负载型过渡金属氧化物催化剂催化氧化NO的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电站排出的NOx中约有90%为NO,由于钙基吸收剂在烟气净化技术中被普遍采用,所以基于钙基吸收剂的污染物协同脱除技术研究具有重要价值。而钙基吸收剂对NO难以吸收,为提高NOx脱除效率,需将NO首先氧化为NO2,再用钙基吸收剂吸收,这是实现钙基吸收剂同时脱硫脱硝的重要途径。本文旨在寻找有效催化剂,研究其制备条件和模拟烟气环境对催化活性的影响,为基于同时脱硫脱硝的NO催化氧化技术开发奠定基础。
     本文搭建了常压固定床实验台,考察了人造沸石分别负载四种过渡金属氧化物催化剂在不同温度条件下的催化活性。研究发现:烟气温度对过渡金属氧化物催化剂的催化活性有较大影响。250℃~350℃范围内,过渡金属氧化物催化剂对NO的催化活性顺序为MnO_x>CoOx>CuOx>FeOx,烟温低于200℃时,这四种催化剂催化活性均较低。选择MnO_x作为基础催化剂活性物质,分析了助催剂及添加剂对MnO_x/沸石催化剂催化活性的影响,发现Co3O4、CeO2、CuO作为助催剂的加入在一定程度上提高了Mn基催化剂的活性,Fe2O3的加入对催化剂的活性有抑制作用,在300℃条件下,Mn-Ce/沸石催化剂的NO转化率与Mn/沸石相比提高了12%。
     选择5种多孔介质作为催化剂载体,考察了载体对催化剂催化活性的影响。研究表明:MnO_x作为催化剂活性物质时,使用不同载体制作的催化剂有不同的催化活性。考虑到经济性和易得性,本文选择稻壳灰作为催化剂载体,并对MnO_x/RHA制备条件进行了优化研究,得出的最佳制备条件是:催化剂载体RHA烧制温度800℃、活性物质MnO_x含量25wt.%、催化剂焙烧温度350℃、催化剂焙烧时间10h。
     本文最后在模拟烟气的反应环境下,对经优选的MnO_x/RHA催化剂进行了性能评价研究。发现随着NO入口浓度的升高,NO转化率呈下降趋势,NO浓度高于某一值时,出现催化剂性能迅速下降的拐点;O2含量对NO转化率的影响呈现迅速上升而后趋于平缓的趋势;H2O含量在0%~20%间波动时,NO转化率变化不大,表明MnO_x/RHA具有良好的抗水性;随着SO2的加入,NO转化率明显下降,表明SO2的对催化剂活性有显著的负面影响,需在后续工作中进行深入研究。
Over 90% of NOx in flue gas of coal-fired power plant is NO that is difficult to be absorbed by calcium-based absorbents. The simultaneous desulfurization and denitrification technology based on calcium-based absorbents has been significant as a research direction of combined removal, which has important value. To enhance the denitration efficiency by calcium-based absorbents and achieve the aim of simultaneous desulfurization and denitrification technology, NO must to be turned into NO2 first. The research contents of this paper is to find effective catalyst, study the best preparation condition of it and test the influence of the flue gas composition on catalytic oxidation of NO, to realize the simultaneous desulfurization and denitrification technology.
     Investigations of NO catalytic oxidation over supported metal oxides were conducted by fixed-bed. The influence of temperature on catalytic oxidation of NO was tested and the results show that the catalytic activity of Mn/Zeolite, Co/Zeolite, Cu/Zeolite, Fe/Zeolite is rather low when the temperature is lower than 250℃while the relative order of the catalytic activity are MnO_x>CoOx>CuOx>FeOx when the temperature is between 250℃and 350℃. Tests were conducted to analyze the influence of promoter and additive on catalytic oxidation of NO by MnO_x-based catalyst. The results show that the activity is higher by adding Co3O4, CeO2 and CuO, while the activity is lower by adding Fe2O3. The conversion on the surface of Mn-Ce/Zeolite is 12% higher than Mn/Zeolite when the temperature is 300℃.
     Tests were conducted to research the influence of carrier on catalytic activity. The results show that it has great influence on activity of catalytic. The activity and stability of MnO_x/RHA is preferably, and the RHA is so cheap, thus RHA is better choice of new type catalysts' carrier. The influence of catalyst's preparation conditions was studied. The results show that the best preparation conditions are: calcining temperature is 350℃, length of calcining time is between 6~10h, ashing temperature is 800℃, loading of MnO_x is 25wt.%
     Based the above study, tests were conducted to research the influence of the flue gas composition on catalytic oxidation of NO. The results show that NO conversion keeps enhancing with O2 content increasing and when NO concentration increasing, NO conversion will reduce. SO2 in gas will lead to catalyst poisoning of MnO_x/RHA and reducing of NO conversion. Water resistance of MnO_x/RHA is good. Fluctuation of NO conversion is little when steam content is between 0%~20%.
引文
1管锡,王君,董典同,马培建,栾兵. NOx的产生及脱除研究进展.青岛建筑工程学院学报, 2002(4).
    2王文选,肖志均,夏怀祥.火电厂脱硝技术综述.电力设备, 2006(7).
    3赵宗林,闫冰,董建勋.燃煤电站氮氧化物控制技术发展现状与国产化策略.东北电力技术, 2006(4).
    4现有燃煤电厂二氧化硫治理.“十一五”规划中华人民共和国环境保护部.
    5 Blumrich S, Engler B. DESONOX/REDOX-process for flue gas cleaning: A flue gas purification process for the simultaneous removal of NOx and SO2 resp. CO and UHC. Catalysis Today, 1993, 17(1~2): 301-310
    6 Markussen Joanna M., Livengood C. David. Alternative flue gas treatment technologies for integrated SO2 and NOx control. In: Proceedings of the 57th Annual American Power Conference. Chicago, IL, USA: 1995.1595-1600
    7 Nozawa Shigeru, Morita Isato, Mizoguchi Tadaaki. Latest SOx and NOx removal technologies to answer the various needs of industry. Hitachi Review, 1993, 42(1):43-48
    8 Tseng Hui~Hsin, Wey Ming~Yen, Liang Yu~Shen, et al. Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon~supported metal oxides. Carbo. 2003, 41(5): 1079-1085
    9 Shemwell B E, Ergut A, Levendis Y A. Economics of an Integrated Approach to Control SO2, NOx, HCl and Particulate Emissions from Power Plants. Air&Waste Manage. Assoc. 2002, 52: 521-534
    10 Makansi J Will. Combined SO2/NOx Processes Find a Niche in the Market. Power. 1990 (9): 26-28
    11 Zhong Yi, Zeng Hancai, Jin Feng. Current Development of Simultaneous Desulfurization and Denitrition. Electric Power Science and Engineering. 2002 (4): 12-14
    12董利,李瑞扬.炉内空气分级低NOx燃烧技术.电站系统工程. 2003(11).
    13冯道显.燃煤电站锅炉脱硝技术应用.电力环境保护. 2005(6).
    14付国民.煤燃烧过程中NOx的形成机理及控制技术.能源环境保护. 2005(6)
    15程慧,解永刚,朱国荣.火电厂烟气脱硝技术发展趋势.浙江电力. 2005(2).
    16 Sood A, Kittrell J R. Dual Bed Catalyst for Simultaneous Reduction of Sulfur Dioxide and Nitric Oxide with Carbon Momoxide. Ind. Eng. Chem. Prod. Res. Deb. 1974, 13: 180-185
    17 Zhuang S X, Yamazaki M, Omata K, et al. Catalytic Conversion of CO, NO and SO2 on Supported Sulfide Catalysts. Ind. Eng. Chem. Res. 2006, 45(13): 4582-4588
    18于龙,张彦军.选择性催化还原(SCR)脱硝技术研究.锅炉制造. 2005(12).
    19杨忠灿,文军,徐党旗.燃煤锅炉的选择性催化还原烟气脱硝技术.广东电力. 2006(2).
    20苏航. SCR系统中板式和蜂巢式催化剂的选取.电力环境保护. 2005(6).
    21王琦等.燃煤电厂SCR脱硝技术催化剂的特性及进展.电站系统工程. 2005(5).
    22张琳,张秀玲,代斌,宫为民,张大海.催化法脱除大气污染物NOx的研究进展[J].代温与特气. 2000,18(4):7-10
    23杨忠灿,文军,徐党旗.燃煤锅炉的选择性催化还原烟气脱硝技术.广东电力. 2006(2).
    24滕加伟,宋庆英,于岚等.催化法脱除NOx的研究进展[J].环境污染治理技术与设备. 2000,1(l):38-45.
    25谢平平. CuO/La2O3-ZrO2-Al2O3催化剂的制备及对NO催化氧化性能的研究.汕头大学硕士论文. 2005.9:4
    26伍斌,童志权. NO分解催化剂的研究进展[J].工业催化. 2005.7(13):52-55.
    27 Iwamoto M, Yahiro H, Mizuno N, Zhang W X, Min Y, Furkaga H, Kagawa S, Removal of nitrogen monoxide through a novel catalytic process, Journal of Physical Chemistry. 1992,96(23):9360-9366
    28潘华.催化脱除烟气NOx体系中过渡金属催化剂改性研究.浙江大学博士论文. 2008,4:26
    29赵海兵.固定床钙基吸收剂同时脱硫脱硝试验研究.哈尔滨工业大学硕士论文. 2008.7
    30 Tsuchiai H, Ishizuka T, Ueno T. Study of Flue Gas Desulfurization Absorbent from Coal Fly Ash: Effect of the Composition of the Absorbent on the Activity. Ind. Eng. Chem.Res. 1995, 34: 1404-1411
    31 Olbregts, J.Termolecular reaction of nitrogen monoxide and oxygen:a still unsolved problem [J]. Int.J.Chem.Kinet. 1985,17:835-841
    32王晓明,催化法去除氮氧化物的研究进展.工业安全与环保. 2009(35):21-23
    33 Brandin J, Anderson L, Cdenbrand C. Catalytic reduction of nitrogen oxides on mordenite some aspect on the mechanism. Catal Today. 1989,4(2): 187-203.
    34 Mochida I, Kawabuchi Y, Shizuo K, et al. High catalytic activity of pitch-based activated carbon fibres of moderate surface area for oxidation of NO to NO2 at room temperature. Fuel. 1997,76(6): 13-15.
    35高安正躬,安念芳昭,神崎恭一等.金属氧化物催化剂上NO的氧化及CO对反应的影响[J].燃料协会志. 1975, 54(577):314-318
    36高安正躬,安念芳昭,森田义郎. SO2和H2O对NO氧化反应的影响[J].燃料协会志, 1975, 54:930-936
    37 Karlsson H T, Rosenberg H S. Ind Eng Chem, Process Des Dev. 1984,23(4): 808
    38 Arai Hiromichi, Tominaga Hiroo, Tsuchiya Junichi. Oxidation of nitrogen monoxide over transition-metal ion-exchanged zeolites[C]. In: Bond Geoffrey C, Wells Peter B, Tompkins F C eds. Proceedings, 6th International Congress on atalysis. Letchworth:Chemical Society, 1977.997-1006
    39罗立新,刘敏,李绍箕.NO催化氧化的初步研究.环境工程.1997(8):30-33
    40鲁文质,赵秀阁,王辉,肖文德. NO的催化氧化.催化学报.2000(9):423-427
    41 Shiba K, Hinode H, Wakihara M.React Kinet Catal Lett, 1996, 58(1): 133
    42王辉,赵秀阁,肖文德,王军,袁渭康. NO在负载型金属氧化物催化剂上的氧化反应机理.华东理工大学学报. 2001(02):6-10
    43王辉. NO选择催化氧化的催化剂和反应机理研究[D].上海:华东理工大学,1999
    44 Bond G. Heterogeneous catalysis: principles and applications[J]. Oxford: Clarendon Pr, 1987.150-151
    45 Iwamoto M, Yoda Y, Yamazoe N, et al. Study of metal oxide catalysts by temperature programmed desorption 4:Oxygen adsorption on various metal oxides [J]. J Phys Chem, 1978,82(24):2 564.
    46 Iwamoto M, Yoda Y, Egashira M, et al. Study of metal catalysts by temperature programmed desorption 1: Chemisorption of oxygen on nickel oxide[J]. J Phys Chem. 1976,50(18):1989-1990
    47赵清森,孙路石,向军,石金明,王乐乐,殷庆栋,胡松. CuO/γ-Al2O3和CuO-CeO2-Na2O/γ-Al2O3催化吸附剂的脱硝性能.中国电机工程学报.2008(3):52-57
    48鲁文质,饶薇薇,肖文德,李平,卢冠中.铜钒复合氧化物的NO催化氧化活性和抗硫性.宁夏大学学报. 2001(6):172-174
    49莫建红. Mn/Co-Ba-Al-O催化氧化NO性能研究.湘潭大学工学硕士学位论文. 2007:18-19
    50许佩瑶.烟气循环流化床同时脱硫脱硝试验研究.华北电力大学工学博士学位论文. 2007:22~29, 46-47
    51朱炳辰.化学反应工程(第三版).高等教育出版社
    52甄开吉,王国甲,毕颖丽,李荣生,阚秋赋.催化作用基础(第三版).科学出版社. 2004
    53赵秀阁,王辉,肖文德等.催化学报(Zhao X G, Wang H, Xiao W Det al. Chin J Catal),.2000,21(3): 239
    54 Metcalfe I S, Sundaresan S. Oxygen Storage in automobile exhaust catalyst [J].Chem Eng Sci. 1986, 41(4):1109-1112.
    55赵振国.吸附作用应用原理.化学工业出版社. 2005
    56 Irvan Dahaln, Keat Teong Lee, Azlina Harun Kamaruddin, Abdul Rahman Mohamed. Selection of metal oxides in the preparation of rice husk ash(RHA)/CaO sorbent of simultaneous SO2 and NO removal. Journal of Hazardous Materials. 2009. xxx
    57伍斌.新型Mn基低温选择催化还原脱硝催化剂的研制.湘潭大学工学硕士学位论文. 2006:21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700