堇青石基钒系SCR脱硝催化剂的制备工艺及脱硝性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个煤炭大国,煤炭占我国能源结构的绝大部分,随着我国工业化的发展,煤炭燃烧所排放出来的氮氧化物越来越多,已经成为我国大气污染的一个主要组成部分。在世界上众多的脱硝技术中,选择性催化还原(SCR)技术是目前最为重要的烟气脱硝技术,而在SCR催化技术中催化剂成本所占比例比较大为40%-60%,国内外学者广泛致力于高效催化剂的研发。目前国内SCR催化剂研发存在以下两个方面的问题:(1)西方发达国家的研究比较成熟,而我国尚无自主研发的商用SCR催化剂;(2)大部分商用SCR催化剂制备工艺均为混捏法:即将所有成分的粉末混合到一起加入粘结剂、助挤剂等揉捏焙烧成型,这种方法TiO2重量占催化剂总重量的80%左右,存在成本高活性组分利用不充分的问题。
     本论文采用溶胶法制备催化剂载体Al2O3和TiO2,并通过常温浸渍法和超声波辅助浸渍法负载载体,通过加热浸渍法负载活性组分WO3和V2O5,制备了V2O5-WO3/TiO2,V2O5-WO3/TiO2/Al2O3(常温浸渍),V2O5-WO3/TiO2/Al2O3(超声波辅助浸渍)三个系列的催化剂,探讨了催化剂的前处理,载体负载,活性组分和助剂负载等制备工艺,并且在载体制备中创新性的引入超声波。结合SEM(扫描电镜),BET(比表面分析),XRD(X射线衍射)的表征结果,分析了催化剂制备中各因素的影响。结果发现:(1)前处理用15%的H2O2比用HNO3效果好,堇青石蜂窝陶瓷的比表面积有显著增加;(2)在载体负载工艺中:常温浸渍和超声辅助浸渍负载工艺优于水浴加热浸渍负载工艺;超声负载工艺大大缩短工艺时间;TiO2/Al2O3复合氧化物载体催化剂活性优于TiO2单氧化物载体催化剂活性;(3)在负载活性组分和助剂工艺中发现共浸和分浸对催化活性影响不大。
     在脱硝催化剂活性评价成套装置上进行了活性测定,研究了各种组分(V2O5,WO3,TiO2)和具体的催化反应条件(温度,O2浓度,氨氮比,空速)对其活性的影响。结果表明:(1)V2O5-WO3/TiO2催化剂中TiO2最佳负载量在16%~28%之间,WO3最佳负载量在4%~13%之间,V2O5负载量最佳值在1%~3%之间。(2)脱硝率随进口NO值的增加,空速的减少而增大,脱硝率在氨氮比为1.0-1.2,O2浓度为2.0-2.5%(NO=500ppm)比较高。在10000 h-1的空速下,催化剂脱硝率在350℃-450℃最高可达76%。
China has lots of coal, coal accounted for the vast majority of China's energy structure. With the development of China's industrialization, more and more nitrogen oxides discharged into air, which come from coal combustion in the Coal-fired power plant and has become a major component of air pollution. There are many denitration technology in the world, selective catalytic reduction (SCR) NOx is the most important technology of flue gas denitrification, both at home and abroad dedicated to high-performance catalyst for a wide range of research and development, studies conducted in western countries more mature, has successfully achieved a commercial , while there is no independent research and development of China's commercial SCR catalyst. Furthermore, most of the commercial SCR catalyst preparation are kneading method: all the ingredients were mixed together with help squeeze agent and binder, kneaded and baked to the finished. In this method, the weight of TiO2 accounted for 80% of the total catalyst weight, there are high costs and insufficient use of highly active component.
     In this paper, Al2O3 and TiO2 sol were prepared by the sol-gel method, the TiO2 /CC carrier and TiO2-Al2O3/CC were prepared with ultrasonic impregnation and static impregnation, respectively, and through the impregnation load active components WO3 and V2O5, three kinds catalysts of V2O5-WO3/TiO2, V2O5-WO3/TiO2/Al2O3 (ultrasonic impregnation), V2O5-WO3/TiO2/Al2O3(static impregantion) were prepared. Discussed the preparation process of catalyst pretreatment, carrier, other active components and additives load method. The preparation of the carrier introducted ultrasound innovativly. Combined the results of SEM, BET and XRD, the influenced factors of the catalyst preparation were analysed. The results showed that: (1) Pre-treatment with 15% H2O2 significantly increased surface area compared with HNO3; (2) In the supports load process: room temperature impregnation and ultrasonic assisted impregnation process were better than water bath heating impregnation process; ultrasound technology greatly reduced the load processing time; the activity with TiO2/Al2O3 double oxide carrier catalysts were better than catalyst of TiO2 single oxides catalysts; (3) In the active components and additives loading process, a total impregnation or step impregnation were found little effect on the catalytic activity.
     Catalyst activity in complete set of device evaluation activity assay was carried out to study the effect of its activity under various substances(V2O5, WO3, TiO2) and catalytic reaction conditions (temperature, O2 concentration, ammonia nitrogen ratio and space velocity). The results showed that: (1) the best loading content of TiO2 ranged within16% to 28%, optimal loading of WO3 ranged within 4% to 13%, the best loading of V2O5 ranged within 1% to 3%; (2) NO denitrification rate increases with the increase value of imports and the decrease of space velocity, denitrification rates in the conditions with ammonia ratio of 1.0-1.2 and O2 concentration of 2.0-2.5% (NO = 500ppm) were relatively higher. At 10000h-1 space velocity, catalyst denitration rate up to 76% of 350℃- 450℃.
引文
[1]李智森.燃烧中氮氧化物的形成和防治[M].污染防治技术, 1994(11): 627
    [2] Mauzerall Denise L, Sultan Babar, Kim Namsoug, et al. Nox emissions from large point sources: variability in ozone production,resulting health damages and economic costs [J]. Atmos Environ, 2005, 39: 2851-2866.
    [3]胡和兵,王牧野,吴勇民等.氮氧化物的污染与治理方法[J].环境保护科学, 2006,32(4): 5-9.
    [4]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社, 2005: 143–146.
    [5] Radojevic M. Reduction of nitrogen oxides in flue gases[J].Environmental Pollution,1998,102(1): 685-689.
    [6]吕君英,龚凡,郭亚平.选择性催化还原NOx的反应机理研究[J].工业催化, 2006, 14(1): 40-45.
    [7] Guido B, Luca Li, Gianguido R, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts [J]. Appl. Catal.B, 1998, 18 : 1236.
    [8]周良峰,田建,尹华强等.氨法SCR烟气脱硝技术研究进展[J].四川化工, 2007, 10(3): 38–42.
    [9]蒋文举,宁平.大气污染控制工程[M].成都:四川大学出版社,2001
    [10]陈杭君,赵华,丁经纬.火电厂烟气脱硝技术介绍[M].热力发电, 2005(2): 15-18
    [11]王斌. SCR脱硝技术及其在燃煤电厂中的应用[M].电力科学与工程, 2003(3): 61-63
    [12] Kawamura K. On the removal of NOx and SO2 in exhaust gas from the sintering machine by eletron beam irradiation [J]. Phys Chem, 1980, (16): 133-138
    [13]社民,李伟峰,陈英文等.烟气脱硝技术研究新进展[J].环境污染防治,2005 ,27(9): 699-703
    [14]黄建军,路达.氧化物催化还原技术在火电厂的应用研究[J].电力情报, 2004, (3): 27 - 29
    [15]王斌,唐茂平,马爱平.后石电厂超临界压力机组脱NOX工艺特点[J].中国电力,2004, 37(3): 88-90
    [16]钱斌.锅炉氮氧化物的污染及控制技术综述[J].冶金设计与研究, 2000, 21 (20): 41-46
    [17] Pio Forzatti. Present status and perspective in de-NOX SCR catalysis[J]. Applied Catalysis A: General 2001(222): 221-236
    [18]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社, 2006
    [19]王钟,王颖.火电厂烟气脱硝技术探讨[J].吉林电力, 2005(6): 1-5
    [20]李晓东,杨卓如.国外氮氧化物气体治理的研究进展[J].环境工程, 1996, 14(6): 34 - 39.
    [21]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社, 2007
    [22]刘清雅,刘振宇.蜂窝状堇青石基CuO/Al2O3催化剂用于烟气同时脱硫脱硝的研究[J].燃料化学学报. 2004, 32(03): 257-262
    [23] J.C. Mart?′n a, P. A′vila a, S. Sua′rez a et al. Influence of support acid pretreatment on the behaviour of CoOx/γ-alumina monolithic catalysts in the CH4-SCR reaction[J]. Applied Catalysis B: Environmental 67(2006): 270-278
    [24] J.C. Martin, S.B. Rasmussen, S. Suarez. Effect of sulphuric acid pretreatment concentration on the behaviour of CoOx/γ-Al2O3-SO4 monolithic catalysts in the lean CH4-SCR process[J]. Applied Catalysis B: Environmental 91(2009): 423-427
    [25]王晓明,许绿丝,舒展.改性ACF低温吸附脱除烟气中NO的研究[J].环境工程. 2008, 26(2): 39-41
    [26] A. Boyano a, M.C. Iritia a, et al.Vanadium-loaded carbon-based monoliths for on-board NO reduction: Influence of nature and concentration of the oxidation agent on activity[J]. Catalysis Today 137(2008): 222–227
    [27]朱崇兵,金保升,仲兆平等. V2O5-WO3/TiO2烟气脱硝催化剂的载体选择[J].中国电机工程学报, 2008, 28(11): 41-47.
    [28] Kobayashi M,Miyoshi K.WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: influence of preparation method on structural and physico-chemical properties, activity and durability[J]. Applied Catalysis B: Environmental, 2007, 72(3-4): 253-261.
    [29] Jiang Xin, Chen Ximing. Craystallization behavior and hydrophilic performances of V2O5-TiO2 films prepared by sol-gel dip-coating[J]. Journal of Crystal Growth, 2004, 270(3-4): 547-552.
    [30] Inomata M, Mlyamoto A, Toshlaki Ui, et al.Activities of V2O5/TiO2 and V2O5/Al2O3 catalysts for the reduction of NO and NH3 in the presence of O2[J].Industrial and Engineering Chemical Production Research and Development, 1982, 21(3): 424-428.
    [31] KOBA YASHI M,KUMA R,MASA KI S,et al. TiO2/SiO2 andV2O5/TiO2/SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl. Catal. B, 2005, 60(34): 173-179.
    [32] Wachs IE, Deo G, Weckhuysen BM, et al. Selective catalytic reduction of NO with NH3 over supported vanadia catalysts[J]. J. Catal, 1996, 161: 211.
    [33] Amiridis MD, Duevel RV, Wachs IE. The effect of metal oxide additives on the activity ofV2O5/TiO2 catalyst for the selective catalytic reduction of nitric oxide by ammonia[J] . Appl. Catal, 1999, 20: 111-122.
    [34] Ye D, Satsuma A, Hattori T, Murakami Y. Factors determining the selective exposure of (010) plane of V2O5 catalyst supported on various TiO2[J]. Res. Chem. Intermedz , 1995, 21, (2): 95-114.
    [35] Ye Daiqi, Liang Hong, Huang Zhongtao. Study on the interaction between the active phase and support on V2O5/TiO2 catalyst[J]. Acta Physico-Chimica Sinica, 1993, 9(4): 501-508.
    [36] Ye Daiqi, Tian Liuqing, Liang Hong. Effect of TiO2 surface properties on the SCR activity of NOx emission abatement catalyst[J]. Environmental Sciences, 2002,14 (4) 530-535.
    [37]赵春香,丁永杰,赵天生. TiO2 /Al2O3负载量对气相酯交换合成碳酸甲丙酯的影响[J].分子催化2008, 22(4): 336-340
    [38] M.Sánchez-Agudo, L.Soriano, C. Quirós, J. Avila, et al. Electronic interaction at the TiO2-Al2O3 interface as observed by X-ray absorption spetroscopy[J]. surface science, 2001, 482-485: 470-475
    [39] Tian Liuqing, Ye Daiqi, Liang Hong. Catalytic performance of a novel ceramic-supported vanadium oxide catalyst for NO reduction with NH3[J]. Catalysis Today, 2003, 78 : 159–170
    [40] Olthof B, Khodakov A, Bell A T, et al. Effeet of support somposition and pretreatment on the strueture of vanadia dispersed on SiO2、Al2O3、TiO2、ZrO2 and HfO2[J]. Jounal of Physical Chemistry, 2000, 104: 1516-1528
    [41] Busea G,Lietti L,Ramis G, et al. Chemical and mechanistic asects of the selective catalytic reduetion of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18: l-36
    [42] WU J M. Photodegradation of rhodamine B in water assisted by titania nanorod thin films subjected to various thermal treatments[J]. Environ Sci Technol, 2007, 41: 1723-1728.
    [43]张高洁,吴进明,刘少光,等.纳米复合结构二氧化钛薄膜的制备及其光催化降解水中若丹明B的能力[J].硅酸盐学报, 2007, 35(4): 442-446.
    [44] JIU J T, ISODA. S, WANG F M, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film [J]. J Phys Chem B, 2006, 110: 2087-2092.
    [45]吴进明,都留寛治,早川聡,等.钛金属表面生物陶瓷涂层研究的现状[J].硅酸盐学报, 2003, 31(7): 692-697.
    [46] VARGHESE O K, GONG D W, PAULOSE M, et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure[J]. Adv Mater, 2003, 15: 624-627.
    [47] WU J M, SATOSHI H, TSURU K, et al. Porous titania films prepared from interactions of titanium with hydrogen peroxide solution [J]. Scr Mater, 2002, 46: 101-106.
    [48] FROIMOVITCH A, MCGARRY S, SMY T, et al. Ultrahigh-surfacearea anatase thin films by direct oxidation of Ti film with hydrogen peroxide [J]. Electrochem Solid-State Lett, 2007, 10: K11-K12.
    [49] WU J M. Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide [J]. J Cryst Growth, 2004, 269: 347-355.
    [50] WU J M, Qi B. Low-temperature growth of nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water [J]. J Phys Chem C, 2007, 111: 666-673.
    [51] Bosch H, J ulian R, Ross H, et al. Mechanism of the Reaction of Nitric Oxide, Ammonia and Oxygen over Vanadia Catalysts[J]. J. Phys. Chem. 1987, 91: 6633-6638
    [52]范红梅,仲兆平,金保升,等.金属氧化物MoO3(WO3)和V2O5对烟气脱硝催化性能试验[J].环境化学, 2007, 26(4): 439-443.
    [53]闫志勇,高翔,吴杰,等. V2O5-WO3-MoO3/TiO2催化剂制备及NH3选择性还原NOx的试验研究[J].动力工程, 2007, 27(2): 282-287.
    [54]孙克勤,钟秦,李明波,等. V2O5-WO3/TiO2脱硝催化剂的制备及其性能研究[J].环境科学研究, 2007, 20(3): 124-127.
    [55] Ramis G, Busca G, Cristiani C, et al. Characterization of tungsta-titania catalysts[J] . Langmuir, 1992, 8(7): 1744
    [56] Qi Gongshin, Yang Ralph T. Performance and kinetics study for low2temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catalysis, 2003, 217: 434
    [57] Luis Alemany, Luca Lietti, Natale Ferlazzo, et al. Reactivity and physico-chemical characrerization of V2O5-WO3/TiO2 De-NOx catalyst s[J] . J Catalysis, 1995, 155:117
    [58] Maria Cristina Paganini, Lorenzo Dall Acqua, Elio Giamello, et al. An EPR study of the surface chemist ry of theV2O5-WO3/TiO2 catalyst: Redox behavior and state of V[J]. J Catalysis, 1997, 166: 195
    [59] Michael D, Amiridis Robert, Duevel V, et al. The effect of metal oxide addicitive on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. Appl Catalysis B: Enviromental, 1999, 20: 111
    [60]李延盛,尹其光.超声化学[M].北京:科学出版社, 1995: 1-30.
    [61] SUSLICK. K. S, CHOS .S.B. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353: 414-416.
    [62] Bianchi C L, Gotti E, Toscano L, et al. Preparation of Pd/C catalysts via ultrasound: A study of the metal distribution[J]. Ultrasonic sonochemistry, 1997, 4: 317 - 320.
    [63] MOSER.W.R. Advanced catalysts and nano-structured materials[M]. New York: Academicpress, 1996: 197-211
    [64]郭建光,李忠,奚红霞,等.超声场下制备催化燃烧VOCs的CuO/γ-Al2O3催化剂[J].高校化学工程学报, 2006, 20 (3): 368-373.
    [65]黄传真,艾兴,侯志刚.溶胶-凝胶法的研究和应用现状[J].材料导论, 1997, 11(3): 8
    [66]黄仲涛.工业催化剂手册[M].北京:化学工业出版社, 2004
    [67]张云,赵浪,尹光福.正钛酸胶溶法制纳米TiO2薄膜及性能表征[J].无机化学学报. 2004, 20(8): 991-995
    [68]闰明涛,吴刚.超声波合成介孔分子筛[J].无机化学学报, 2004, 20(2): 219-224.
    [69]梁新义,张黎明,丁宏远,等.超声促进浸渍法制备催化剂LaCoO3/γ-Al2O3[J].物理化学学报, 2003, 19 (7):666 - 669.
    [70] Bialchi C L, Carh R, lanzani S, et al. Influence of ultrasound on the preparation of ruthenium catalysts supported on alumina [J]. Ultrasonics Sonochem, 1994, 1(1): 47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700