A组轮状病毒G1型中国株VP7基因转化番茄的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮状病毒(Rotaviruses,RV)是世界范围内引起婴幼儿病毒性腹泻的主要病原体。迄今,对轮状病毒感染最有力的预防和控制措施,仍是发展有效的疫苗。VP7是轮状病毒的主要外壳蛋白和中和抗原,是发展基因工程疫苗的首选。研究表明,将细菌性和病毒性病原体抗原的编码基因导入植物细胞,能够表达出较好保留天然免疫原性的抗原,这为利用转基因植物生产疫苗提供了良好的基础。因此,将VP7基因导入番茄,获得具有免疫原性的轮状病毒植物口服疫苗,将为防治轮状病毒引起的小儿腹泻提供新型疫苗,具有潜在的社会和经济意义。
     本研究分别以组成型启动子CaMV35S和番茄果实特异表达启动子TFP构建了VP7基因的两种植物表达载体pBIVP7和pEVP7。利用农杆菌介导法,转化番茄叶盘,经卡那霉素(Kan)多重筛选,共获得了18株抗性植株。PCR分析结果为阳性的植株有17株(转pBIVP7抗性植株10株,转pEVP7抗性植株7株)。随机选取生长良好的9株PCR检测阳性植株(5株转pBIVP7,4株转pEVP7)进行PCR-Southern blot和Southern blot分析,结果表明:有8株(5株转pBIVP7,3株转pEVP7)为转基因植株。RT-PCR分析证明,在组成型启动子CaMV35S控制下的5株转基因植株的叶片和果实中,有4株VP7基因在转录水平上表达;而在果实特异表达启动子TFP控制下的3株转基因植株,VP7基因仅在果实中获得转录水平上表达。此外,从两种转基因植株中分别选取一自交株进行T_1代遗传分析,其Kan抗性基因分离比皆为3:1,T_1代抗性番茄植株的PCR结果也呈阳性。
     本研究为研究和开发新型轮状病毒口服疫苗提供一条新的途径和方法,具有一定的理论意义和应用前景。
Rotaviruses (RV) are the most common cause of severe diarrhea in children all over the world,VP7 is major outer capsid protein and is a primary candidate for inclusion in a subunit or recombinant. Advances in genetic engineering in the past decade have accelerated the expression, in plant, of foreign proteins with pharmaceutical value. Antigens from infectious bacterial or viral diseases have been introduced into plants. So introducing VP7 gene into tomato to develop edible plant vaccine of rotaviruses would change the traditional means of production of vaccines and the cost of vaccine production would be reduced greatly. It is provided with commercial meaning and applicative prospect.
    In this study, two plant expression vectors pBIVP7 and pEVP7 were constructed. In pBIVPT, it is under control of CaMV35S promoter. In pEVP7, it is under control of tomato-fruit-specific TFP promoter. After co-cultivation with Agrobacterium Tumefaciens EHA105(containing pBIVP7 or pEVP7) and several times kanamycin-resistant selection, eighteen regenerated tomato plantlets were obtained . One plantlet was ruled out by PCR , then 9 of 17 plantlets selected randomly were analyzed further by PCR-Southern blot and Southern blot, eight plantlets were confirmed that the VP7 gene had been integrated into plant genome by Southern hybridization. The result of RT-PCR of transgenic plants showed: in transcriptional level, VP7 gene was expressed in leaves and fruits of 4 transgenic tomato plants under control of CaMV35S promoter; VP7 gene was expressed in the tomato fruits not in the leaves of 3 transgenic tomato plants under control of fruit-specific TFP promoter.
    One TO offspring (T1) was selected for further genetic analysis from two types of self-pollinated transgenic plants and screened for the presence of the recombinant gene by the PCR respectively. The result suggested that the resistance to kanamycin can be a stable heredity by genetic analysis, separation ratio of T1 was 3:1 and T1 kanamycin-resistant tomato plants can carry VP7 gene.
引文
1. Osamu Nishio, Kiyohio, Matsui, Oka, et al. Rotavirus infection among infants with diarrhea in Pakistan [J].Pediatrics Internationational,2000,42:425-427
    2. Ann Christine Nyquist. Rotavirus Vaccine[J]. Pediatrics Annals, 1999,28(8) : 533-539
    3. Liddle JL, Burgess MA, Gilbert GL, et al. Rotavirus gastroenteritis: impaction young children, their families and the health cares system. Med J Aust, 1997,167:304-307
    4. .Kojima K, Taniguchi K, Kobayashi N. Species-specific and interspecies relatedness of NSP1 sequences inhuman, porcine, bovine, feline, and equine rotavirus strains. Arch Virol, 1996,141:1-12
    5. Denisova E, Dowiing W, La Monica R, et al. Rotavirus capside protein in VP5 Permeabilizes membranes.[J] Virol, 1999,73:3147-3153
    6. Haffejee IE. The epidemiology of rotavirus infections: a global perspective. [J] Pediatr Gastroenterol Nutr, 1995,20:275-286
    7. Cao XR, Akihara S, Fang ZY, et al. Genetic variation in the VP4 and NSP4 genes of human rotavirus serotype3(G3type) isolated in china and Japan. Microbtol Immunol, 1999,43:171 175
    8. Jeong K S, Jay Gsim. Overview of rotavirus infections in Korea [J].Pediatrics International, 2000,42:406-410
    9. Ruggeri FM.Declich S. Rotavirus infection among children with diarrhea in Italy. Ada Paediatrsu suppl,1999,88:66-71
    10. Qiao H, Nilsson M. Abreu ER, et al. Viral diarrhea in children in Beijing, China. [J]Med Virol, 1999,57:390-396
    11. Chang hai Tsai, Hsiu Hui Chiu, et al. Epidemiologic features of rotavirus infection in Tai Wan; Areview[J] ,pediatrics International ,2000,42:411-414
    12. Niwat Maneekam, Hiroshi Ushijima. Epidemiology of Rotavirus infection in Thailand [J].Pediatrics Internationational,2000,42: 415-421
    13. Jeong Kee Seo, Jay Gsim. Overview of rotavirus infections in Korea [J] .Pediatrics International, 2000,42:406-410
    14. Yumei Zhou, leili, BosuKim, et al. Rotavirus Infection in children in Japan[J].Pediatrics International, 2000,42:428-439
    15. Glass RI, Kilgore PE,Holman RC, et al. The epidemilogy of rotavirus diarrhea in the United States: surveillance and estimates of disease burden.[J] Infect Dis, 1996,174(Suppl1) : S5-11
    16. Matson DO, O'Ryan ML, Herreral, et al. Fecal antibody response to symptomatic and a symptomatic rotavirus infections.[J] Infect Dis, 1993,167:577-583
    17. Orenstein WA, Hadler S, Kuritsky JN, et al. Rotavirus vaccines from licensure to disease
    
    
    reduction.[J]Infect Dis, 1996,174(Suppl):S 118-124
    18. Gentsch JR, Woods PA, Ramachandran M, et al. Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development. [J]Infect Dis, 1996,174(Suppl1) : S30-36
    19. Unicomb LE, Podder G, Gentsch JR, et al. Evidence of high frequency genomic reassortment of group A rotavirus strains in Bangladesh: emergence of group A rotavirus strains in Banglandesh:emergence of type G9 in 1995,[J]Clin Microbiol, 1999,37:1885-1891
    20. Ann Christine Nyquist. Rotavirus Vaccine [J]. Pediatrics Annals, 1999,28(8) :533-539
    21. Hiroshi, Ushijiam. Rotavirus infection Asia [J].Pediatrics Internationational,2000, 42:392-394
    22. Sheoran AS, Karzenski SS, Whalen JW, et al. Prepartum equine rotavirus vaccination inducing strong specific IgG in mammary secretions [J].Vet Rec,2000,146(23) :672-673
    23. 莫武桂.轮状病毒感染的免疫防治进展,广西预防医学,2001,7(6) :370-373
    24. 李惠民,陈王利,闫雪燕,等.轮状病毒感染的免疫学研究进展,河北医药,2001,23(10) : 786-787
    25. Colomina J ,Gism T,Buesa J, et al. Virus-specific serum and fecal antibodies responses in children with acute rotavirus gastroenteritis. Microbiol Clin, 1998,16(2) :55-60
    26. Burns JW, Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity.Science, 1996,272:104-107
    27. Vesikari T, Isolaruri E, Delem A, et al. Immmunogenicity and safety of live oral attenuated bovine rotavirus vaccine strain RTT4237 in and young children.Lancet,1983,11:807-811.
    28. KapikianAZ.11th Nobal conference(Stockholm),Lund,Sweden:Studentlitteratur,1996,192-214
    29. Clar F, DVM.PhD, Furukawa T, et al. Immune response of infants and children to low-passage bovine rotavirus (strain WC3) .Am J Dis Child,1986,140:350-356.
    30. Flores J, Schael IP, Kapikian AZ, et al. Comparison of reactogenicity and antigencinity of M37 rotavirus vaccine and rhesue-rotavirus-based quadrivalent vaccine. Lancet, 1990, 336: 330-334
    31. Hoshino Y, Kapikan AZ, Chanock RM. Selection of cold-adapted mutants of human rotavirus that exhibit various degrees of growth Restriction In Vitro. J Virol, 1994,68:7598-7602
    32. Hoshino Y. Independent segregation of two antigenic specities involved in neutrolization of rotavirus infectivity [J].Pro Natl Acad Sci USA, 1985,82:8701
    33. Ljaz MK, Attah-Poku SK Redmond M J, et al. Hetero typical passive protein in induces by synthetic peptides corresponding to vp7 and vp4 of bovine rotavirus [J]..J viral, 1991,65:3106-3110
    34. Kapikian AZ, Chanock RM. Virology.New York: Raven Press, 1989:1353-1387. Hoshino Y, Grengerg HB, Wyatt RG,etal.Serotypic similarity and diversity of rotavirus of mamaliana
    
    [J]J Infect Dis, 1994,2:242-249
    35. CDC Withdrawal of Rotavirus Vaccine Recommendation,MMWR, 1999,48(43): 1007
    36.袁力勇,刘勇,李春宏等,轮状病毒VP7基因在大肠杆菌中的表达及其免疫原性,生物工程学报,2001,17(2):145-149
    37.郭婷夏,方荣祥,李国华,等。A组轮状病毒VP6与霍乱毒素B亚基融合蛋白在大肠杆菌中的表达及生物活性分析,生物工程学报,2001,17(6):621-625
    38. Estes MK. Cloning and nucleotide sequences of the simian rotavirus gene that codes for the major inner capsid protein [J].Nucleic Acids Res, 1984,12:1875-1887
    39.何湘君,钱渊,靖宇等,G1型A组轮状病毒地方VP7基因在杆状病毒系统中的表达,病毒学报,1999,15(1):75-77
    40.何金生,王健伟,温乐英等,用重组腺病毒表达A组轮状病毒主要中和抗原VP7可获得良好的免疫效果,病毒学报2001,17(2):122-126
    41.黄英,方肇寅.轮状病毒感染的免疫保护机制[J].国外医学病毒学分册,1997,4:69-73
    42.晋圣理,方肇寅,杭长寿,等.A组轮状病毒SAIIVP6基因的克隆和表达[J].病毒学报,1995,11:119-123
    43. Conner ME, Zarley CD,HUB, et al. Virus-like partical esasa rotavirus subunit vaccine[J],J Infect Dis, 1996,174(S1):S88-92
    44.周旭,李益民,侯玲,等.轮状病毒DNA疫苗的制备及其抗体应答,中国生物制品学杂志,1999,12(2);72-74
    45. Greenberg HB, Valdesuso J, Walsh M, et al. Production and preliminary characterization of monoclonal antibody directed at two surface protein[J]. J Virol, 1983,47:267-275.
    46. Chen SC, Jones DH, Fynan EF, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles, J Virol, 1998,72:(7),5757-5766
    47.杨国峰,周鹏,王健伟.轮状病毒疫苗研究进展及转基因植物疫苗的开发前景,生物技术通报,2001,1:16-17
    48. Arakawa T, Chong DKX, Langridge WHR. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat Biotechnol, 1998, 16:292-297
    49. Walmsley AM, Arntzen CJ. Plants for delivery of edible vaccines. Curt Opin Biotechnol 2000,11 (2): 126-129
    50. Giddings G, Allison G, Brooks D, et al, Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol, 2000, 18(11): 1151-1155
    51. Yu J, Langridge WH. Novel approaches to oral vaccines: Delivery of antigens by edible plants. Curr Infect Dis Rep,2000,2:73-77
    52. Yu J, Langridge WHR. A plant-based multicomponent vaccine protects mice from enteric diseases. Nat B iotechnol, 2001,19:548-552
    53. Ruedl C, Wolf H. Features of oral immunization. Int Arch Allergy Immunol, 1995,108(4): 334-339
    54. Sheikh NA, al-Sharnisi M, Morrow WJ. Delivery systems for molecular vaccination. Curr
    
    
    Opin Mol Ther, 2000 ,2 (1) :37-54
    55. Mor TS, Gomez-Lim MA, Palmer KE. Perspective: edible vaccines--a concept coming of age. Trends Microbiol, 1998,6(11) :449-453.
    56. McGhee JR, Mestecky J, Dertzbaugh MT, et al. The mucosal immune system: from fundamental concepts to vaccine development, Vaccine, 1992,10(2) :75-78
    57. McGhee JR, Mestecky J. Elson CO, et al. Regulation of IgA synthesis and immune response by T cells and interleukins. J Clin Immunol, 1989,9(3) :175-99
    58. Pearay L. Ogra, Howard Faden, Robert C, et al. Vaccination strategies for mucosal immune responses. Clini Micro Rev, 2001, 14:430-445
    59. Neutra MR, Frey A, Kraehenbuhl JP. Epithelial M cell: Gateways for mucosal infection and immunization. Cell, 1996, 86:345-348
    60. Mark A, Mann Clark, Jepson NL, et al. Selective binding and transcytosis of ulex europaers-I lectin by mouse peyper's patch M cells in vivo[J].Histocheistry,1993, 100:441-447
    61. Neutra MR. Current concept in mucosal 5mmunity[J].American Physiological Society,1998,193:G781-785
    62. Fastad IN, Halxtense TS, Fansa O, et al. Heterogeneity M cell associated B and T cells in human Pepers patches[J].Immunologym,1994,83:457-464.
    63. Delves PJ , Roitt IM. The immune sytem. N Engl J Med,2000,343:108-117
    64. Klavinskis LS, Barnfield C, Gao L, et al. Intranasal immunization with plasmid DNA-lipid complexes elicits mucosal immunity in the female genital and rectal tracts. J Immuol 1999,11:73-83
    65. Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci, 2001,6(5) :219-226
    66. Mercenier A, Wiedermann U, Breiteneder H. Edible genetically modified microorganisms and plants for improved health. Curr Opin Biotechnol, 2001,12(5) :510-515
    67. Larrick JW, Thomas DW. Producing proteins in transgenic plants and animals. Curr Opin Biotechnol, 2001,12(4) : 411-418.
    68. Yu J, Langridge WH. Novel Approaches to Oral Vaccines: Delivery of Antigens by Edible Plants. Curr Infect Dis Rep, 2000 ,2(1) :73-77
    69. Kung, Shain D, WuR. Transgenic plants[J].Academic Press,1996.
    70. Stachel S, Messens E, Montagu M, et al. Identification of the signal molecules-produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumetaciens[J]. Nature,1985,318:624-629
    71. Usha R, Rohll JB, Spall VE , et al .Expression of an animal virus antigenic site on the surface of a plant virus particle[J]. Wrology,1993,197:366-374
    72. Porta C, Spall VE, Loveland J, et al. Development of cow pea mosaic virus as a high as high-yielding system for the presentation of foreign peptides.[J]. Wrolog,1994,202:949-955
    
    
    73. Mclain L, Durrani Z, Wisniew ski LA, et al .Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22 amino acid peptide of gp41 expressed on the surface of a plant virus[J].Vaccine,1996,14:799-810.
    74. Porta C, Spall VE, Lin T, et al. The development of cow-pea mosaic virus as a potential source of novel vaccines[J].Intervirol,1996,39:79-84
    75. Yusibov V, Modelska A, Steplewski K, et al. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1 [J].Proc Natl Acad Sci USA,1997,94:5784-5788
    76. Curtiss RI, Cardineau CA. Oral immunization by transgenic plants [J]. World Patent App lication,1990,90/02484
    77. Haq TA, Mason HS, Clements JD, et al. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 1995,268(5211) :714-716
    78. Arakawa T, Chong DKX, Langridge WHR. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat Biotechnol,1998, 16:292-297
    79. Mason HS, Ball JM, Shi J-J, et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice .Prc Natl Acad Sci USA, 1996,93(11) :5335-5340.
    80. Mason H S, Lam DM-K, Arntzen C J. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA ,1992, 89:11745-11749
    81. Kapusta J, Modelska A, Figlerowicz M, et al. A plant-derived edible vaccine against hepatitis B virus. FASEB J, 1999,13:1796-1799.
    82. Richter LJ, Thanavala Y, Arntzen CJ, et al. Production of hepatitis B surface antigen in transgenic plants for oral mmunization. Nat Biotechnol, 2000,18(11) : 1167-71
    83. McGarvey PB, Hammond J, Dienelt MM, etal Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology, 1995,13:1484-1487
    84. Modelska A, Dietzschold B.Sleysh N, et al. Immunization against rabies with plant-derived antigen. Proc Natl Acad Sci USA, 1998,95(5) :2481-2485
    85. Tuboly T, Yu W, Bailey A, Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine,2000,18(19) :2023-2028
    86. Gomez N, Wigdorovitz A, Castanon S, et al. Oral immunogenicity of the plant derived spike protein from swine-transmissible gastroenteritis coronavirus. Arch Virol 2000,145(8) : 1725-1732
    87. Carrillo C, Wigdorovitz A, Oliveros JC, et al. Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J Virol, 1998, 72(2) : 1688-1690.
    88. Wigdorovitz A, Carrllo C, Dus Santos MJ, et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology, 1999,255(2) :
    
    347-353
    89. Tacket CO, Mason HS, Losonsky G, et al. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med, 1998, 4:607-609.
    90. Kapusta J, Modelska A, Figlerowicz M, et al. A plant-derived edible vaccine against hepatitis B virus. FASEB J, 1999,13(13): 1796-1799
    91. Tacket CO, Mason HS, Losonsky G, et al. Human immune responses to a norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis, 2000, 182:302-305
    92. Artnzen CJ. Edible vaccines. Public Health Rep, 1997,112(3):190-197
    93. Daniell H, Khan MS, Allison L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci, 2002,7(2):84-91
    94. Daniell H, Lee SB, Panchal T, Wiebe PO. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol, 2001,311(5):1001-1009
    95. Tacket CO, Mason HS.A review of oral vaccination with transgenic vegetables. Microbes Infect, 1999,1(10):777-783
    96.彭秀玲.基因工程实验技术.长沙:湖南科学技术出版社.1987:75-82.
    97.王关林,方宏筠,编著.植物基因工程原理与技术.(第一版).北京:科学出版杜,1998:506-508
    98.J.萨姆布鲁克,D.W.拉塞尔,编著,分子克隆实验指南(第三版)北京:科学技术出版社.2002:48-49
    99.崔武,刘炜,吴光耀.高效、快速地将外源DNA导入根瘤土壤农杆菌.生物工程学报,1995,11(4):350-355
    100.王关林,方宏筠,编著.植物基因工程原理与技术(第一版).北京:科学出版社,1998:514-517
    101.郭安平,黄明,彭世清等.几种麻类作物及其近源种植物总DNA的提取与鉴定.中国麻作,1997,19(4):4-10
    102.J.萨姆布鲁克,D.W.拉塞尔,编著.分子克隆实验指南(第三版).北京:科学技术出版社.2002:492-494
    103. Pearay L. Ogra, Howard Faden, Robert C, et al. Vaccination strategies for mucosal immune responses. Clini Micro Rev, 2001, 14:430-445.
    104.候丙凯,夏光敏,陈正华,植物基因工程表达载体的改进和优化策略.遗传,2001,23(5):492-497
    105.王关林,方宏筠,编著.植物基因工程原理与技术(第一版).北京:科学出版社,1998:437-438
    106.周鹏,郑学勤.果实特异表达启动子分离、改造及特异表达分析.华南热带农业大学博士论文.1998:33-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700