反硝化脱氮及其微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国经济的快速发展,近年来大量的氮、磷排入水体引起严重的水体富营养化,导致水质恶化以至湖泊退化,严重时造成水体黑臭。我国大约有25%的湖泊都受到不同程度富营养化的影响。因此,研究和开发出高效、经济的生物脱氮技术已成为当前研究的热点。
     通过采用某钢铁厂含氮废水,利用曝气生物滤池工艺,研究了曝气生物滤池的启动与挂膜,并对影响反硝化脱氮的因素(溶解氧、碳氮比、pH、温度等)进行详细的分析研究。结果表明,利用含反硝化菌的富集菌液进行挂膜,16 d基本完成挂膜,脱氮率大于90%。当溶解氧较低时(DO为1.5~4.2 mg/L),随着溶解氧的增大,反硝化效率提高。其中,以DO为3.5 mg/L时的效果最好,脱氮率为95.4%。随着曝气量继续增加,脱氮率有所下降,当DO为8.0 mg/L时,脱氮率仍有44.8%。可推断系统中有好氧反硝化菌,存在以硝态氮和O2作为电子受体的好氧反硝化现象。随着碳氮比(COD/N)增大,反硝化效果提高。当COD/N为6~7时,基本能够满足反硝化所需碳源。此时脱氮率大于93%,亚硝态氮在整个反应过程中几乎没有积累,COD去除率在85%左右。碳源种类对反硝化影响存在差异。其中,以葡萄糖和乙醇作为外加碳源时效果最佳,脱氮率分别是92.9%、95.8%,几乎没有亚硝酸的积累(最高时不超过0.25 mg/L)。乙酸钠做碳源时有亚硝酸的积累,最高达5.79 mg/L,积累率为0.96%。当不投加外部碳源时(内碳源),通过内源呼吸代谢作用进行反硝化效果最差,脱氮率仅有18.8%。将系统的温度控制在22.5℃~33.1℃的范围内将产生比较好的脱氮效果。反硝化最佳pH值为7.0~8.0。
     研究发现,在反硝化过程中pH不断上升直至反硝化结束,转而持续下降出现拐点;ORP则减速下降,当反硝化结束时保持不变。改变起始pH值、初始硝酸盐的浓度,ORP、pH值的变化规律基本一致,ORP变化曲线、pH变化曲线上出现特征点,出现的时间也很相近。因此,可以通过pH和ORP的变化规律判断反硝化的结束。
     将反应器内的反硝化菌经选择性培养基初筛,好氧反硝化复筛,得到菌种X1,为短杆菌,革兰氏阴性菌,经16S rDNA序列同源性分析,结合生理生化分析,该菌与恶臭假单胞菌(Pseudomonas putida)最为相似。
In recent years ,with the rapid growth of economy in China, ,a large number of nitrogen and phosphorus discharged into the water,which have caused serious eutrophication, resulting in the quality of water depravation or the lake degenerate, seriously the water was black and olid. Probably 25% of the lakes are influenced by eutrophication in various degrees in our country. So, developing high efficiency biofilm Nitrogen-removal method is the hot issues of research.
     The compound inoculation and startup were investigated, and the influences of nitrogen-removal (such as dissolved oxygen, COD/N ratio, pH, temperature, and so on) in biological aerated filter were tested in details while treating nitrate wastewater from an iron factory. The results showed that the nitrogen removal rate was more than 90% after 16 days’cultivation using enrichment containing, which included denitrifying bacteria. the efficiency of denitrification was improved, when the concentration of dissolved oxygen was increased from 1.5 to 4.2 mg/L .When dissolved oxygen value was 3.5 mg/L, the efficiency was the best, it was 95.4%; but the result was opposite when it were increased. Even through dissolved oxygen value was 8.0 mg/L; the efficiency was still 44.8%.it can be inferred that there were aerobic denitrifer, nitrate and oxygen were the electron accepter during denitrification. The efficiency of aerobic denitrification was improved. When COD /N were 6-7, it can meet the requirement for carbon source during aerobic denitrification, the removal rate of nitrate nitrogen and COD were up to 3%, 85% respectively. Almost no nitrite nitrogen accumulated. Different carbon resource had different effect on denitrification. The nitrogen removal rate were 92.9%,95.8% respectively when using grape sugar and ethanol as carbon resource, there was no nitrite nearly.The accumulation of nitrite was obviously up to 5.79 mg/L(the accumulation rate of nitrite was 0.96%) when using sodium acetate as carbon resource. No accumulation of nitrite was measured when other carbon sources were used. There was low nitrogen removal rate (18.8%) by endogenous respiration without carbon sources added. There was a good denitrification, when temperature was 22.5℃~33.1℃, pH value was7.0~8.0.
     During experiment, we found that pH increased till denitrification stopped, then decreased, showing a turning point. ORP decreased quickly and then slowly, when denitrification stopped, ORP value was steady. The results showed that initial pH and nitrate concentration were changed; there was no change in the variations of pH and ORP, and the feature points still appeared, and time was also close. So we could judge the end of denitrification by changes of pH and ORP.
     A special method emphasized on nitrogen removal for cultivating denitrifying bacteria was employed. The strain X1 was gram positive and spherical. The strain X1 was identified as Pseudomonas putida based on its biochemical and morphological characters and phylogenetic analysis of 16S rDNA sequences (genbank accession NO.DQ836052.1).
引文
[1]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:环境科学出版社, 2000, 9
    [2]夏立江.城市垃圾渗沥液引起地下水氮污染的研究[J].农业环境保护,2001, 20(2):108~110
    [3]汪大翚,徐新华,宋爽.工业废水中专项污染物处理手册[M].北京:化工出版社, 2000.5
    [4]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社, 2003: 27~44
    [5]张文渊.水环境中的氮污染特征与影响因素[J].黑龙江环境通报,2000, 24(1):27~28
    [6]张俊英.氮肥施用与环境质量[J].华北农学报, 2002,17增刊:223~ 229
    [7]沈耀良,王宝贞.垃圾填理场渗滤液的水质特征及其变化规律分析[J].污染防治技术,1999, 12(1):10~13
    [8] CHINA Air. Land and Water [J]. The World Bank, 2001:49~58
    [9]刘玲花.饮用水中硝酸盐去除方法比较[J].环境科学, 1993,14(2):63~66
    [10]陈红英,陈宏平.富营养化对饮用水生产的危害及净化方法[J].浙江工业大学学报, 2002, 30(2) :178~180
    [11]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社, 2004, 11
    [12]靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质, 2002, 4:65~69
    [13]李振强,陈建中.废水脱氮新技术研究进展[J].广州环境科学, 2005, 20(3):16~19
    [14]丛培凯,冷加峰.硝酸态氮引起的地下水污染对人体健康的影响[J].山东环境, 2001, (106):46
    [15]奚旦立,孙裕生,刘秀英编.环境监测[M].北京:高等教育出版社, 1995,4~13
    [16]国家环保部.2008年中国环境公报[M].2009, 6
    [17]许木启,黄玉瑶.受损水域生态系统恢复与重建研究[J].生态学报,1998, 18(5):547~558
    [18]唐云提等编.实用环境保护数据大全[M].武汉:湖北人民出版社,1993, 50~55
    [19]殷士学,沈其荣.缺氧土壤中硝态氮还原菌的生理生化特性[J].土壤学报, 2003, 40(4):624~630
    [20]陈丽敏.淹水土壤中反硝化菌和硝化还原菌数量、生理类群及其还原特点的研究[D].扬州:扬州大学.2006
    [21] Patricia B., Patrick O., Alain C. Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean Coast [J].Hydrobiologia, 1998, 389:169~182
    [22] Beverley H L., Kelso R V., Smith R J., et al. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation [J].Microbiology Ecology, 1997, 63:4679~4685
    [23] Hongbo M C., Marjorie A. Ammonium production during microbial nitrate removal in soil microcosms from a developing marsh estuary [J].Biology&Bio-Chemistry, 2005, 37:1869~1878
    [24] Isao Y., Koji Y., Megumi H., Yoshinobu N.A novel facultatively psychrophilic alkaliphile isolated from seawater [J].International Journal of Systematic and Evolutionary Microbiology, 2001, 51:349~355
    [25]赵宗升,刘鸿亮,李炳伟等.高浓度氨氮渗滤液高效脱氮途径[J].中国给水排水, 2001, 17 (5):24~28
    [26] Randall C W., Barnard JL., and Stensel H D. Design and retrofit of wastewater treatment plants for biological nutrient removal [A].Water Quality Management Library, Vo1.5, Technomic Publishing Company, Inc, Lancaster, PA, 1992
    [27] Min W L., Yun J P and Jong M P. Control of external carbon addition in biological nitrogen removal process for the treatment of Coke-Plant wastewater [J].Water environment research. 2001, 73(4): 415~425
    [28] LI P., ZHING Y., CHIN S., et al. Dentrification of an aerobic denitrifying bacterium and its potential application in waste water treatment[J].Chin J Appl Envion Biol, 2005, 11(5):600~603
    [29] Patureau D., Zumstein E., Delgenes J P., et al. Aerobic denitrification isolation from diverse natural and managed ecosystems [J].Microb Ecol, 2000, 39:145~152
    [30] Kim Y J., Yoshizawa M., Takenaka S., et al. Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations [J]. Biotechnol Biochem, 2002, 66(5):996~1001
    [31] Chen F., Xia Q., Ju L. Aerobic denitrification of Pseudomonas aeruginosa monitored by online NADH fluorescence[J].Applied and Environmental Microbiology, 2003, 69(11):6715~6722
    [32] KesserúP., Kiss I., Bihari Z., et al. Biological denitrification in a continuous flow pilot bioreactor containing immobilized Pseudomonas but a novora cells [J].Bioresource Technology, 2003, 8(7):75~80
    [33] Huang H K., Tseng S K. Nitrate reduction by nitrobacteria divers us under aerobic environment [J].Appl Microbiol Biotechnol, 2001, 55:90~94
    [34]郑兴灿,李亚新.污水脱氮除磷技术[M].北京:中国建筑工业出版社, 1998
    [35]徐亚同.废水中氮磷的去除[M].上海:华东师范大学出版社, 1996
    [36]唐受印,戴友芝,汪大翚.废水处理工程(第二版)[M].北京:化学工业出版社, 2004
    [37] Demoulin G.., Rudiger A., Goronszy M C. Cyclic activated sludge technology recent operating experience with a 90000 p. e. plant in Germany [J].Wat. Sci.Tech, 2001, 43(3):331~337
    [38] Wu W., Timpany P., Dawson D. Simulation and application of a novel modified SBR for biological removal [J]. Wat.Sci.Tech, 2001, 43(3):215~222
    [39]孙锦宜.含氮废水处理技术与应用[M].北京.化学工业出版社, 2003
    [40]钟理,谭春伟.氨氮废水降解技术进展[J].化工科技,2002 10(2).59~62
    [41]涂保华,张洁,张雁秋.影响短程硝化反硝化的因素[J].工业安全与环保, 2004, 30 (1) :12~14
    [42] Van Kempen R., Mulder J W., Uijterlinde C A. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology, 2001, 44(1):145~52
    [43]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002
    [44]曹国民,赵庆样.单级生物脱氮技术的进展[J].中国给水排水, 2000, (16): 2~6
    [45] Hyungseok Y., Kyu-Hong A., Hyung-Jib L., et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Wat.Res, 1999, 33(1): 145~154
    [46] Collivignarelli C., Bertanza G. Simultaneous nitrification-denitrification processes in activated sludge plants: performance and applicability [J].Wat. Sci. Tech, 1999, 40(4-5):187~194
    [47]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水, 2001, 27(1):22~24
    [48] Christine H., Sabine K. Simultaneous nitrification/ denitrification in an aerobic biofilm system [J]. Wat. Sci. Tech., 1998, 37(4-5):183~187
    [49]曹国民,赵庆祥等.固定化微生物在好氧条件下同时硝化和反硝化[J].环境工程, 2000, 18(5):17~19
    [50] Uemoto H, Saiki H. Behavior of immobilized nitrosomonas europaea and paracoccus denitrificans in tubular gel for nitrogen removal in wastewater [J]. Prog Biotechnol, 1996, 11:695~701
    [51]王建龙.生物脱氮新工艺及其技术原理.中国给排水, 2000, 6(2):25~28
    [52] Minder A., van de Graaf, L A. Robertson et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J].FEMS Microb.Eco1.1995, 16(3):177~183
    [53] Jetten M S., Strous M., Van de Pas-Schoonen K T., et al. The anaerobic oxidation of ammonium [J].FEMS Microbio1, 1998, 22:421~437
    [54] Marc S., Eric V G., Ping Z., et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations[J].Wat.Res,1997, 31:1955~1962
    [55]胡宝兰,管丽莉,郑平. Anammox反应器中氨氧化菌的分离鉴定及特性研[J].浙江大学学报, 2001, 27(3):314~316
    [56]魏学军,邓华,谈红.厌氧氨氧化反应器的启动及运行[J].新疆环境保护, 2002, 24(1):17~21
    [57] ZHAO H W, MAVINICDS, et al Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage [J]. Water Research, 1999, 33(4): 961~970
    [58] Kshirsagar M., Gupta A B., Gupta S K. Aerobic denitrification studies on Activated sludge Mixed with Thiosphaera pantotropha [J].Environment Technology, 1994, 16(1):35~43
    [59] Gupta A B., Gupta S K. Simultaneous Carbon and Nitrogen Removal in a Mixed Culture Aerobic RBC Biofilm [J]. Water Research, 1999, 33(2):555~561
    [60] Hung S J., Mitsuyo H., Makoto S. Piggery wastewater treatment using alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification[J]. Water Research, 2006, 40: 3029 ~3036
    [61] Wilson L P., Bouwer E. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review [J].Journal of Industrial Microbiology & Biotechnology, 1997, 18:116~130
    [62] Downes M T. Aquatic nitrogen transformations at low oxygen concentration [J]. Applied and Environmental Microbiology, 1988, 54:172~175
    [63] Cohen Y., Gordon L I. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production [J]. Deep Sea Research, 1978, 25:509~524
    [64] Patureau D., Bernet N., Delgenès P., et al. Effect of dissolve oxygen and carbon-nitrogenloads on denitrification by an aerobic consortium[J].Appl Microbiol Biotechnol, 2000, 5(4):535~542
    [65] Krul J M. The relationship between dissimilatory nitrate reduction and oxygen uptake by cells of an Alcaligenes strain in flocs and in suspension and by activated sludge flocs [J]. Water Research.1976, 10: 337~341
    [66]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社, 1993
    [67]钱易,米祥友.现代废水处理新技术[M].北京:中国科学技术出版社, 1993
    [68] Sedlak R I. Phosphorus and nitrogen removal from municipal wastewater [M].Lewis Publisher, 1991
    [69] Glass C. C. Optimized denitrification of concentration nitrate wastes under saline conditions in bench-scale sequencing batch reactors [D]. University of Colorado, 1997
    [70]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002
    [71] Jiang R., Huang S B., Yang J. Biological removal of NOx from simulated flue gas in an aerobic biofilter [J]. Global Nest Journal, 2008, 10(2): 240~247
    [72]范利荣,黄少斌,杨军等.生物滴滤塔体系好氧反硝化菌的分离鉴定与特性研究[J].微生物学通报, 2008,16(1): 8~10
    [73]刘金瀚,白宇,林海等.反硝化生物滤池用于污水深度脱氮研究[J].中国给水排水, 2008, 24(21): 26~29
    [74]徐伟峰,孙力平,古建国等. DO对同步硝化反硝化影响及动力学[J].城市环境与城市生态, 2003, 16(1): 8~10
    [75]周丹丹,马放,王弘宇等.关于好氧反硝化菌筛选方法的研究[J].微生物学报, 2004, 44(6): 837~839
    [76]张亚光.一株好氧反硝化菌的特征及系统进化分析[J].华侨大学学报, 2004,25(1):75~78
    [77]孙振世,柯强,陈英旭.SBR生物脱氮机理及其影响因素[J ].中国沼气, 2001,19(2):16~19
    [78]殷芳芳,王淑莹,昂雪野等.碳源类型对低温条件下生物反硝化的影响[J].环境科学, 2009, 30(1): 108~113
    [79] Nyberg U, B Andersson, H Aspegren. Long-term experiences with external carbon sources for nitrogen removal [J]. Wat Sci Tech, 1996, 33(12): 109~116
    [80] Marinez L M, Dobao M, Castillo F. Characterization of the assimilatory and dissimilatory nitrate-reducing systems in Rhodobacler a comparative study [J]. FEMSMicrobial, 1991, 83(10): 329~334
    [81] Vega-jarquin C., Valenzuela-encinas C., Neria-gonzalez I., et al. Is nitrate reduction to nitrite possible in glucose-amended alkaline saline soil under aerobic conditions [J]. Soil Biology & Biochemistry, 2008, 40(11): 2796~2802
    [82] Krul J. M. Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grown Alcaligenes sp. and by activated sludge [J].Appl. Bacteriol, 1976, 40:245~260
    [83] Meiberg J B., Bruinenberg P M., and Harder W. Effect of dissolved oxygen tension on the metabolism of methated amines in Hyphomiccrobittm X in the absence and presence of nitrate: evidence for aerobic denitrification [J].Gen. Microbiol, 1980, 120:453~463
    [84] Alefounder P R., Greenfield A J. Selection and organization of denitrifying electron transfer pathways in Paracoccus denitrificaus [J].Biochim.Biophys. Acta, 1983, 724:20~39
    [85] Bernat K., Wojnowska-baryla I. The effect of different nitrogen sources on denitrification with PHB under aerobic condition [J].Environmental Technology, 2008, 29(1): 81~89
    [86] Gupta A B. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification [J]. Enzyme and Microbial Technology, 1997, 21(8): 589~595
    [87] Robertson L A, Kuenen J G. Heterotrophic nitrification in thiosphaera pantotropha oxygen up take and enzyme studies [J]. Archives of Microbiology, 1988, 134(4): 857~863
    [88] Patureau D., Zumstein E., Delgenes J P. Aerobic Denitrifiers Isolated from Diverse Natural and Managed ecosystems [J]. Microbial-Ecology, 2000, 39:145~152
    [89] Klangduen Pochana. Study of factors affecting simultaneous nitrification and denitrification [J]. Water Science and Technology, 1999, 39(6): 61~68
    [90] Patureau D, Bernet N, Delgenes J P, et al. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium [J]. Applied Microbiology and Biotechnology, 2000, 34: 535~542
    [91]汪苹,项慕飞,翟茜.从不同反应器筛选鉴别好氧反硝化菌[J].环境科学研究, 2007, 20(4): 120~125
    [92]张凤君,戴宁,李卿等.活性污泥法驯化筛选好氧反硝化菌的试验研究[J].环境科学学报, 2006, 26(11): 1404~1409
    [93]张光亚,李巍.好氧同时硝化-反硝化菌的分离鉴定及系统发育分析[J].应用与环境生物学报, 2005, 11(2): 226~228
    [94] Kong Q X., Wang X W., Jin M., et al. Development and application of a novel and effective screening method for aerobic denitrifying bacteria [J]. FEMS Microbiology Letters, 2006, 260(2): 150~155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700