]Parr AM, Kulbatski I, Zahir T. et al. Transplanted adult spinal cord—derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury [J]. Neuroscience,2008,26,155(3):760—770
    [42]Pu Y, Guo Qs, Wang AM. et al. Repair of acutely injured spinal cord through constructing tissue—engineered neural complex in adult rats [J]. Chin J Traumatol.2007,10(3):171—176
    [43]郭庆山.王爱民,蒲渝.已分化神经干细胞修复成年鼠急性脊髓损伤的实验研究[J].重庆医学.2007.36(19):1993-1994
    [44]Deng YB, Liu XG, Liu ZG, et al. Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys [J].Cytotherapy,2006,8(3):210-214
    [45]赵廷宝,卢兆桐,赵凌云,等.骨髓间充质干细胞与嗅鞘细胞联合移植治疗脊髓损伤的早期观察[J].中国矫形外科杂志,2006,14(5):346-348
    [46]Lee KH, Suh- Kim H, Choi JS, et al.Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats[J].Acta Neurobiol Exp (Wars),2007,67(1):13-22
    [47]姚晓黎,张成,冯善伟,等.成人骨髓间充质干细胞分化为神经元样细胞的逆转化现象[J].第一军医大学学报,2005,25(5):513-516
    [48]李洪钧,刘海英,赵宗茂,等.人脐血干细胞移植促进大鼠脊髓损伤神经恢复[J].中国医学科学院学报,2004,26(1):38-42
    [49]Someya Y, Koda M, Dezawa M. et al. Reduction of cystic cavity promotion of axonal regeneration and sparing and functional recovery with transplanted bone marrow stromal cellderived Schwann cells after contusion injury to the adult rat spinal cord[J]. J Neurosurg Spine,2008,9(6):600—610
    [50]Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration [J]. Adv Drug Deliv Rev,2008,60(2):263-276
    [51]万虹,李德志,杨飞.等.许旺细胞与PLGA共同移植于大鼠全横断脊髓损伤的实验研究[J].中华外科杂志,2007,45(12):843—846
    [52]Golden KL, Pearse DD, Blits B, et al. Transduced Sehwann cells promote axon growth and myelination after spinal cord injury [J]. Exp Neurol,2007.207(2): 203-217
    [53]Fairless R, Barnett SC. Olfactory ensheathing cells:their role in central nervous system repair [J]. Biochem Cell Biol.2005,37(4):693—699
    [54]Andrews MR. Stelzner DJ. Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord [J]. J Neumtrauma, 2007,24(11):1773-1792
    [55]Bomstein Y, Marder JB, Vitner K, et al. Features of skin—co-incubated macrophages that promote recovery from spinal cord injury [J]. J Neuroimmunol,2003.142(1-2):10—16
    [56]Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats [J]. Nat Med,1998.4(7):814-821
    [57]Horn KP. Busch SA, Hawthorne AL, et al. Another barrier to regeneration in the CNS:activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions [J]. J Neurosci.2008,28(38):9330—9341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700