Mn-Cu/TiO_2催化剂的制备及其低温催化氧化NO的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂烟气的NOx中95%以上是NO,若能将NO部分氧化成N02,然后湿法脱除;则有利于建设资源节约型社会,发展循环经济。第一步NO的催化氧化是关键。本课题实验研究了Mn-Cu/TiO2的制备及其低温催化氧化NO的性能,探讨了非均相NO氧化动力学,对催化氧化-化学吸收工艺过程进行了模拟研究。研究结果为新型NO氧化催化剂的工业化应用提供了依据。
     首先,结合BET、XRD、SEM、FT-IR等表征手段,在固定床多相催化反应装置上对一系列过渡金属氧化物催化剂M/TiO2(M=Mn、Co、Ce、Fe、Cu、Cr、Ni、Zn和Zr)催化氧化NO活性进行了测试,筛选出Mn-Cu/TiO2在低温有最好的活性。作为P型半导体的MnO、和CuOx接受电子速率快,表面吸附氧浓度较高;Cu2+可能取代晶格中的Mn2+,降低了费米能级,可促进P型半导体的导电,加快了反应物的吸附,加速催化氧化反应的进行。实验研究了各种制备方法及条件对Mn-Cu/TiO2活性的影响,结果显示在由溶胶-凝胶法制得的Ti02上负载总含量10%、Mn/Cu=2的锰铜双活性组分,浸渍、干燥后,300℃下焙烧得到的催化剂表现出最好的氧化NO效果。在300ppmNO、10%O2、空速41324h-1的模拟烟气条件下,220℃时NO转化率为50%,300℃时最高,为76.3%。较低的焙烧温度(300℃)有助于催化剂获得较大的比表面积(30.4m2/g)和孔体积(0.05mL/g),有利于催化剂活性的提高。
     其次,实验研究了各种工艺条件(温度、NO浓度、空速、02浓度、H20和S02的存在)对Mn-Cu/TiO2活性的影响,结果表明催化剂的活性曲线在150~300℃之间呈凸状,空速的降低、NO浓度的减小、O2浓度的增加均使NO的转化率显著提高。连续实验表明催化剂的稳定性良好。220℃时,催化剂基本不受H20的影响,有良好的抗水性能。温度的升高和水量的减少有助于减小H20对催化剂活性的影响。在空速较低且SO2浓度较大的条件下,该催化剂显示出一定的抗硫性能。
     再次,通过实验结合计算对Mn-Cu/TiO2作用下非均相NO氧化动力学进行了研究。结果表明:在300℃以下,O2浓度小于8%时,NO浓度对应的反应级数α为1.1061,02浓度对应的反应级数β为0.3972,活化能Ea为25757.05J/mol。外扩散阻力对反应的影响基本可以忽略,而内扩散阻力的影响不能忽略。
     最后,以200MW燃煤机组为对象,结合NO催化氧化和氨法吸收部分,利用ChemCAD软件模拟了同时脱硫脱硝工艺过程。结果为工业化开发提供了一定的参考。
The coal-fired power plant over 95% of NOx is NO, if NO could be partialy oxidized to NO2, then removal by wet method; it will be beneficial for developing resources economic society and circulated economy.The first step:catalytic oxidation of NO is crucial.The preparation of Mn-Cu/TiO2 and its catalytic oxidation of NO ability at low temperature were studied.The heterogeneous kinetic of NO oxidation was discussed and the catalytic oxidation-chemical absorption process was also simulated. The results provide the evidences for the industrialization application of the new NO oxidation catalysts.
     Firstly, combined characterization methods of BET, XRD, SEM,FT-IR and TG/DTA, the catalytic activities of a series of transition metal oxide catalysts M/TiO2 (M=Mn, Co, Ce, Fe, Cu, Cr, Ni, Zn and Zr) were screened under the fixed bed heterogeneous catalysis reaction setup. The Mn-Cu/TiO2 shows the best catalytic activity at low temperature.As P type semiconductors, MnOx and CuOx receive electorns much faster, absorb more oxygen on the surface;Cu2+ may substitute of Mn2+ in the lattice, result in decreasing the Fermi energy level and promoting the electric ability of P type semiconductor, so the reactants were absorbed faster and the catalytic oxidation reaction will be accelerated eventually. The effects of different preparation methods and conditions on the catalytic activity over Mn-Cu/TiO2 were investigated.It showed that activity components with 10% total loadings, Mn/Cu=2, supported on the TiO2 which was prepared by sol-gel method, impregnated, evaporated and calcinated at 300℃,exhibited the best effect of NO oxidation. Under the simulated flue gas conditions:300ppmNO and 10%O2 at a GHSV of 41324h-1,the NO conversion reached 50% at 220℃,as well as the highest NO conversion of 76.3% was reached at 300℃.A larger surface area(30.4m2/g)and pore volume(0.05mL/g) could be obtained at a relative lower calcination temperature(300℃),and contribute to a higher catalytic activity.
     Then, the effects of several different operation conditions (temperatures, NO concentrations, GHSV, O2 concentrations, the existence of H2O and SO2) on the catalytic activity of Mn-Cu/TiO2 were studied.The results appear that activity curve raised between 150~300℃,the decrease of GHSV and NO concentration or the increase of O2 concetration will both make the NO conversion increased.The catalyst appeared stable during the continuous experiments.The catalyst was almost not affected at 220℃when H2O was introduced in the stream;And showed anti-sulfur ability under a lower GHSV when large amount of SO2 were introduced.
     Moreover, the heterogeneous kinetic of NO oxidation over Mn-Cu/TiO2 catalyst was studied by experiments and calculations.Under the conditions of temperatures below 300℃and O2 concentration below 8%,the results indicated that the reaction order with respect to NO was 1.1061,while the reaction order with respect to O2 was 0.3972 and the energy of activation determined was 25757.05 J/mol.The effect of outer diffuse can be ignore basicly, however the inner diffuse can not.
     Lastly,200MW coal-fired power plant was simulated as example, combined of the catalytic oxidation of NO and ammonia absorption part, the simultaneous desulfurization and denitrification process was simulated by ChemCAD software.The results provided the reference for the industrialization.application.
引文
[1]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2007
    [2]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001
    [3]国家环境保护总局.2005年中国环境状况公报.中国环境报,2005
    [4]国家环境保护总局.2006年中国环境状况公报.中国环境报,2006
    [5]国家环境保护总局.2007年中国环境状况公报.中国环境报,2007
    [6]国家环境保护部.2008年中国环境状况公报.中国环境报,2008
    [7]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002
    [8]H B拉扎列夫,H加达斯基娜.工业生产中的有害物质手册[M].北京:化学工业出版社,1986
    [9]梁翔翔.机动车主要尾气的光化学反应机理[J].化学工业与工程技术,2008,29(4):32-36
    [10]周维,王雪松,张远航,等.我国NOx污染状况与环境效应及综合控制策略[J].北京大学学报,2008,44(2),323~329
    [11]金晶.火电厂烟气脱硫工艺的选择[J].电力环境保护,2001,3:28~30
    [12]Tao D,Chen S,Parekh B K,et al.Feasibility study of an integrated process for solid waste utilization[J].International Journal of Surface Mining,Reclamation and Environment,2000,12(4): 325~335
    [13]张怀军.火电厂二氧化硫控制技术综述[J].1998,2:14~18
    [14]葛能强,绍永春.湿式氨法脱硫工艺及应用[J].硫酸工业,2006,6:10~15
    [15]Hsunling B.SO2 removal by NH3 gas injection:effect of temperature and moisture content[J].Ind Eng Chem Res,1994,33:1231~1236
    [16]Raymond R G,Michael L M,Marsulex Environmental Technologies.Flue gas scrubbing method and apparatus therefore[P].US 677343 B1,2001-08-21
    [17]Dennis J L.General Electric Environmental Service.Flue gas scrubbing apparatus[P].US 5 512 072,1996-04-30
    [18]Gregory N B,Michael L M,Marsulex Environmental Technologies.Process for controlling ammonia slip in the reduction of sulfur dioxide emission[P].US 6 221 325 B1,2001-02-13
    [19]Adbus S L,Gregory B,Michael M.General Electric Environment Service.Process for the simultaneous absorption of sulfite oxides and production of ammonium sulfate[P].US 5 362 458, 1994-11-08
    [20]Abdus S,General Electric Environment Service. Process for the simultaneous absorption of sulfite oxides and production of ammonium sulfate[P].US 4 690 807,1987-09-01
    [21]周建宏,甘艳,普煜,等.燃煤锅炉氨法烟气脱硫[J].环境工程,2005,23(3):49~52
    [22]李乐丰.氨法烟气脱硫工艺及应用时要注意的问题[J].山东电力技术,1999,6:45~48
    [23]雷仲存.工业脱硫技术[M].北京:化学工业出版社,2001
    [24]Keeth R J,Ireland P A,Radcliffe P T.Economic evaluation of FGD process[C].Paper presented at the 1991 SO2 control symposium.Washington DC USA,1991:3-6
    [25]张莉莉.锅炉烟气氨法脱硫技术的应用[J].城市公用事业,2005,4:31~32
    [26]丁正元.大型火电厂烟气氨法脱硫与回收[J].贵州化工,2005,30(2):33~36
    [27]雷世文,雷世晓,王德敏.氨法烟气脱硫脱硝的技术特征[J].电力环境保护,2006,22(2):32~34
    [28]徐长香.江南氨回收法烟气脱硫技术[C].中国环境科学学会2006年学术年会优秀论文集(下卷),中国江苏苏州,2006.
    [29]徐长香,傅国光.氨法烟气脱硫技术综述[J].电力环境保护,2005,21(5):17~20
    [30]罗绍强,蔡振云.燃煤电厂烟气脱硫技术进展[J].浙江化工,2007,38(2):13~17
    [31]Bai H.SO2 removal by NH3 gas injection:effect of temperature and moisture content[J].Ind Eng Chem Res,1994,33:1231~1236
    [32]Kevin P R.Aqua ammonia process for simultaneous removal of CO2,SO2 and NOx[J].Int J Environment Technology and Management,2004,4:89~104
    [33]Bai H,Yeh A C.Removal of CO2 greenhouse gas by ammonia scrubbing[J],Ind Eng Chem Res, 1997,36(6):2490~2493
    [34]刘芳,王淑娟,陈昌和,等.电厂烟气氨法脱碳技术研究进展[J].化工学报,2009,60(2):269~278
    [35]Yeh A C,Bai H.Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions[J].The Science of Total Environment,1999,228:121~133
    [36]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社,2006
    [37]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005
    [38]Joanna L D,Christopher R M,Francis R A.NOx,Hg,and SO2 removal using ammonia[P].US 6 936 231 B2,2005-08-30
    [39]Michael T (?),Michael L M,Marsulex Environmental Technologies.Flue gas desulfurization progress and apparatus for removing nitrogen oxides[P].US 6 985 133 B2,2005-10-25
    [40]童志权,莫建红.催化氧化法去除烟气中NOx的研究进展[J].化工环保,2007,27(3):193~199
    [41]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001,301~302
    [42]Joel D,M:rtin E,Manfred K,et al.Catalytic oxidation of nitrogen monoxide over Pt/SiO2[J].Applied Catalysis B:Environment,2004,50:73~82
    [43]吴宏海.硝(?)生成中NO氧化方法的选择[J].河南化工,1995,8:29~31
    [44]任晓莉.常压湿法治理化学工业中氮氧化物废气的研究[D].天津:天津大学,2006
    [45]魏恩宗.直流电晕氧化结合化学吸收烟气脱硝实验及机理研究[D].浙江:浙江大学,2006
    [46]Sada E,Kumazawa H,Hayakwawa N.Absorption of NO in aqueous solution of KMnO4[J].Chemical Engineering Science,1977,32:1171~1175
    [47]程琰.湿式吸收法同时烟气脱硫脱氮技术发展[J].化工环保,2006,26(3):209~212
    [48]Young C B,Kyoung B K,Moohyun C,et al.Reaction Pathways of NO oxidation by Sodium Chlorite Power[J].Environ Sci Technol,2009,43:5054~5059
    [49]Yeh J T.Integrated testing of the NOXSO process-simultaneous removal of SO2 and NOx from flue gas[J].Chem Eng Comm,1992,114:65~88
    [50]Chang S G,Lee G C.PhoSNOX process for combined removal of SO2 and NO from flue gas[J].Environ Progress,1992,11(1):66~73
    [51]王智化,周俊虎,魏林生,等.用臭氧氧化技术同时脱除锅炉烟气中NO、及SO2的试验研究[J].中国电机工程学报,2007,27(11):1-5
    [52]Wang Z H,Zhou J H,Zhu Y Q,et al.Simultaneous removal of NOx,SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:Experimental results[J].Fuel Processing Technology,2007, 88:817~823
    [53]Koebel M,Madia G,Raimondi F,et al.Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction[J].Journal of Catalysis,2002,209,159~165
    [54]Louise O,Hanna S,Richard J B.Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5[J].Applied Catalysis B:Environmental,2009,87:200~210
    [55]Wei Z S,LinZH,HeJY,et al.Simultaneous desulfurization and denitrification by microwave reactor with ammonia bicarbonate and zeolite[J].Journal of Hazardous Materials,2009,162: 837~841
    [56]李玉芳,刘华彦,黄海凤,等.疏水型H-ZSM-5分子筛上NO氧化反应的研究[J].中国环境科学,2009,29(5):469~473
    [57]袁从慧,刘华彦,卢晗锋,等.催化氧化-还原吸收法脱除工业含湿废气中NOx[J].环境工程学报,2008,2(9):1208~1212
    [58]Guo Z C,Xie Y S,Hong I,et al.Catalytic oxidation of NO to NO2 on activated carbon[J].Energy Conversion and Management,2001,42:2005~2018
    [59]Li L D,Shen Q,Cheng J, et al.Catalytic oxidation of NO over TiO2 supported platinum cluster I.preparation,characterization and catalytic properties[J].Applied Catalysis B:Environmental, 2010,93:259~26
    [60]鲁文质,赵秀阁,王辉,等.NO的催化氧化[J].催化学报,2000,21(5):424~427
    [61]Wang Q,Park S Y,Choi J S,et al.Co/KxTi2O5 catalysts prepared by ion exchange method for NO oxidation to NO2[J].Applied Catalysis B:Environment,2008,79:101~107
    [62]Wang H Q,Wang J,WuZB,et al.NO catalytic oxidation behaviors over CoOx/TiO2 catalysts synthesized by sol-gel method[J].Catal Lett,2010,134:295~302
    [63]Irfan M F,Goo J H,Kim S D.Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process[J].Applied Catalysis B:Environment,2008,78:267~274
    [64]Matthew M Y, Holmgreen E M,Ozkan U S.Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide[J].Journal of Catalysis,2007,247: 356~367
    [65]高冬梅,黄妍,童志权,等.C0304/MPS催化氧化NO性能[J].化工进展,2009,28(5):805~811
    [66]郑足红,童华,童志权,等.低温高活性NO氧化催化剂Mn-V-Ce/Ti02的制备[J].过程工程学报,2008,8(6):1204~1211
    [67]陈霞,张俊丰,童志权,等.CuCoOx/TiO2催化氧化NO性能[J].环境工程学报,2009,3(5):869~874
    [68]Zhang J F,Huang Y,Chen X.Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica[J].Journal of Natural Gas Chemistry,2008,17:273~277
    [69]黄明,蒋红彬.Cu-Mn/Si02催化氧化NO性能研究[J].环境工程学报,2008,4:532~535
    [70]赵秀阁,王辉,肖文德,等.S02对C0304/A1203选择性催化氧化NO的影响[J].催化学报,2000,21(3):239~242
    [71]李平,赵越,卢冠忠等.SO2对NO催化氧化过程的影响(Ⅱ)载体γ-Al203与SO2的相互作用[J].高校化学学报,2001,22(12):2072~2076
    [72]李平,卢冠忠.S02对NO催化氧化过程的影响(V)NiO/y-A1203上SO2的作用机理[J].化学学报,2003,61(5)660~665
    [73]Dawody J,Skoglundh M,Fridell E.The effect of metal oxide additives(WO3,MoO3,V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts[J].Journal of Molecular Catalysis A:Chemical,2008,209:215-225
    [74]王海强.光催化氧化结合液相吸收处理氮氧化物的研究[D].浙江:浙江大学,2007
    [75]唐晓龙,李华.利用低温等离子体脱除固定源尾气中氮氧化物的净化方法[P].200810058807.5,2009-01-07
    [76]徐云龙,吴春梅.一种微波催化烟气同时脱硫脱硝净化方法[P].200610023550.0,2006-08-30
    [77]Deshwal B R,Lee H K.Mass transfer in the absorption of SO2 and NOx using aqueous euchlorine scrubbing solution[J].Journal of Environmental Science,2009,21:155~161
    [78]Hattori A,Yamanioto M,Tada H,et al.A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films[J].Chemistry Letters,1998,27:707~708
    [79]Huang H.Y,Long R Q,Yang R T.A highly sulfer resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles[J].Appl Catal B:Environ,2001,33:127~136
    [80]Iwamoto M,Yoda Y,Egashira M,et al.Study of metal catalysts by temperature programmed desorption:1.Chemisorption of oxygen on nickel oxide[J].J Phys Chem,1976,50(18):1989~1994
    [81]Iwamoto M,Yoda Y,Yamazoe N,et al.Study of metal oxide catalysts by temperature programmed desorption:4.Oxygen adsorption on various metal oxides[J].J Phys Chem,1978,82(24): 2564~2570
    [82]Morales M,Barbero B P,Lopez T,et al.Evaluation and characterization of Mn-Cu mixed catalysts supported on TiO2 and ZrO2 for ethanol total oxidation[J].Flue,2009,88:2122~2129
    [83]Ivanova T,Harizanova A.Characterizaton of TiO2 and TiO2-MnO oxides prepared by sol-gel method[J].Solid State Ionics,2001,138:227~232
    [84]Takeuchi M,Matsumoto S.Flame-made Pt/K/AI2O3 for NOx Storage-Reduction (NSR) catalysts[J].Topics in Catalsis,2009,52:1799~1802
    [85]Bond G C,Rajaram R R, Burch R.Thermal analysis of catalyst precursors.Part 1.Temperature-programmed evolution of hydrogen chloride during the reduction of supported ruthenium trichloride[J].Applied Catalysis,1986,27(2):379~391
    [86]Li L D,Qu L L,Cheng J,et al.Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts[J].Applied Catalysis B:Environmental,2009,88:224~231
    [87]Debeila M A,Coville N J,Scurrell M S et al.The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2:drifts studies[J].Applied Catalysis A:General,2005,291: 98~115
    [88]H.斯科特福格勒,李术元,朱建华译.化学反应工程[M],第三版.北京:化学工业出版社,2005
    [89]汪申,邬慧雄,宋静,等.ChemCAD典型应用实例(上)—基础应用与动态控制[M].北京:化学工业出版社,2006
    [90]邬慧雄,汪中,刘劲松,等.ChemCAD典型应用实例(下)—化学工业与炼油工业[M].北京:化学工业出版社,2006
    [91]孙志翱,金保升,李勇,等.基于ASPEN PLUS软件的湿法烟气脱硫模型[J].洁净煤技术,2006,12(3):82~85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700