电晕放电协同液相催化脱除烟气SO_2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫的污染和危害日益严重,已成为当前世界亟需解决的重要环境问题。低温等离子体技术在常温常压下放电能产生大量的高能电子和自由基,对二氧化硫等具有脱除效率高、反应速度快、无选择性等优点,是当今环保领域的研究热点。为了进一步减少等离子体脱硫的能耗,提高脱除效率,降低净化成本,本文提出将电晕放电等离子体与液相催化相结合脱硫方法。在深入认识自由基与二氧化硫反应及二氧化硫迁移传质的基础上,利用电晕放电等离子体技术与液相催化技术脱除模拟烟气中二氧化硫,并探索其脱除机理。主要研究结论如下:
     1.利用分光光度法,以BPB为探针捕捉剂,实验研究了在空气为背景气体下,不同电晕放电电压和放电时间下·OH自由基的产生情况。实验表明·OH自由基的产生量随放电电压增大而增大,与放电电压有较明显的关系。对液膜电晕放电产生·OH进行检测分析,并探讨其反应动力学过程。
     2.建立了线筒式电晕放电反应器,研究了其放电特性,以及电压、水流量、Mn2+浓度和SO2浓度等对电晕放电与Mn(Ⅱ)液相催化协同脱硫效果的影响,并探讨了协同脱硫的反应机理。结果表明,脱硫效率随着放电电压、水流量和Mn2+浓度的增加而增加,SO2浓度的影响不明显。电晕放电与Mn(Ⅱ)液相催化协同能够加强SO2的氧化作用,提高脱硫效率。电晕放电与Mn(Ⅱ)液相催化协同能够将SO2从气相状态转移到液相氧化成硫酸盐类,其间存在着电迁移、气液传质以及液相催化等过程。
     3.对液膜电晕放电烟气脱硫进行了传质反应过程分析,主要过程为气相主体迁移与液相扩散及化学反应。导出了烟气脱硫率与放电电压、化学反应增强因子以及液膜厚度的关系。发现在提高放电电压和增强因子的条件下,烟气脱硫率可以显著提高,而改变液膜厚度即液相的湍动对脱硫效率影响不大。所得结果与实验结果相符,单位能耗相对较低。
     4.根据自由基反应过程,推导出电晕放电协同液相催化脱硫的SIE动力学方程,并对实验结果进行曲线拟合。得出电晕放电产生的电场作用能够明显降低二氧化硫的气相传质阻力;二氧化硫的吸收转化符合提出的动力学模型;水溶液、NaOH溶液和Mn2+溶液在15kV放电电压下的能量系数分别为0.06318 Nm3·kJ-1、0.21275 Nm3·kJ-1和0.1309 Nm3·kJ-1。可见在15 kV条件下,NaOH溶液的能量系数是水溶液的3.37倍,是Mn2+溶液的1.63倍。而随着电压的提高,电晕放电在整个过程中将起到主导作用。
S02 emitted from various sources are the major cause of acid rain and photochemical smog. There is a vital interest in controlling these emissions in the near term for acid rain and in the long term for greenhouse effect. In addition, control of these emissions has now become an international issue, because of the adoption of increansingly more stringent emission standards. Among the novel technoligies for SO2 control, nonthermal plasma (NTP)-based proscesses are gaining an increaseingly important role. NTPs are conveniently produced by corona discharges in a gas at room temperature and pressure. Corona discharge is energy efficient because a large amount of energy goes into the production of energetic electrons rather than into gas heating, and the performance is good due to the large ionization region, which is used to remove sulfur dioxide in gas. In this paper, the corona discharge combined with aqueous catalytic technique is studied. The aim of the thesis was to simulate the interaction process between free radicals and SO2 and the transformation of SO2 under artifical conditions. The SO2 removal mechanisms was also discussed.
     The main conclusions of the research were as follows:
     1. Bromphenol blue (BPB) could capture the hydroxyl radical produced by Fenton reaction, changing its color from violet to achromatic. The effect of discharge voltage on generation of·OH radicals in a water film corona discharge system were experimentally investigeted using probe compound method taking BPB as the probe compoud. The results showed that the discharge voltage has directly influenced on·OH emission, and·OH production increased with discharge voltage increasing. Kinetic studies showed that the data were well described by the pseudo-first-order kinetic model.
     2. The voltage-current characteristics of corona discharge in a wire-cylinder reactor for flue gas desulfurization (FGD) was investigated. The effects of voltage, water flow rate, Mn2+ and SO2 concentration on the efficiency of FGD were investigated. The reaction process of the FGD by corona discharge combined with Mn(Ⅱ) was discussed primarily. The results showed that the removal efficiency of FGD was increased with increasing of voltage, water flow rate and Mn2+ concentration, and was not influenced remarkably by SO2 concentration. The sulfur dioxide oxidation process can be enhanced by corona discharge with Mn2+aqueous catalytic, and resulted in increaseing the efficiency of desulfurization. It was a very complicated system that included reaction process of the FGD by corona discharge combined with Mn(Ⅱ), which included electro-migration, gas-liquid mass transfer, aqueous catalytic.
     3. A mass-transfer efficiency model of the process for flue gas desulfurization by corona discharge with liquid film was provided, including gas bulk migration, liquid phase transfer and chemical reaction. The equations of the desulfurization efficiency and rate of flue gas, discharge voltage, reaction enhancement factor and film thickness were established. It was found that the conditions of discharge voltage and enhancement factor increased, desulfurization efficiency could be remarkably increased. The effect of varying film thickness (liquid phase's turbulent motion) was seem to be minimal. The experimental results were in agreement with the model.
     4. In order to explain the experimental observations, we proposed a simplified SIE chemical kinetic model for discussing flue gas desulfurization by corona discharge with aqueous catalytic. The experimental results showd that the corona discharge increased the mass transfer in the gas phase; SO2 absorption and conversion accords with SIE kinetic model; when the discharge volatge is 15 kV, the energy constant for water, NaOH solution and Mn2+ solution were 0.06318 Nm3·kJ-1,0.21275 Nm3·kJ-1 and 0.1309 Nm3·kJ-1,respectively. With increasing of the discharge voltage, the corona discharge will play a key role in the whole process.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2010[M].北京:中国统计出版社,2010.
    [2]中华人民共和国环境保护部.中国环境状况公报2009[R].北京:2010,5.
    [3]Larssen T, Lydersen E, Tang D, et al. Acid rain in China[J]. Environ. Sci. Technol,2006, 40(2):418-425.
    [4]Hao J, He K, Duan L, et al. Air pollution and its control in China[J]. Frontiers of Environmental Science & Engineering in China,2007,1(2):129-142.
    [5]Zhao Y, Duan L, Xing J, et al. Soil acidification in China:is controlling SO2 emissions enough?[J]. Environ. Sci. Technol,2009,43(21):8021-8026.
    [6]Zhao Y, Wang S, Duan L, et al. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction[J]. Atmos. Enviro,2008,42(36):8442-8452.
    [7]中国环境保护产业协会锅炉炉窑脱硫除尘委员会.我国火电厂烟气脱硫行业发展概况分析[J].中国环保产业,2004,(11):37-39.
    [8]Wang L, Jang C, Zhang Y, et al. Assessment of air quality benefits from national air pollution control policies in China. Part I:Background, emission scenarios and evaluation of meteorological predictions[J]. Atmos. Enviro,2010,44(26):3442-3448.
    [9]孙锦余.控制大气污染的集中典型的烟气脱硫方法[J].节能,2004,(11):29-31.
    [10]Zhang Q, Gui K. A novel semidry flue gas desulfurization process with the magnetically fluidized bed reactor[J]. J. Hazard. Mater,2009,168(2-3):1341-1345.
    [11]Zhou Y, Zhu X, Peng J, et al. The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process[J]. J. Hazard. Mater,2009,170(1):436-442.
    [12]Kalliniko L E, Farsari E I, Spartinos D N, et al. Simulation of the operation of an industrial wet flue gas desulfurization system[J]. Fuel. Process. Technol,2010,91(12):1794-1802.
    [13]王圣,巴尔莎,俞华.我国火电烟气脱硫存在的问题及对策建议[J].中国环保产业,2010,(3):12-17.
    [14]管井秀郎.等离子体电子工程学[M].北京:科学出版社,2002.
    [15]赵华侨.等离子体化学与工艺[M].北京:中国科学技术出版社,1993.
    [16]杨津基.气体放电[M].北京:科学出版社,1983.
    [17]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983.
    [18]克拉尔N A,特里维尔皮斯A W.等离子体物理学原理[M].北京:原子能出版社,1983.
    [19]Lister G G. Low-pressure gas discharge modeling[J]. J. Appl. Phys,1992,25:1649-1660.
    [20]Chen F F.等离子体物理学导论[M].北京:科学出版社,1980.
    [21]陈宗柱,高树香.气体导电[M].南京:南京工学院出版社,1998.
    [22]Kim H H. Nonthermal Plasma Processing for Air-Pollution Control A Historical Review, Current Issues, and Future Prospects[J]. Plsam. Process. Polym,2004,1(2):91-110.
    [23]Ma H, Chen P, Zhang M, et al. Study of SO2 removal using non-thermal plasma induced by dielectric barrier discharge (DBD)[J]. Plasma. Chem. Plasma. P,2002,22(2):239-254.
    [24]Mizuno A, Clements J S, Davis R H. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization[J]. IEEE/Trans. Ind. Appl,1986,22(3):516-522.
    [25]Masuda S, Nakao H. Control of NOx by positive and negative pulsed corona discharges[J]. IEEE/IAS Annu. Conf,1986,26(2):1173-1182.
    [26]Clements J S, Mizuno A, Finney W C, et al. Combined removal of SO2, NOx and fly ash from flue gas using pulsed steamer corona[J]. IEEE/Trans. Ind. Appl,1989,25(l):62-69.
    [27]Wang R, Zhang B, Sun B, et al. Apparent energy yield of a high efficiency pulse generator with respect to SO2 and NOx removal[J]. J. Electrostat,1995,34(4):355-366.
    [28]Singer G, Jozewicz C F, Jozewicz W S, et al. Simultaneous control of Hg0, SO2 and NOx by novel oxidized calcium-based sorbents[J]. J. Air. Waste. Manage,2002,52(3):273-278.
    [29]Chang J S., Urashima K, Tong Y X, et al. Simultaneous removal of NOX and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests[J]. J. Electrostat,2003, 57(3-4):313-323.
    [30]Jin D, Deshwal B, Park Y, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. J. Hazard. Mater,2006,135(1-3):412-417.
    [31]赵君科,王保健,任先文,等.脉冲电晕等离子体烟气脱硫脱硝中试装置[J].环境工程,2001,19(6):4345.
    [32]Yan K, Li R, Zhu T, et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale[J]. Chem. Eng,2006,116(2):139-147.
    [33]董冰岩,谢文涓,张大超,等.脉冲流光电晕放电反应器中二次流光能量的研究[J].热能动力工程,2006,21(5):508-511.
    [34]吴祖良,孙培德,李济吾,等.电晕放电同时脱硫脱硝机理研究[J].电站系统工程,2007,23(3):01-04.
    [35]吴祖良,高翔,李济吾,等.电晕放电自由基簇射同时脱硫脱硝反应特性研究[J].高校化学工程学报,2008,22(2):325-331.
    [36]Luo G, Yoneda A, Kato K. A novel dry process for simultaneous removal of SO2 and NO from flue gas in a powder-partical fluidized bed[J]. Chem. Eng. Technol,2001,24(4):361-366.
    [37]Shang K, Wu Y, Li J, et al. Reduction of NOX/SO2 by wire-plate type pulsed discharge reactor with pulsed corona radical shower[J]. Plasma. Chem. Plasma. P,2006,26(5):443-454.
    [38]Chang J S, Lawless P A, Yamamoto T. Corona discharge process[J]. IEEE/Trans. Plasma. Sci,1991, 19(6):1152-1166.
    [39]Yan W, Jie L, Ninghui W, et al. Study on Increasing the SO2 removal efficiency with the radicals produced by H2O in pulse discharge plasma process[J]. Jpn. J. Appl. Phys,2001,40(8A):838-840.
    [40]Fujii T, Rea M. Treatment of NOx in exhaust gas by corona plasma over water surface[J]. Vacuum, 2000,59(1):228-235.
    [41]孙明,吴彦.水蒸气电晕放电下的烟气脱硫效果[J].环境科学,2006,27(7):1282-1285.
    [42]Wang Z W, Zeng H C, Guo J, et al. Sulfur dioxide (SO2) gas transfer process enhanced by corona discharge[J]. J. Electrostat,2007,65(8):485-489.
    [43]Kim H, Jun H, Sakaguchi Y, et al. Simultaneous oxidization of NOx and SO2 by a new non-thermal plasma reactor enhanced by catalyst and additive[J]. Plasma. Sci. Technol,2008,10(1):53-56.
    [44]李谦,李劲.脉冲电晕烟气脱硫脱硝的化学动力学分析[J].环境科学学报,1998,18(3):236-241.
    [45]Mok Y S. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process[J]. Fuel Process.Technol,2004,86(3):303-317.
    [46]Hu X, Zhang J, Mukhmahallipatna S, et al. Transformations and destruction of nitrogen oxides-NO, NO2 and N2O-in a pulsed corona discharge reactor[J]. Fuel,2003,82(13):1675-1684.
    [47]Li R, Liu X. Main fundamental gas reactions in denitrication and desulfurization from flue gas by non-thermal plasmas[J]. Chem. Eng. Sci,2000,55(13):2491-2506.
    [48]Li J, Sun W, Pashaie B, et al. Streamer discharge simulation in flue gas:Special issue on modeling and simulation of collisional low-temperature plasmas[J]. IEEE/Trans. Plasma Sci,1995,4(23):672-678.
    [49]Urashima K, Kim S J, Chang J S. Characteristics of aerosol particles from corona discharge ammonia radical injection desulphurization and denitrification processes for flue gases cleanings[J]. J. Aerosol. Sci, 1999,30(1):849-850.
    [50]Mun K J, So S Y, Soh Y S. The effect of slaked lime, anhydrous gypsum and limestone powder on properties of blast furnace slag cement mortar and concrete[J]. Constr. Buid. Mater,2007,21(7):1576-1582.
    [51]Gambardella F, Galan L M, Ganzeveld K J, et al. Reactive NO absorption in aqueous Fell(EDTA) solutions in the presence of denitrifying micro-organisms[J]. Chem. Eng,2006,116(l):67-75.
    [52]Wang H, Li X, Han X, et al. Application of metal complexants in simultaneous desulfurization and denitrification of flue gas[J]. Environment protection of chemical industy,2007,27(5):421-425.
    [53]Kaczur J J. Oxidation chemistry of chloric acid in NOx/SOx and air toxic metal removal from gas streams[J]. Enviro Prog,2006,15(4):245-254.
    [54]Schwartz S E, Freiberg J E. Mass-transport limitation to the rate of reaction of gases in liquid droplets application to oxidation of SO2 in aqueous solutions[J]. Atmos. Enviro,1981,15(7):1129-1144.
    [55]Huss A. Oxidation of aqueous sulfur dioxide.1. Homogeneous Manganese(II) and Iron(Ⅱ)[J]. J. Phys. Chem,1982,86(21):4224-4228.
    [56]Huss A. Oxidatlon of aqueous sulfur dioxide.2. High-pressure Studies and Proposed Reaction Mechanisms[J]. J. Phys. Chem,1982,86(21):4229-4233.
    [57]Cioman D M. Absorption spectrum of OH radical in Water[J]. J. Phys. Chem. A,2008, 112(51):13372-13381.
    [58]魏波,骆仲泱,徐飞,等.脉冲电晕放电中OH自由基的发射光谱研究[J].光谱学与光谱分析,2010,30(2):293-296.
    [59]Linxiang L, Abe Y, Nagasawa Y, et al. An HPLC assay of hydroxyl radicals by the hydroxylation reaction of terephthalic acid[J]. Biomed. Chromatogr,2004,18(7):470-474.
    [60]丁海洋,冯玉杰,吕江维,刘峻峰.钛基二氧化锡电极电解过程中羟基自由基检测及电催化机理[J].分析化学,2007,35(10):1395-1399.
    [61]Liu F, Wang W, Wang S, et al. Diagnosis of OH radical by optical emission spectroscopy in a wire-plate bi-directional pulsed corona discharge[J]. J. Electrostat,2007,65(7):445-451.
    [62]金春兰,崔京兰,崔胜云.氧化型谷胱甘肽对还原型谷胱甘肽清除自由基的协同作用[J].分析化学,2009,37(9):1349-1353.
    [63]陈建孟,潘伟伟,刘臣亮.电化学体系中羟基自由基产生机理与检测的研究进展[J].浙江工业大学学报,2008,36(4):416-422.
    [64]肖怀珍,李玉珍.羟基自由基定量检测技术的研究进展[J].食品与药品,2010,12(1):69-71.
    [65]高迎新,张昱,杨敏,等.Fe3+或Fe2+均相催化H2O2生成羟基自由基的规律[J].环境科学,2006,27(2):305-309.
    [66]郑文旭,蒲雪梅,王伟周,等.H2O与NO,CN,OH自由基及负离子相互作用的CP研究[J].化学学报,2003,61(3):336-344.
    [67]Salem I A. Kinetics of the oxidative color removal and degradation of bromophenol blue with hydrogen peroxide catalyzed by copper(II)-supported alumina and zirconia[J]. Appl. Catal. B-Environ,2000, 28(3-4):153-162.
    [68]高翔,余权,吴祖良,等.喷嘴-平板直流电晕放电中的OH(A2E-X2Π,0-0)光谱研究[J].强激光与粒子束,2007,19(4):700-704.
    [69]Magnier P, Hong D, Leroy-Chesneau A, et al. A DC corona discharge on a flat plate to induce air movement[J]. J. Electrostat,2007,65(10-11):655-659.
    [70]Ighigeanu D, Martin D, Zissulescu E, et al. SO2 and NOx removal by electron beam and electrical discharge induced nonthermal plasmas[J]. Vacuum,2005,77(4):493-500.
    [71]Jiang X D, Li R, Qiu R, et al. Kinetic model of non-thermal plasma flue gas desulfurization in a wet reactor[J]. Chem. Eng. J,2006,116(12):149-153.
    [72]蔡伟建,李济吾.液相催化氧化脱除烟气中SO2技术的研究[J].环境科学与技术,2002,25(5):30-33.
    [73]马双忱,赵毅,郑福玲,等.液相催化氧化脱除烟道气中SO2和NOx的研究[J].中国环境科学,2001,21(1):33-37.
    [74]王洁,孙佩石,何晓荣,等.液相催化氧化净化烟气中SO2和NOx的实验研究[J].云南大学学报(自然科学版),2006,28(6):526-529.
    [75]Yu C J, Xu F, Luo Z Y, et al. Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge[J]. J. Electrostat,2009,67(6):829-834.
    [76]Liu F, Wang W C, Zheng W, et al. Optical study of radicals (OH,O,H,N) in a needle-plate negative pulsed streamer corona discharge[J]. Plasma. Chem. Plasma. P,2006,26(5):469-480.
    [77]Chae J O. Non-thermal plasma for diesel exhaust treatment[J]. J. Electrostat,2003,57(3-4):251-262.
    [78]Lowke J J, Morrow R. Theory of electric corona including the role of plasma chemistry[J]. Pure & Appl. Chem,1994,66(6):1287-1294.
    [79]Mok Y S, In-Sik N. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide[J]. Chem. Eng. Sci,2002,85(1):87-97.
    [80]Martin A R., Shawcross J T, Whitehead J C. Modelling of non-thermal plasma aftertreatment of exhaust gas streams[J]. J. Phys. D:Appl. Phys,2004,37(1):42-49.
    [81]Dumitran L M, Dascalescu L, Notingher V P, et al. Modelling of corona discharge in cylinder-wire-plate electrode configuration[J]. J. Electrostat,2007,65(12):758-763.
    [82]Derakhshesh M, Abedi J, Omidyeganeh M. Modeling of hazardous air pollutant removal in the pulsed corona discharge[J]. Phys. Lett. A,2009,373(11):1051-1057.
    [83]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社,2001.
    [84]康颖,吴祖成.水为自由基源的电晕放电引发羟基自由基及氧化甲苯[J].科学通报,2008,53(12):1475-1478.
    [85]Chang J S. Next generation integrated electrostatic gas[J]. J. Electrostat,2003,57(3-4):273-291.
    [86]Mok Y S. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas[J]. Chem. Eng. J,2006,118(1-2):63-67.
    [87]Vinogradov J, Rivin B, Sher E. NOx reduction from compression ignition engines with DC corona discharge-An experimental study[J]. Energy,2007,32(3):174-186.
    [88]Wang H, Li D, Wu Y, et al. Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power[J]. J. Electrostat,2009,67(4):547-553.
    [89]Lancia A, Musmarra D, Pepe F. Modeling of SO2 absorption into limestone suspensions[J]. Ind. Eng. Chem. Res,1995,36(1):197-203.
    [90]Brogren C, Karlsson H. Modeling the absorption of SO2 in a spray scrubber using the penetration theory[J]. Chem. Eng. Sci,1997,52(18):3085-3099.
    [91]Dinelli G, Rea M.. Pulse power electrostatic technologies for the control of flue gas emissions[J]. J. Electrostat,1990,25(1):23-40.
    [92]Veldhuizen E M, Zhou L.M, et al. Combined effects of pulsed discharge removal of NO, SO2, and NH3 from flue gas[J]. Plasma. Chem. Plasma. P,1998,18(1):91-111.
    [93]Wu Y, Li J, Wang N, et al. Industrial experiments on desulfurization of flue gases by pulsed corona induced plasma chemical process[J]. J. Electrostat,2003,57(3-4):233-241.
    [94]Mcadams R, Beech P, Shawcross J T. Low temperature plasma assisted catalytic reduction of NOx in simulated marine diesel exhaust[J]. Plasma. Chem. Plasma. P,2008,28(2):159-171.
    [95]Yan K, Yamamoto T, Kanazawa S, et al. NO removal characteristics of a corona radical shower system under DC and ACDC superimposed operations[J]. IEEE/Trans. Ind. Appl.,2001,37(5):1499-1504.
    [96]Kirkpatrick M J, Locke B R. Hydrogen, Oxygen, and Hydrogen Peroxide Formation in Aqueous Phase Pulsed Corona Electrical Discharge[J]. Ind. Eng. Chem. Res,2005,44(12)4243-4248.
    [97]Huie R E, Neta P. Chemical behavior of sulfur trioxide and sulfur pentoxide radicals in aqueous solutions[J]. J. Phys. Chem,1984,88(23):5665-5669.
    [98]Berglund J, Fronaeus S, Elding L I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(Ⅳ) by oxygen in aqueous solution[J]. Inorg. Chem,1993,32(21):4527-4538.
    [99]Yan K, Heesch E J M, Pemen A J M., et al. From chemical kinetics to streamer corona reactor and voltage pulse generator[J]. Plasma. Chem. Plasma. P,2001,21(1):107-137.
    [100]Jung J S, Moon J D. Corona discharge and ozone generation characteristics of a wire-plate discharge system with a glass-fiber layer[J]. J. Electrostat,2008,66(5-6):335-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700