Fe(Ⅱ)Cit/Fe(Ⅱ)EDTA络合吸收—生物还原处理烟气中的氮氧化物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物燃料燃烧排放的氮氧化物(NO_x)是导致酸雨、光化学烟雾等系列空气污染问题的重要原因之一。相关资料显示,我国近年来NO_x污染的程度和范围已相当严重。现有的烟气脱硝技术均存在投资运行成本高、产生二次污染或处理效率低等缺陷,为此,研究和开发新兴的烟气脱硝技术迫在眉睫。
     针对现有烟气脱硝技术的缺陷,课题组提出了化学吸收-生物还原技术来脱除烟气中的NO_x。本文作为该课题的一部分,确立了Fe(Ⅱ)Cit/Fe(Ⅱ)EDTA混合吸收体系并研究了其NO吸收特性;在选定的生物反应器内进行微生物挂膜实验;在这两部分研究基础上进行了络合吸收结合生物转化脱除NO的集成系统研究,通过优化实验,获得最优的工艺方案及其关键参数,为该技术的发展积累必要的基础数据和理论依据。
     确立了Cit和EDTA配比为6:1的Fe(Ⅱ)Cit/Fe(Ⅱ)EDTA混合吸收体系,该体系在保证一定的吸收效率下,减少了3/4的EDTA用量,不仅减轻了EDTA可能造成的二次污染,达到柠檬酸发酵母液废弃物资源化利用目的,而且还具有更高的经济性;NO的存在加速了Fe(Ⅱ)L的氧化速率;模拟烟气中氧气对络合剂的吸收效果有较大不利影响;Fe(Ⅱ)L吸收液适合在中性偏碱的范围内吸收NO,合理的pH值应控制在略小于7.0的范围;通过对喷淋塔内吸收NO效率考察证实了NO的吸收效率与吸收液中的Fe(Ⅱ)L浓度密切相关,随着循环吸收液中Fe(Ⅱ)L浓度下降而下降。
     选用PPR材料的填料塔作为生物还原反应装置,经过两个月的Enterococcussp.FR-3挂膜和一个月的Pseudomonas sp.DN-2挂膜,在进行环境电镜扫描后确认填料表面生长有一层厚实的生物膜,生物膜以短杆菌为主;O_2的存在对吸收液中Fe(Ⅲ)的还原有较大影响,是限制该法脱除NO效率的一个主要因素。
     化学吸收-生物还原法脱除烟气中的NO_x是切实可行的,其NO脱除率明显优于直接生物法和络合吸收法。集成系统在连续稳态运行条件下,在考察范围内,增大模拟烟气中NO浓度、O_2含量和SO_2浓度对系统NO脱除率影响不大,基本能保持在90%以上,但增大进气量会降低NO脱除率,进气量由800 mL·min~(-1)增加至2000 mL·min~(-1)时,NO脱除率从97%下降为77%。系统运行过程中柠檬酸消耗量较大,需适时添加柠檬酸。系统的生物还原负荷明显高于课题组前期的实验结果,通过进一步驯化,系统的处理负荷仍有很大的提升空间。
The combustion of fossil fuels generates NO_x pollutants which cause photochemical pollution and acid rain.It is reported that the NO_x pollutants in China is seriously.Current technologies for NOx removal from flue gas have associated with some problems,such as high cost on Investment and operation,produced secondary pollutant and/or low removal efficiency.So,developing new technologies for NOx removal from flue gas is becoming an extremely urgent issue,presently.
     The newly proposed and adopted method in our work for NO_x removal from flue gas,i.e.chemical absorption-biological reduction integrated process,is deemed as a promising method.As a part of this work,in this paper,we established a mixture absorption system of Fe(Ⅱ)Cit and Fe(Ⅱ)EDTA,and also investigated its absorption characteristics of NO.Microbacteria proliferation experiments was carried in the selected bioreactor.Base on these two parts,we researched the chemical absorption-biological reduction integrated process.The aim of this work was to provide a new method and some fundamental data for NO_x removal from flue gas. The main experimental results were as follows:
     The mixture absorption system of Fe(Ⅱ)Cit and Fe(Ⅱ)EDTA was established,and the ratio of Cit and EDTA was 6:1.Using this system could reach high NO removal efficiency,and also could reduce the amount of EDTA by three quarters,which will relieved the second pollution caused by EDTA,and have better economical efficiency. NO could accelerate the oxidation reaction of Fe(Ⅱ)L.O_2 in the simulated flue gas had adverse effect,which would inhibit the NO removal efficiency.The suitable pH of absorbing solution was about 7.0.The research of NO removal efficiency in spray tower showed that removal efficiency was closely associated with the concentration of Fe(Ⅱ)L.
     A Packed Column madding by the material of PPR was used as bioreactor.The cultivation of Enterococcus sp.FR-3 lasted two months and the cultivation of Pseudomonas sp.DN-2 lasted one month.The formation of the biofilm on the filler was observed by ESEM(Environmental Scan Electro-Microscope).O_2 had disadvantage effect on reduction of Fe(Ⅲ)L.It was the key factor which would inhibit the NO removal efficiency.
     The method of chemical absorption-biological reduction integrated process was feasible to remove NO from flue gas.Under steady-state operation,the concentration of NO,O_2 and SO_2 had no obvious inhibition on NO removal,and the removal efficiency was almost kept on above 90%.However,when the gas flow increased from 800 mL·min~(-1) to 2000 mL·min~(-1),the removal efficiency was decreased from 97%to 77%.Citrate would be consumed,needing supplement timely.The biological reduction load was obviously higher than our previous experiments.
引文
1.De Nevers N.大气污染控制工程(第2版).北京:清华大学出版社,2000.
    2.Richter A.Increase in tropospheric nitrogen dioxide over China observed from space.Nature,2005,437:129-132.
    3.吴晓青.我国大气氮氧化物污染控制对策.环境保护,2009,16:9-11.
    4.Streets D G and Waldhoff S T.Present and future emissions of air pollutants in China:SO_2,NO_x,and CO.Atmopheric Environment,2000,34(3):363-374.
    5.Jirat J,Stepanek F,Marek M and Kubicek M.Comparison of design and operation strategies for temperature control during selective catalytic reduction of NO_x.Chemical Engineering and Technology,2001,24(1):35-40.
    6.Maisuls S E,Seshan K,Feast S and Lercher J A.Selective catalytic reduction of NO_x to nitrogen over Co-Pt/ZSM-5 Part A.Characterization and kinetic studies.Applied Catalysis B:Environmental,2001,29(1):69-81.
    7.Nagase H.Characteristics of Biological NO_x removal from flue gas in a Dunaliella tertiolecta culture system.Journal of Fermentation and Bioengineering,1997,83(3):461-465
    8.陈建孟,王家德.生物技术在有机废气处理中的研究进展.环境科学进展,1998,6(3):30-35.
    9.Sada E and Kumazawa H.Individual and simultaneous absorption of dilute NO and SO_2 in aqueous slurries of MgSO_3 with Fe(II)-EDTA.Industrial &Engineering Chemistry Process Design and Development,1980,19(3):377-382.
    10.Shi Y,Littlejohn D and Chang S G.Kinetics of NO absorption in aqueous iron(II)bis(2,3-dimercapto-1-propanesulfonate) solutions using a stirred reactor.Industrial and Engineering Chemistry Research,1996,35(5):1668-1672.
    11.Li W,Wu C Z and Shi Y.Metal chelate absorption coupled with microbial reduction for the removal of NO_x from flue gas.Journal of Chemical Technology and Biotechnology,2006,81(3):306-311.
    12.Li W,Shi Y,Jing G H and Ma B Y.A novel approach for simultaneous reduction of Fe~(Ⅱ)(EDTA) NO and Fe~(Ⅲ)(EDTA)using microorganisms.Journal of Chemical Industry and Engineering(China),2003,54(9):1340-1342.
    13.Van der Maas P,Van de Sandt T,Klapwijk B and Lens P.Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions.Biotechnology Progress,2003,19(4):1323-1328.
    14.Li W,Wu C Z,Zhang S H,Shao K and Shi Y.Evaluation of Microbial Reduction of Fe(Ⅲ)EDTA in a Chemical Absorption-Biological Reduction Integrated NO_x Removal System.Environmental Science and Technology,2007,41(2):639-644.
    15.姜锦林.化学吸收—生物还原法处理烟气中氮氧化物—Fe(Ⅱ)Cit的吸收及其生物还原特性研究.[硕士学位论文],中国杭州,浙江大学,2007.
    16.Griffiths E A and Chang S G.Effect of citrate buffer additive on the absorption of NO by solutions of ferrous chelates.Industrial & Engineering Chemistry Fundamentals,1986,25(3),356-359.
    17.郝吉明,马广大.大气污染控制工程(第二版).北京:高等教育出版社,2002.
    18.杨宗鑫,王兵,林孟雄,胥锋.大气污染过程中氮氧化物对大气的危害及防治.内蒙古石油化工,2008,21:24-26.
    19.侯博文.SCR装置的流畅模拟[EB/OL].2009-09-04.http://www.docin.com/p-32369933.html
    20.张楚莹,王书肖,刑佳,赵瑜,郝吉明.中国能源相关的氮氧化物排放现状与发展趋势分析.环境科学学报,2008,28(12):2470-2479.
    21.任建兴,翟晓敏,博坚刚,陈群华,吴志忠.火电厂氮氧化物的生成和控制.上海电力学院学报,2002,18(3):19-23.
    22.劳善根,王凯雄.日本燃煤烟气中NO_x处理技术.广州环境科学,2000,15(4):5-8.
    23.朱小文.燃煤发电厂SCR脱硝技术原理及催化剂的选择.环境科学与技术.2006,29(9):98-99.
    24.吴忠标,金一中.大气污染控制工程.北京:科学出版社,2002.
    25.Sloss L L.Nitrogen oxides control technology fact book.New York:William Andrew Inc.,1992.
    26.刘今.发电厂烟气脱硝技术—SCR法.江苏电机工程,1996,15(1):51-55.
    27.Uehn N D.Retrofit control technology reducing NO_x Emissions.Power Engineering,1994,98(5):23-27.
    28.Iwamoto M and Hamada H.Removal of nitrogen monoxide from exhaust gases through novel catalytic processes.Catalysis Today,1991,10(1):57-71.
    29.Burch R,Halpin E and Sullivan J A.A comparison of the selective catalytic reduction of NO_x over Al_2O_3 and sulphated Al_2O_3 using CH_3OH and C_3H_8 as reductants.Applied Catalysis B:Environmental,1998,17(2):115-129.
    30.朱江涛,王晓军,田正斌,阙勇明.SNCR脱硝技术在大型煤粉炉中应用探讨.能源研究与信息,2006,22(1):18-21.
    31.钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002.
    32.Martin Q,Kim D J and Jan E J.Influence of mixing on the SNCR process.Chemical Engineering Science,1997,52(15):2511-2525.
    33.张琳,张秀玲.催化脱除大气污染物NO_x研究进展.低温与特气,2000,18(4):7-10.
    34.Radojevic M.Reduction of nitrogen oxides in flue gases.Environmental Pollution,1998,102(1):685-689.
    35.叶代启.烟气中氮氧化物污染的治理.环境保护科学,1999,26(4):1-4.
    36.王军民,骆广生等.NO_x对大气的污染与燃油的脱氮技术.环境保护,1997,1:12-14.
    37.Yang C L and Luke C.Oxidation of nitric oxide in a two-stage chemical scrubber using dc corona discharge.Jounal of Hazardous Materials,2000,80(1):135-146
    38.Mateju V.Biological water denitrification-A review.Enzyme and Microbial Technology,1994,14:170-183.
    39.何志桥,王家德,陈建孟.生物法处理NO_x废气的研究进展.环境污染治理技术与设备,2002,3(9):59-62.
    40.Tsai S S,Bedell S A,Kirby L H and Zabick D J.Field Evaluation of Nitric Oxide Abatement with Ferrous Chelates.Environmental Progress,1989,8(2):126-129.
    41.Smith K,Lani B,Berisko D,Schultz C and Carlson W.Final Report.U.S.Department of Energy Report DOE/PC/90362-T1-Vol.1,1992.
    42.Chang S G,Littlejohn D and Lynn S.Effect of metal chelate on wet flue gas scrubbing chemistry.Environmental Science and Technology,1983,17(11): 649-653.
    43. Lin N, Littlejohn D and Chang S G. Thermodynamics and kinetics of the coordination of NO to Fe~(II)(NTA) in aqueous solution. Industrial and Engineering Chemistry Process Design and Development, 1982,21(4): 725-728.
    44. Xu X H and Chang S G. Removing nitric oxide from flue gas using iron(II) citrate chelete absorption with microbial regeneration. Chemosphere, 2007, 67(8): 1682-1636.
    45. Jing G H, Li W, Shi Y, Ma B Y and Tan T E. Regeneration of nitric oxide chelate absorption solution by two heterotrophic bacterial strains, Journal of Zhejiang University, 2004, 5(4): 432-435.
    46. James F and Sune B. Citrate solution absorbs SO_2. Chemical Engineering, 1980, 87(12): 88-89.
    47. Bard A J. Encyclopedia of electrochemistry of the elements(Ⅶ) . New York: Marcei Dekker Inc., 1976: 307.
    48. Hamm R E, Shull C M and Grant D M. Citrate complexes with iron (II) and iron(III). Journal of the American Chemical Society, 1954, 76(8): 2111-2114.
    49. Littlejohn D and Chang S G. Kinetic study of ferrous nitrosyl complexes . Journal of Physical Chemistry, 1982, 86(4): 537-540.
    50. Littlejohn D and Chang S G. Stoichiometry of ferrous nitrosyl complexes . Industrial and Engineering Chemistry Research, 1987,26(6): 1232-1234.
    51. Konigsberger L C, Konigsberger E, May P M and Hefter G T. Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. Journal of Inorganic Biochemistry, 2000, 78(3): 175-184.
    52. Termoto M, Hiramine S I, Shimada Y, Sugimoto Y and Terannishi H. Absorption of dilute monoxide in aqueous solutions of Fe(II)-EDTA and mixed solutions of Fe(II)-EDTA and Na_2SO_3 . Journal of Chemical Engineering of Japan, 1978, 11, 450-457.
    53. Li H L and Fang W C. Kinetics of absorption of Nitric Oxide in aqueous Fe~(II)-EDTA solution. Industrial and Engineering Chemistry Research, 1988, 27(5): 770-774.
    54.Zang V and Van Eldik R.Influence of the polyamino carboxylate chelating ligand(L) on the kinetics and mechanism of the formation.Inorganic Chemistry,1990,29(22):4462-4468.
    55.Pham A N and Waite T D.Oxygenation of Fe(Ⅱ) in the presence of citrate in aqueous solutions at pH 6.0-8.0 and 25℃:interpretation from an Fe(Ⅱ)/citrate speciation perspective.Journal of Physical Chemistry A,2008,112(4):643-651.
    56.Zang V and Eldik R.Kinetics and mechanism of the autoxidation of Iron(Ⅱ)induced through chelate by ethylenediaminetetraacetate and related ligands.Inorganic Chemistry,1990,29(9):1705-1711.
    57.Van der Maas P,Harmsen L,Weelink S,Klapwijk B and Lens P.Denitrification in aqueous FeEDTA solutions.Journal of Chemical Technology and Biotechnology,2004,79(8):835-841.
    58.Van der Mass P,Peng S,Klapwijk B and Lens P.Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(Ⅲ) in BioDeNOx reactors.Environmental Science and Technology,2005,39(8):2616-2623.
    59.Li W,Wu C Z,Shi Y,Ma B Y,Lei L C and Zhou M H.Study on the absorption rate of NO with aqueous ferrous cysteine solutions in a double-stirred cell.Abstracts of papers of the amenrican chemical society.2005,229:U832-U832036-ENVR Part 1,MAR 13.
    60.李伟,吴成志,马碧瑶,施耀.双搅拌釜中半胱氨酸亚铁溶液吸收NO的传质—反应动力学.化工学报,2005,56:1843-1848.
    61.李伟,吴成志,马碧瑶,施耀.半胱氨酸亚铁溶液吸收一氧化氮的研究.中国环境科学,2005,25:306-309.
    62.荆国华,李伟,施耀,马碧瑶,谭天恩.假单胞菌DN-1再生NO络合吸收液的特性.环境科学,2004,25(4):163-166.
    63.荆国华,李伟,施耀,马碧瑶,谭天恩.Fe~Ⅲ(EDTA)还原菌的分离和性能研究.中国环境科学,2004,24(4):447-451.
    64.Zhang S H,Li W,Wu C Z,Chen G and Shi Y.Reduction of Fe(Ⅱ)EDTA-NO by a newly isolated Pseudomonas sp.strain DN-2 in NO_x scrubber solution.Applied Microbiology and Biotechnology,2007,76(5):1181-1187.
    65.Zhang S H,Cai L L,Liu Y,Shi Y and Li W.Effect of NO_2~- and NO_3~- on the Fe(Ⅲ)EDTA reduction in a chemical absorption-biological reduction integrated NO_x removal system.Applied Microbiology and Biotechnology,2009,82(3):557-563.
    66.蔡灵琳,姜锦林,刘楠,李伟.Fe(Ⅲ)Cit还原菌的分离及其性能的优化.高校化工学报(录用,2009.12).
    67.Zhang S H,Cai L L,Mi X H,Jiang J L and Li W.NO_x removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter.Environmental Science and Technology,2008,42(10):3814-3820.
    68.国家环保局《水和废水监测分析方法》编委会合编.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1989.
    69.荆国华.Fe(Ⅱ)EDTA络合吸收结合生物转化脱除NO研究.[博士学位论文],中国杭州,浙江大学,2004.
    70.吴成志.化学吸收.生物还原处理烟气中的氮氧化物—Fe(Ⅱ)EDTA-NO和Fe(Ⅲ)EDTA的微生物还原特性.[硕士学位论文],中国杭州,浙江大学,2006,50-51.
    71.姜锦林,李资庭,张士汉,吴成志,李伟.烟气组分对化学吸收-生物还原法处理NOx的影响.浙江大学学报(工学版),2008,42(12):2221-2227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700