若干非线性偏微分方程的格子BGK模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格子Boltzmann方法(LBM)是一种新兴的模拟流体和复杂物理系统的数值计算方法。不像基于宏观连续方程的传统数值方法,LBM是起源于微观模型和细观运动论的介观方法,它具有许多分子动力学的优点,如物理图像清晰、容易处理复杂边界、编程容易实现等。近年来,LBM在模拟线性和非线性偏微分方程方面取得了重要进展,但是理论部分仍有许多问题有待完善,例如如何构造出精度较高的模型和如何模拟更复杂的非线性偏微分方程。
     本文首先在绪论部分简要介绍了LBM的发展历史及其应用,然后在接下来的四章中分别针对几类非线性偏微分方程,利用多尺度技术,建立了相对应的几种格子BGK模型。第一章中针对二维对流扩散方程建立D2Q4模型:第二章中针对Sine-Gordon方程建立隐式格子Boltzmann模型;第三章中针对广义KdV方程,KdV-Burgers方程,组合KdV-MKdV方程和广义Burgers-Huxley方程建立统一的具有五阶精度的格子BGK模型;第四章中针对广义Kuramoto-Sivashinsky方程建立D1Q5格子BGK模型,由于宏观方程含有四阶导数,标准的LBM无法恢复出来,因此,本模型的提出填补了这一方面的空白,拓展了LBM在模拟复杂非线性偏微分方程方面的领域。
     数值结果表明所建模型均十分有效,为以后更复杂和更高维的复杂非线性偏微分方程的数值模拟积累了经验。
Lattice Boltzmann method (LBM) is a new technique for simulating fluids and modeling complex physics in fluids. Unlike conventional numerical methods based on a macroscopic continuum equation, the LBM starts from microscopic models and mesoscopic kinetic equations. It provides many of the advantages of molecular dynamics, including clear physical pictures, ease in incorporating complex boundary conditions and simplicity of programming. Recently, the LBM have been developed to simulate linear and nonlinear partial differential equations (NPDEs). However, there is a troublesome problem for solving NPDEs in many existing lattice Boltzmann models, i.e., how to derive higher accuracy and more complex nonlinear terms in NPDEs.
     At the beginning of this thesis, some basis summaries of the LBM are introduced. In Chapter, 1, we construct a D2Q4 model for simulating two-dimensional convection-diffusion equation; In Chapter 2, we establish an implicit scheme of lattice BGK model for simulating Sine-Gordon equation; In Chapter 3, we propose a unified lattice BGK model, which has five order accuracy, for simulating generalized KdV equation, KdV-Burgers equation, combined KdV-MKdV equation and generalized Burgers-Huxley equation; In Chapter 4, we propose a D1Q5 lattice Boltzmann model for the generalized Kuramoto-Sivashinsky (GKS) equation which has four-order derivative. Due to the four-order derivative exists in the GKS equation, then the standard LBM cannot recover the governing evolution equations. Our presented method fill this gap and extend the application of the LBM to the higher derivative term's problem.
     From the simulations, we find that the simulating results are in excellent agreement with the analytical solutions. This indicates that the present methods are efficient and flexible approachs for practical application. The present models can be extended to more complex systems.
引文
[1]Gu Chao-hao.Soliton Theory and Its Application[M].Hangzhou:Zhejiang Publishing House of Science and Technology,1990.
    [2]Dodd RK,Eilbeck JC,Gibbon JD,Morris HC.Solitons and nonlinear wave equations.London:Academic Press,1982.
    [3]Ablowitz MJ,Clarkson PA.Solitons,nonlinear evolution equations and inverse scattering.London:Cambridge University Press,1991.
    [4]Helal MA,Mehanna MS.A comparison between two different methods for solving KdV-Burgers equation.Chaos.Solitions & Fractals,2006,28:320-326.
    [5](O|¨)zer S,Kutluay S.An analytical-numerical method for solving the Koreweg-de Vries equation.Appl Math Comput,2005,164:789-797.
    [6]Geyikli T,Kaya D.An application for a modified KdV equation by the decomposition method and finite element method.Appl Math Comput,2005,169:971-981.
    [7]Huang Jianguo,Xi Shitong.On the finite volume element method for general selfadjoint elliptic problems.SIAM journal on numerical analysis,1998,35:1762-1774.
    [8]Helal MA.A Chebyshev spectral method for solving Korteweg-de Vries equation with hydrodynamical application.Chaos.Solitions & Fractals,2001,12:943-950.
    [9]Doolen G D.Lattice gas and lattice Boltzmann for partial differential equation.Physica D,1991,47:1-200.
    [10]Benzi,R,Succi,S,Vergasola,M.The lattice Boltzmann equation:theory and application.Physics Reports,1992,222(3):145-197.
    [11]郭照立,郑楚光,李青,王能超.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002.
    [12]U Frisch,B Hasslacher,Y Pomeau.Lattice-gas automata for the Navier-Stokes equation.Physical Review Letters,1986,56:1505-1508.
    [13]J Hardy,Y Pomeau,O De Pazzis.Time evolution of a two-dimensional model system.I.Invariant states and time correlation functions.Journal of Mathematical Physics,1973,14:1746-1759.
    [14]J Hardy,O De Pazzis,Y Pomeau.Molecular dynamics of a classical lattice gas:Transport properties and time correlation functions.Physical Review A,1976,13:1949-1961.
    [15]GR MeNamara,G Zanetti.Use of the Boltzmann equation to simulate lattice automata.Phys.Rev.Lett,1988,61:2332-2335.
    [16]FJ Higuera,J Jimenez.Boltzmann approach to lattice gas simulations.Europhys.Lett,1989,9(7):663-668.
    [17]Higuera F J,Succi S,Benzi R.Lattice Gas Dynamics with Enhanced Collisions.Europhys.Left,1989,9(7):345-349.
    [18]Shiyi Chen,Hudong Chen,Daniel Martinez and William Matthaeus.Lattice Boltzmann Model for Simulation of Magnetohydrodynamics.Physical Review Letters,1991,67(27):3776-3779.
    [19]Y.H.Qian,D.d'Humieres,P.Lallemand.Lattice BGK models for Navier-Stokes equation.Europhys.Lett,1992,17:479-484.
    [20]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2009.
    [21]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2009.
    [22]Zhaoli Guo,Baochang Shi,Nengchao Wang.Lattice BGK Model for Incompressible Navier-Stokes Equation.Journal of Computational Physics,2000,165(1):288-306.
    [23]Q.Li,Y.L.He,Y.Wang,and W.Q.Tao.Coupled double-distribution-function lattice Boltzmann method for the compressible.Physical Review E,2007,76:056705.
    [24]Y.Wang,Y.L.He,T.S.Zhao,G.H.Tang,W.Q.Tao.Implicit-explicit finite-difference lattice Boltzmann method for compressible flows.International Journal of Modern Physics C,2007,18(12):1961-1983.
    [25]Q.Li,Y.L.He,Y.Wang,G.H.Tang.An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and and compression work.International Journal of Modern Physics C,2008,19(1):125-150.
    [26]Q.Li,Y.L.He and Y.J.Gao.Coupled double-distribution-function lattice Boltzmann model with and adjustable bulk viscosity.International Journal of Modern Physics C,2008,19(12):1919-1938.
    [27] Q. Li, Y. L. He and Y. J. Gao. Implementation of finite-difference lattice Boltzmann method on general body-fitted curvilingar coordinates. International Journal of Modern Physics C, 2008, 19(10): 1581 - 1595.
    [28] Zhenhua Chai, Baochang Shi. Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Physics Letters A, 2007, 364: 183-188.
    [29] Zhenhua Chai, Zhaoli Guo, Baochang Shi. Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method. Journal of Applied Physics, 2007, 101: 104913.
    [30] Zhenhua Chai, Zhaoli Guo, Lin Zheng, Baochang Shi. Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel. Journal of Applied Physics, 2008, 104: 014902.
    [31] KN Premnath, J Abraham. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. Journal of Computational Physics, 2007, 224(2): 539-559.
    [32] S Succi, E Foti, F Higuera. Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett, 1989, 10(5): 433-438.
    [33] O. Filippova, D. Hanel, Lattice Boltzmann simulation of gas-particle flow in filters. Computer & Fluids, 1997, 26: 697-712.
    [34] Jack G. M. Eggels. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow. 1996, 17(3): 307-323.
    [35] MA Chang-Feng, SHI Bao-Chang and CHEN Xing-Wang. Lattice Bhatnagar-Gross- Krook Simulations in 2-D Incompressible Magnetohydrodynamics. Communications in Theoretical Physics, 2005, 44(5): 917-920.
    [36] Wei-Wei Yan, Yang Liu, You-Sheng Xu, Xiang-Long Yang. Numerical simulation of air flow through a biofilter with heterogeneous porous media. Bioresource Technology, 2008,99: 2156-2161.
    [37] Fan EG. Extended tanh-function method and its applications to nonlinear equations. Phys Lett A, 2000, 277: 212-219.
    [38] Helal M.A. Solition solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos. Solitions & Fractals, 2002, 13: 1917-1929.
    [39]Yan Guangwu.A Lattice Boltzmann Equation for Waves.Journal of Computational Physics,2000,161:61-69.
    [40]S.P.Dawson,S.Chen and G.D.Doolen,Lattice Boltzmann computations for reaction-diffusion equations.The Journal of chemical physics,1993,98:1514-1523.
    [41]邓敏艺,刘慕仁,孔令江.二维反应扩散方程的格子Boltzmann方法模拟.广西师范大学学报(自然科学版),2001,19(1):1-6.
    [42]邓敏艺,刘慕仁,孔令江.二维对流扩散方程的格子Boltzmann方法模拟.广西师范大学学报(自然科学版),1999,17(3):1-5.
    [43]刘慕仁,陈若航,李华兵,孔令江.二维对流扩散方程的格子Boltzmann方法.物理学报,1999,48(10):1800-1803.
    [44]Deng Bin,Shi Baochang,Wang Guangchao.A New Lattice Bhatnagar-Gross-Krook Model for the Convection-Diffusion Equation with a Source Term.Chinese Physics Letters,2005,22(2):267-270.
    [45]Baochang Shi,Bin Deng,Rui Du and Xingwang Chen.A new scheme for source term in LBGK model for convection-diffusion equation.Computers & Mathematics with Applications,2008,55(7):1568-1575.
    [46]闫广武.用格子Boltzmann方法研究Burgers方程.力学学报,1999,31(2):143-151.
    [47]唐国宁,陈若航,何云,刘慕仁,孔令江.二维Burgers方程的格子Boltzmann模型.广西师范大学学报(自然科学版),1996,17(2):8-11.
    [48]李作春,李华兵,孔令江,刘慕仁.Burgers方程的格子Boltzmann方法模拟.广西师范大学学报(自然科学版),2001,19(3):1-4.
    [49]Yali Duan and Ruxun Liu.Lattice Boltzmann model for two-dimensional unsteady Burgers' equation.Journal of Computational and Applied Mathematics,2007,206(1):432-439.
    [50]Yali Duan,Ruxun Liu and Yanqun Jiang.Lattice Boltzmann model for the modified Burgers' equation.Applied Mathematics and Computation,2008,202(2):489-497.
    [51]Jianying Zhang and Guangwu Yah.Lattice Boltzmann method for one and two-dimensional Burgers equation.Physica A,2008,387(19-20):4771-4786.
    [52]何郁波,马昌凤,梁茜.组合KdV方程带修正函数的格子Boltzmann模型.应用数学学报,2007,30(6):1040-1046.
    [53]Guangwu Yan,Yaosong Chen,Shouxin Hu.A lattice boltzmann method for KdV equation.Acts Mechanica Sinica,1998,14(1):18-26.
    [54]Guangwu Yah,Jianying Zhang.A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation.Mathematics and Computers in Simulation.2009,79(5):1554-1565.
    [55]李华兵,黄乒花,刘慕仁,孔令江.用格子Boltzmann方法模拟MKDV方程.物理学报,2001,50(5):837-840.
    [56]张超英,谭惠丽,刘慕仁,孔令江.用格子Boltzmann方法模拟MKDV方程的行波解.广西师范大学学报(自然科学版),2003,31(3):13-16.
    [57]马昌凤.模拟MKDV方程的格子Boltzmann方法.空气动力学学报,2006,24(4):495497.
    [58]马昌凤,唐嘉,陈小红.模拟MKDV方程的格子BGK模型.应用力学学报,2007,24(4):519-521.
    [59]Linhao Zhong and Shide Feng.Lattice Boltzmann schemes for the nonlinear Schr(o|¨)dinger equation.Physical Review E,2006,74:036704.
    [60]孔令江,张超英,谭惠丽,刘慕仁.用格子Boltzmann方法模拟KdV-Burgers方程的激波解.广西师范大学学报(自然科学版),2003,21(4):1-4.
    [61]Zhang Chaoying,Tan Huili,Liu Muren and Kong Lingjiang.A Lattice Boltzmann Model and Simulation of KdV-Burgers Equation.Commun.Theor.Phys.2004,42(2):281-284.
    [62]Ma Chang-Feng.A New Lattice Boltzmann Model for KdV-Burgers Equation.Chinese Physics Letters,2005,22:2313-2315.
    [63]Zhenhua Chai and Baochang Shi.A novel lattice Boltzmann model for the Poisson equation.Applied Mathematical Modelling,2008,32(10):2050-2058.
    [64]Guangwu Yan,Li Ruan.Lattice Boltzmann solver of Rossler equation.Communications in Nonlinear Science and Numerical Simulation,2000,5(2):64-68.
    [65]Zhenhua Chai,Baochang Shi,Lin Zheng.A unified lattice Boltzmann model for some nonlinear partial differential equations.Chaos,Solitons & Fractals,2008,36(4):874-882.
    [66]RD Lazarov,ID Mishev,PS Vassilevski.Finite Volume Methods for Convection-Diffusion Problems.Siam Journal on Numerical Analysis,1996,33(1):31-55.
    [67]V.A.Tsurko.Finite-Difference Methods for Convection-Diffusion Problems with Discontinuous Coefficients and Solutions.Differential Equations,2005,41(2):1080-1089.
    [68]Cockburn Bernardo,Shu Chi-Wang.The Local Discontinuous Galerkin Method for Time-dependent Convection-diffusion Systems.Siam.J.Numer.Anal,1997:ADA329509.
    [69]CE Baumann and JT Oden.A discontinuous hp finite element method for convection -diffusion problems.Int.J.Numer.Meth.Fluids,1999,31:79-95.
    [70]A.Shidfar,M.Djalalvand and M.Garshasbi.A numerical scheme for solving special class of nonlinear diffusion-convection equation.Applied Mathematics and Computation,2005,167(2):1080-1089.
    [71]Fuzheng Gao and Yirang Yuan.The upwind finite volume element method based on straight triangular prism partition for nonlinear convection-diffusion problem.Applied Mathematics and Computation,2006,181(2):1229-1242.
    [72]Yang Zhang.AD-FDSD for convection-diffusion problems.Applied Mathematics and Computation,2008,26(1):257-271.
    [73]Mehdi Dehghan and Akbar Mohebbi.High-order compact boundary value method for the solution of unsteady convection-diffusion problems.Mathematics and Computers in Simulation,2008,71(3):683-699.
    [74]Baochang Shi,Bin Deng,Rui Du and Xingwang Chen.A new scheme for source term in LBGK model for convection-diffusion equation.Computers and Mathematics with Applications,2008,55:1568-1575.
    [75]赖惠林,马昌凤.二维对流扩散方程的格子BGK模拟.福建师范大学学报(自然科学版),2008.24(05):15-18.
    [76]Guo Zhao-Li,Zheng Chu-Guang and Shi Bao-Chang,Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method.Chinese Physics.2002,11(4):366-374.
    [77]郑兴华,二维对流扩散方程的分步交替分组显式格式.华侨大学学报(自然科学版),2002,23(4):122-123.
    [78]张鲁明.Sine-Gordon方程初边值问题的能量守恒差分格式.石油大学学报,1999,23:100-103.
    [79]王雨顺,王斌,季仲贞.孤立波方程的保结构算法.计算物理,2004,21:386-399.
    [80]闫广武,董银峰,郝雁,王卫明.基于格子Boltzmann模型的SINE-GORDON方程的数值解法.非线性动力学学报,2004,21(4):31-35.
    [81]王瑞敏,吴雷,张解放.Sine-Gordon方程的格子Boltzmann模型.水动力学研究与进展,2006,21(4):439-443.
    [82]王广超,罗来鹏,杜睿.格子Boltzmann方法的一种隐格式.华东交通大学学报,2005,22(1):156-159.
    [83]LAI Hui-Lin,MA Chang-Feng.An Implicit Scheme of Lattice Boltzmann method for Sine-Gordon Equation,Chinese Physics Letters,2008,25(6):2118-2120.
    [84]Brezis H.Periodic Solutions of Nonlinear Vibrating Strings and Duality Principle.Bull Amer Math Soc(N.S),1983,8(3):409-425.
    [85]LAI HuiLin,MA ChangFeng.A higher order lattice BGK model for simulating some nonlinear partial differential equations.Science in China Series G,2009,52(7):1053-1061.
    [86]Fan EG.Uniformly constructing a series of explict exact solutions to nonlinear equations in mathematical physics.Chaos.Solitions & Fractals,2003,16:819-839.
    [87]Kutluay S,Bahadir AR,(O|¨)zes A.A small time solutions for the Korteweg-de Vries equation.Appl Math Comput,2000,107:203-210.
    [88]I.Hashim,M.S.M.Noorani,M.R.Said Al-Hadidi.Solving the generalized Burgers-Huxley equation using the Adomian decomposition method.Mathematical and Computer Modelling,2006,43:1404-1411.
    [89]M.Javidi.A numerical solution of the generalized Burger's-Huxley equation by pseudospectral method and Darvishi's preconditioning.Appl Math Comput,2006,175:1619-1628.
    [90]N.A.Larkin.Korteweg-de Vries and Kuramoto-Sivashinsky equations in bounded domains.Journal of Mathematical Analysis and Applications,2004,297(1):169-185.
    [91]A.H.Khater,R.S.Temsah.Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods.Computers & Mathematics with Applications,2008,56(6):1465-1472.
    [92]J.Topper,T.Kawahara.Approximate equations for long nonlinear waves on a viscous fluid.Physical Society of Japan,Journal,1978,44(6):663-666.
    [93] T. Tatsumi. Irregularity, regularity and singularity of turbulence. Turbulence and chaotic phenomena in fluids, Iutam, 1984: 1-10.
    
    [94] S. Saprykin, E. A. Demekhin, and S. Kalliadasis. Two-dimensional wave dynamics in thin films.I.Stationary solitary pulses. Phys. Fluids, 2005, 17(11): 117105.
    
    [95] A.P. Hooper, R. Grimshaw. Nonlinear instability at the interface between two viscous fluids. Physics of Fluids, 1985, 28(1): 37-45.
    
    [96] Y. Kuramoto, T. Tsuzuki. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 1976, 55(2): 356-369.
    
    [97] G. I. Sivashinsky. Instabilities, pattern-formation, and turbulence in flames. Ann. Rev. Fluid Mech, 1983, 15: 179-199.
    
    [98] R. Grimshaw, A.P. Hooper. The non-existence of a certain class of travelling wave solutions of the Kuramoto-Sivashinsky equation. Physica D, 1991, 50(2): 231-238.
    
    [101] X. Liu. Gevrey class regularity and approximate inertial manifolds for the Kuramoto- Sivashinsky equation. Physica D, 1991, 50(1): 135-151.
    
    [100] A.H. Khater, R.S.Temsah. Numerical solutions of the generalized Kuramoto- Sivashinsky equation by Chebyshev spectral collocation methods. Computers & Mathematics with Applications, 2008, 56(6): 1465-1472.
    
    [101] X. Liu. Gevrey class regularity and approximate inertial manifolds for the Kuramoto- Sivashinsky equation. Physica D, 1991, 50(1): 135-151.
    
    [102] Yan Xua, Chi-Wang Shu. Local discontinuous Galerkin methods for the Kuramoto- Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Engrg, 2006, 195(25-28): 3430-3447.
    
    [103] Tian-Shiang Yang. On traveling-wave solutions of the Kuramoto-Sivashinsky equation. Physica D, 1997, 110(1-2): 25-42.
    
    [104] Huaitang Chen, Hongqing Zhang. New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation. Chaos. Solitions&Fractals, 2004, 19(1): 71-76.
    
    [105] Huilin Lai, Changfeng Ma. Lattice Boltzmann method for the generalized Kuramoto- Sivashinsky equation. Physica A, 2009, 388(8): 1405-1412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700