复合营养素对认知与运动功能损伤大鼠的干预作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立认知与运动功能损伤大鼠模型;观察复合营养素配方对认知与运动功能损伤大鼠的改善效果,并初步阐明其作用机制。方法:(1)海马内注射β淀粉样蛋白(Aβ)致认知与运动功能损伤大鼠模型的探讨。3~4月龄雄性SD大鼠27只,随机分为正常对照组、Aβ组和生理盐水组,每组9只。正常对照组不作任何处理,Aβ组每侧海马内注射1μl Aβ,生理盐水组海马内注射等体积生理盐水。海马内注射两周后,观察海马病理学改变;水迷宫、避暗实验检测大鼠的学习、记忆功能;荧光分光光度法测定血清维生素A、E含量;紫外分光光度法测定血清维生素C含量;化学发光竞争免疫法测定血清叶酸含量;原子吸收分光光度法测定血清铁、铜、锌含量;气相色谱法测定血清游离脂肪酸含量;全血谷胱甘肽还原酶、红细胞天门冬氨酸转氨酶活性、血清和脑组织乙酰胆碱酯酶(AChE)活性也采用紫外分光光度法。(2)老龄大鼠作为认知与运动功能损伤动物模型的研究。雄性Wistar大鼠16只,分为老龄组(15月龄)和青年组(3月龄),每组8只。水迷宫、rod walking及plank walking实验检测大鼠的行为学功能。(3)复合营养素对老龄大鼠认知与运动功能的干预作用及机制研究。选取15月龄Wistar大鼠,雄性14只,雌性16只,随机分为干预组和对照组,每组雄性7只,雌性8只。干预组大鼠饲喂添加复合营养素的自制饲料,同时灌胃植物提取物混合液,而对照组饲喂基础饲料,同时灌胃蒸馏水。灌胃剂量为4ml/(kg bw·d)。实验干预期为10周。采用水迷宫、rod walking实验检测大鼠的认知及运动行为;荧光分光光度法检测脑组织去甲肾上腺素(NE)、5-羟色胺(5-HT)、多巴胺(DA)、血清VE含量;紫外分光光度法测定脑组织乙酰胆碱(ACh)含量,血清总蛋白含量、白蛋白含量,脑组织及血清AChE活性,全血谷胱甘肽过氧化物酶(GSH-Px)活性,血清总抗氧化能力(T-AOC)、抑制羟自由基能力;神经电生理法观察海马齿状回长时程增强效应的改变;二维凝胶电泳(2-DE)检测大鼠额叶皮层蛋白质表达的变化,利用肽质量指纹图谱分析和数据库检索鉴定表达差异的蛋白,Western blotting验证stathmin 1蛋白的表达变化。结果:(1)未观察到Aβ组海马组织Aβ沉着及明显的病理变化。与正常对照组比较,Aβ组学习、记忆功能有下降趋势,但差异无显著性;Aβ组血清VC、铁含量显著下降;血清及脑组织AChE活性显著升高;血清游离脂肪酸构成发生显著改变。(2)与青年组大鼠比较,老龄组大鼠认知与运动功能下降。(3)与对照组比较,干预组老龄大鼠发生以下改变:①认知与运动功能得到改善;抗氧化能力增强,血清VE含量增加;脑组织ACh、NE、5-HT、DA含量升高,而血清及脑组织AChE活性显著下降;②海马齿状回长时程增强幅度明显提高,海马突触传递效能增强;③额叶皮层2-DE图谱中11个蛋白点含量发生变化。质谱鉴定的10种蛋白质中,其中6种蛋白质含量降低,分别为:丙酮酸激酶、丙酮酸脱氢酶E1α1、天门冬氨酸转氨酶、线粒体肌酸激酶1、电压依赖性阴离子通道2、磷酸丙糖异构酶1;4种蛋白质含量升高,分别为:过氧化物氧化还原酶2、线粒体H-ATP合酶d亚单位、stathmin 1、Cu-Zn超氧化物歧化酶。④额叶皮层stathmin 1蛋白的表达量升高。结论:(1)老龄大鼠可作为认知与运动功能损伤的动物模型研究复合营养素的干预效果及其机制。(2)复合营养素对老龄大鼠的认知与运动功能有改善作用,其作用途径可能与改善大鼠的抗氧化状态,增加与行为功能密切相关的神经递质含量,改善神经突触之间的传递效率,上调与认知相关蛋白质的表达等有关。其中,stathmin1蛋白可能对老龄大鼠神经细胞有一定的保护作用。
Objective: To investigate the improved effects of combined nutrients in rats with impaired cognition and motor function and illustrate its possible mechanism.
     Method: (1) The model with impaired cognition and motor function was established by intrahippocampal injection ofβ-amyloid protein (Aβ). Twenty seven male Sprague-Dawley rats were randomly divided into control group,βamyloid group (Aβ) and saline group. The rats were injected with Aβor saline in bilateral hippocampus (1μl per lateral) in Aβand saline group respectively. Two weeks later, the pathologic changes of hippocampus were observed. The learning and memory ability of rats were examined by water maze test and one trial passive avoidance test. The contents of serum vitamin A and E were determined by fluorospectrophotometry, vitamin C by ultraviolet spectrophotometry, folic acid by chemiluminescence competitive immunoassay, iron, copper and zinc by atomic absorption spectrophotometry and free fatty acids by gas chromatography. The activity of glutathione reductase in blood, aspartic transaminase in erythrocyte and acetylcholine esterase in serum and brain was also determined by ultraviolet spectrometry. (2) Sixteen male Wistar rats were divided into aged group (15months old) and young group (3months old), eight in each. The behavioral tests were carried out through water maze, rod walking and plank walking test. (3) Fourteen male and sixteen female Wistar aged rats were randomly divided into intervened group and control group, seven male and eight female in each. The rats in intervened group were fed with diets supplemented with combined nutrients and mixed plant extract administered intragastrically at 4ml/kg bw/d, while the rats in control group were fed with basic diets and water. The experiment lasted 10 weeks. The cognition and motor behavior was tested with water maze and rod walking test. The levels of noradrenaline, serotonin, dopamine in brain and vitamin E in serum were determined by fluorospectrophotometry, brain acetylcholine, serum protein and albumin, activities of brain and serum acetylcholine esterase, blood glutathione peroxidase, serum total anti-oxidation capability and hydroxy radical inhibition capability by ultraviolet spectrophotometry. The changes of long-term potentiation in hippocampal dentate gyrus were observed through electrophysiology, and protein synthesis in frontal cortex by two dimensional gel electrophoresis. The expressed differential proteins were identified by analysis of peptide mass fingerprint and database retrieval. Western blotting was used to identify the changes of stathmin 1 expression. Results: (1) Deposition of Aβand pathological changes were not observed in hippocampus in Aβgroup. Compared with control group, the learning and memory in Aβgroup decreased but it's insignificant. The contents of serum vitamin C and iron decreased in Aβgroup, while the activity of acetylcholine esterase in brain and serum increased significantly.
     The composition of free fatty acids in serum changed significantly. (2)Compared with young rats, the cognition and motor function of aged rats declined, but restored after intervention by combined nutrients. (3) In intervened group, the anti-oxidation capability and vitamin E contents in serum, the contents of acetylcholine, noradrenaline, serotonin and dopamine in brain were increased, but acetylcholine esterase activity in serum and brain decreased. The amplitude of long-term potentiation in hippocampal dentate gyrus and the efficacy of hippocampal synaptic transmission were significantly elevated. Eleven protein spots with changes of contents were observed in two dimensional gel electrophoresis maps and ten of them were identified successfully. Among the identified proteins, six proteins decreased in frontal cortex of dietary supplemented rats including pyruvate kinase, pyruvate dehydrogenase E1 alpha 1, aspartate transaminase, mitochondrial creatine kinase 1, voltage-dependent anion channel 2 protein and triosephosphate isomerase 1, while the other four proteins increased, including peroxiredoxin 2, subunitd of mitochondrial H-ATP synthase, stathmin 1 and Cu-Zn superoxide dismutase. The results of Western blotting confirmed that frontal cortex stathmin 1 in intervened group increased than that in control group. Conclusion: The aged rat can be taken as model with impaired cognition and motor function to study the effects of nutrition intervention and the mechanisms involved. The combined nutrients have improved effects on cognition and motor function of aged rats and the effects might correlate with improved anti-oxidation status, elevated neurotransmitter level, increased efficacy of synaptic transmission and increased expression of protein related to cognition in frontal cortex. Stathmin 1 might protect the neuron in aged rat.
引文
[1] B. Topic, E. Tani, K. Tsiakitzis, et al. Enhanced maze performance and reduced oxidative stress by combined extracts of zingiber officinale and ginkgo biloba in the aged rat. Neurobiology of Aging, 2002, 23:135-143.
    [2] 周兰兰,明亮,李前进,等.银杏叶提取物改善老龄前期小鼠学习记忆的作用.安徽医科大学学报,1998,33(5):337-339.
    [3] Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci, 1999,19:8114-8121.
    [4] 冯彪,何满,周晓群.膳食中补加VE和硒对老龄大鼠组织中过氧化脂质和谷胱甘肽过氧化物酶的影响.白求恩医科大学学报,1994,20(6):571-572.
    [5] Sram RJ, binkova B, Topinka J, et al. Effect of antioxidant supplementation in an elderly population. Basic Life Sci, 1993, 61: 459-477.
    [6] Kitraki E, Bozas E, Philippidis H. Aging-related changes in IGE and c-fos gene expression in the rat brain. Int J Del Neurosci, 1993, 11: 1-9.
    [7] Krapfenbauer K, Berger M, Lubec G, et al. Changes in the brain protein levels following administration of kainic acid. Electrophoresis, 2001, 22: 2086-2091.
    [8] 刘辉,陈俊抛,田时雨,等.海马注射β淀粉样蛋白对大鼠学习记忆及局部神经元的损伤作用.中华神经科杂志,2000,33(3):150-152.
    [9] 徐淑云,卞如濂,陈修.药理实验方法学,人民卫生出版社,2002,第三版,827-829.
    [10] Hamm RJ, Pike BR, O'Dell DM, et al. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma, 1994,11:187-196.
    [11] 顾景范,陈玉珍,王宗印,等.全血谷胱甘肽还原酶活性系数在营养调查中的应用.营养学报,1982,4(4):349-352.
    [12] 武兴权,张永贵,胡增祥,等.红细胞门冬氨酸转氨酶活性系数评价实验性维生素B_6缺乏.营养学报,1997,19(4):427-430.
    [13] 夏奕明,朱莲珍.血和组织中谷胱甘肽过氧化物酶活力的测定方法.卫生研究,1987,16(4):29-32.
    [14] 杨会宣,王文学,柯金水,等.碱性羟胺比色法测定全血乙酰胆碱.临床检验杂志,1995,13(3):125-126.
    [15] 何美霞,可君.脑组织中单胺类神经递质含量测定.河南医科大学学报,1996,31(1):113.
    [16] 吴旭增,刘静雯.用荧光法测定大鼠脑单胺类神经递质的条件探讨.中国药理学通报,1987,3(6):371.
    [17] Zhou JZ, Zhang YX, Liu CG, et al. Inhibitory effect of corticosterone on the formation of long-term potentiation in hippocampal dentate gyrus, Chin J Pharmacol Toxicol, 1999, 13(4): 241-244.
    [18] Bliss TVP, Collingridge GL. A synaptic model of memory long-term potentiation in the hippocampus. Nature, 1993, 361:31-39.
    [19] Berkelman T, Stenstedt T.. 2-D Electrophoresis: Using immobilized pH Gradients; Principles and Methods. Amersham Pharmacia Biotech, Uppsala, Sweden 1998.
    [20] Suckau D, Resemann A, Schuerenberg M, et al. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem, 2003, 376: 952-965.
    [21] J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著,金冬雁,黎孟枫等译.《分子克隆实验指南》科学出版社,1995,第二版.
    [22] 陈红,任常山,尹元琴,等.β-淀粉蛋白脑室内注射建立阿尔茨海默病大鼠模型.中国神经精神疾病杂志,2005,31(2):145-148.
    [23] 周琳,杨期东,袁梦石,等.何首乌对淀粉样β蛋白致海马神经元的凋亡和学习记忆障碍的作用.中国临床康复,2005,9(9):131-134.
    [24] Shukitt-Hale B, Carey A, Joseph JA. Phytochemicals in foods and beverages: effects on the central nervous system. Nutritional Neuroscience, 2005, 393-404.
    [25] Joseph JA, Denisova NA, Arendash G, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci, 2003, 6: 153-162.
    [26] Anna Walesiuk, Emil Trofimiuk, Jan J. Braszko. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacological Research, 2006, 53:123-128.
    [27] Morris MC, Evans DA, Bienias JL, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol, 2003, 60:940-946.
    [28] Michio Hashimoto, Yoko Tanabe, Yoshimi Fujii, et al. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-induced rats. J Nutr, 2005,135: 549-555.
    [29] Melis F, et al. Chronic ethanol consumption in rats: correlation between memory performance and hippocampal acetylcholine release in vivo. Neuroscience, 1996,74:155-159.
    [30] Dumbur GR, Ryleet RJ, Schnidt BM, et al. Hippocampal choline acetyltransferase activity correlates with spatial learning in aged rat. Brain Res, 1993, 604: 267-272.
    [31] 孙明江,张守志,郑群,等.银杏叶制剂治疗老年性痴呆的药理基础及应用研究.山东中医药大学学报,1998,22(3):221.
    [32] Garofalo P, Colombo S, Lanza M. CR2249: a new putative memory enhancer: behavioral studies on learning and memory in rats and mice. J Pharm Pharmacal, 1996, 48: 1290-1297.
    [33] With HL, Scates PW, Cooper BR. Extracts of Ginkgo Biloba leaves inhibit monoamine oxidase. Life Sci, 1996,16:1315.
    [34] Barbara Shukitt-Hale, Natalla A. Denisova, et al. Psychomotor effects of dopamine infusion under decreased glutathione conditions. Free Radical Biology & Medicine, 1997, 23(3): 412-418.
    [35] Barbara Shukitt-Hale, Steven A. Erat et al. Spatial learning and memory deficits induced by dopamine administration with decreased glutathione. Free Radical Biology & Medicine, 1998, 24(7/8): 1149-1158.
    [36] Joseph JA, Shukitt-Hale B, Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr2005; 81: 313 S-316S.
    [37] Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956, 11: 298-300.
    [38] Harman D. Aging: overview. Ann N Y Acad Sci 2001, 928:1-21.
    [39] Harman D. Free-radical theory of aging. Increasing the functional life span. Ann NY Acad Sci 1994, 717: 1-15.
    [40] Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002, 23:795-807.
    [41] Wickens AP. Ageing and the free radical theory. Respir Physiol 2001, 128: 379-391.
    [42] Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans 1996, 24: 790-794.
    [43] Stephane Bastianetto, Remi Qurion. Natural extracts as possible protective agents of brain aging. 2002, 23: 891-897.
    [44] Joseph JA, Shukitt-Hale B, Denisova NA, et al. Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 1998, 18:8047-8055.
    [45] Ephron S. Rosenzweig, Carol A. Barnes. Impact of aging on hippocampal function: plasticity network dynamics, and cognition. Progress in Neurobiology, 2003, 69: 143-179.
    [46] 洪燕,程义勇,马强,等.维生素E对应激大鼠海马齿状回长时程增强的保护作用.中国应用生理杂志,2002,18(2):142-144.
    [47] B. M. McGahon, C. A. Murray, D. F. Horrobin, et al. Age-related changes in oxidative mechanisms and LTP are reversed by dietary manipulation. Neurobiology of Aging, 1999,20: 643-653.
    [48] D. Boyd-kimball, R. Sultana, H. Fai Poon, et al. Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid β-peptide into rat brain: implications for Alzheimer's disease. Neuroscience, 2005, 132: 313-324.
    [49] H. Fai. Poon, Susan A. Farr, William A. Banks, et al. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the A β region of amyloid precursor protein. 2005, 138: 8-16.
    [50] Walczak CE. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol, 2000, 12(1): 52-56.
    [51] Manceau V, Gavet O, Curmi P, et al. Stathmin interaction with HSP70 family proteins. Electrophoresis, 1999, 20(2): 409-417.
    [52] Mori N, Morii H. SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J Neurosci Res, 2002, 70(3): 264-273.
    [53] Liedlke W, Leman EE, Fyffe RE, et al. Stathmin-deficient mice develop an age-dependent axonopathy of the central and peripheral nervous systems. Am J Pathol, 2002, 160(2): 469-480.
    [54] 汤新慧,高静,徐强.线粒体电压依赖性阴离子通道及其调控功能.细胞生物学杂志,2005,27:113-116.
    [55] H. Kim, T. H. Lee, E. S. Park, et al. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide induced apoptosis in thyroid cells. J. Biol. Chem, 2000, 275: 18266-18270.
    [56] S. H. Kim, M. Fountoulakis, N. Cairns, et al. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome, J. Neural Transm., 2001, Suppl: 223-235.
    [57] Hofmann, B., Hecht, H. J., Flohe, L. Peroxiredoxins. Biol. Chem. 2002, 383(3-4):347-364.
    1 Moskaug JO, Carlsen H, Myhrstad MC, et al. Polyphenols and glutathione synthesis regulation. Am J Clin Nutr, 2005, 81(1 Suppl): 277S-283S.
    2 Jang JH, Surh YJ. Protective effect of resveratrol on β-amyloid-induced oxidative PC 12 cell death. Free Radic Biol Med, 2003, 34(8): 1100-1110.
    3 Ono K, Yoshiike Y, Takashima A, et al. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease. J Neurochem, 2003, 87(1): 172-181.
    4 Lee SY, Kim CY, Lee JJ, et al. Effects of delayed administration of(ˉ)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res Bull, 2003, 61(4): 399-406.
    5 史以菊,王曙光,卢连元,等.三七皂苷单体Rb_1、Rg_1对局灶性脑缺血运动功能及体感诱发电位的影响.现代康复,2001,5(10):52-57.
    6 张均田.人参皂甙Rg_1和Rb_1药理作用的比较.基础医学与临床,2000,20(5):388-390.
    7 McEwen BS. Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol, 2001, 91 (6): 2785-2801.
    8 Duffy R, Wiseman H, File SE. Improved cognitive function in postmenopausal women after 12 weeks of consumption of a soya extract containing isoflavones. Pharmacol Biochem Behav, 2003, 75 (3): 721-729.
    9 Linford NJ, DorsaDM. 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids, 2002, 67 (13-14): 1029-1040.
    10 马晓红,许逸,潘鑫鑫,等.大蒜新素对大鼠软脑膜微循环的作用.中国药理学报,2000,16(2):145-148.
    11 赵玉军.双氢麦角碱对脑卒中恢复期患者的疗效观察.天津药学,2004,16(4):19-20.
    12 陈冬梅,慕邵峰,汪海.激活血管内皮细胞乙酰胆碱作用靶标的抗血栓作用及其分子机制.中国药理学通报,2002,18(5):527-531.
    13 王文雅,陈克敏,关永源.盐酸小檗碱对毒蕈碱型受体的作用.药学学报,1999,34(4):260-263.
    14 吴二兵,胡雪勇,孙安盛,等.夏天无、钩藤生物碱抗脑细胞凋亡作用及急性毒性.遵义医学院学报,2004,27(5):444-446.
    15 张慧灵,顾振纶,曹奕.夏天无总生物碱对痴呆大鼠学习记忆障碍及中枢胆碱能神经系统功能的影响.中国药理学通报,2004,20(10):1158-1160.
    16 张爱林,徐秋萍,孙建宁,等.多发性脑梗死痴呆大鼠行为学和生化学改变及CO-GBE的保护作用.第四军医大学学报,2004,25(6):531-534.
    17 周兰兰,董六一,左从文,等.银杏叶提取物对反复脑缺血大鼠的保护作用.中国中医药科技,2001,8(1):4.
    18 王何,邱小鹰,杨丽莎.国产银杏内酯和银杏叶提取物对实验性脑缺血治疗的对比研究.浙江中医杂志,2002,(5):214-216.
    19 Bastianetto S, Quirion R. Natural extracts as possible protective agents of brain aging. Neurobiol Aging, 2002, 23 (5): 891-897.
    20 Joseph JA, Denisova NA, Arendash G, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci, 2003, 6(3): 153-162.
    21 Casadesus G, Shukitt-Hale B, Stellwagen HM, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci, 2004, 7(5-6): 309-316.
    [1] 刘辉,陈俊抛,田时雨,等.海马注射β淀粉样蛋白对大鼠学习记忆及局部神经元的损伤作用.中华神经科杂志,2000,33(3):150-152
    [2] Halterman JS, Kaczorowski JM, Aligne CA, et al. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics, 2001, 107: 1381-1386.
    [3] Patil S, Chan C. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons. Neuroscience Letter, 2005, 384(3):288-293.
    [4] Lynch MA, Voss KL, Gower AJ. Impaired spatial memory in aged rats is associated with alterations in inositol phospholipid metabolism. Neuro Rep, 1994,5:1493-1497.
    [5] Yoko Okaichi, Yoshiyuki Ishikura, Kengo Akimoto, et al. Arachidonic acid improves aged rats' spatial cognition. Physiology & Behavior, 2005, 84: 617-623.
    [6] Kumar V. B., Vyas. K., Buddhiraju. M, et al. Changes in membrane fatty acids and delta-9 desaturase in senescence accelerated (SAMP8) mouse hippocampus with aging. Life Sci, 1999, 65:1657-1662.
    [7] Lynch MA, Voss KL. Membrane arachidonic acid concentration correlates with age and induction of long-term potentiation in the dentate gyrus in the rat. Eur J Neurosci ,1994, 6: 1008-1014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700