有氧条件下生物滤塔体系去除NO_x研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)是造成大气污染的主要污染源之一,大量排放给自然环境和人类生产及生活带来严重的危害。传统的NOx治理方法复杂、难度大、费用昂贵,世界各国都在努力寻找和研究NOx的控制和治理新方法。本文通过优化优势的好氧反硝化菌系及其培养条件,建立生物滤塔,研究了有氧条件下用生物滤塔反硝化去除NOx的效能,探讨了NOx在塔中的生化转化机制以及非稳态情况下生物滤塔的恢复效果。对去除过程的动力学进行了分析,并用实验数据进行了验证。研究旨在为生物滤塔的工业化应用在设计、运行过程等方面提供理论基础。
     利用正交实验方法对好氧反硝化菌系的培养条件进行优化,将筛选出的好氧反硝化菌系(好氧反硝化菌种A1、A2、A3混合制成)接种于生物滤塔,研究了好氧条件下生物滴滤塔反硝化去除NOx的效果。结果表明,该系统能有效克服氧对反硝化菌活性的抑制作用,实现了对NOx的高效脱除。在O2体积分数为10%、NOx进气浓度为286.4 mg/m3、EBRT为59s时,NOx净化效率能够达到93.6%。在生物滤塔系统中存在以兼性反硝化菌为主,多种菌种共存的微生物混合体系。
     通过对生物滤塔的抗NOx冲击负荷能力的研究,结果表明,当NOx进气浓度由352.3mg/m3突然提高至754.9 mg/m3时并不能使系统崩溃,反应器仍可以恢复处理能力。生物滤塔在停运2 d、5d后只需12h、42h即可以恢复对NOx的去除能力,去除效率达到停运前水平。而在停止供水供气的情况下10d,塔内的微生物全部失活,若在停运时间歇供气供水,塔的净化效果可以恢复。
     针对生物滤塔的堵塞等现象,采用气水联合冲洗的方式进行反冲洗,研究了反冲洗的周期及冲洗后滤塔的恢复能力。反冲洗周期为10-15天,反冲洗后滤塔需要约60小时左右才能恢复正常的脱硝能力,NOx去除率可达到86.9%。
     通过“吸附-生物膜”理论对生物滤塔的去除能力进行了探讨,根据其动力学模型计算了生物滤塔对NOx的生化去除量和NOx出口浓度,发现模型计算值与实验值之间相关性较好,说明“吸附-生物膜”理论模型描述生物滴滤塔对低浓度NOx废气的净化过程能够得到比较准确合理的结果,可为相关的理论研究和实际操作提供指导和帮助。
Nitrogen oxides (NOx) are one of the major sources caused air pollution, its emissions will bring serious harm to natural and life and production of human. Conventional NOx treatment technologies are difficult, complex and expensive. People in the world are making efforts to look for and investigate new ways to control NOx pollution.
     Optimized aerobic denitrifiers were applied to a biofilter for the removal of NOx. The removal process of NOx was investigated,and the biochemical conversion mechanism under aerobic conditions are discussed. Achieve the operation data of biological trickling filter under non-steady-state by changing the operating conditions. Kinetics of the NO removal were analyzed and validated with experimental data. This paper is rearched in the in the design, and operation of biotrickling filter to provide theoretical basis for industrial application.
     The medium components and culturing conditions were optimized for the better aerobic denitrifiers system by using sophisticated orthogonal method. The biofilter finished start-up after 26 days and the presence of oxygen has no evident negative effect on the efficiency of NOx removal. The biofiltration system could remove NOx at high efficiency of 93.6% at the EBRT of 58s and the inlet NOx concentration of 286.4 mg/m3 with 10% O2. The removal process consisted of chemical oxidation and bio-nitrification in the biofilter. The bioprocess mainly contributed to the removal. Exist in the biological filtration system to facultative denitrifying bacteria, many strains of microorganisms coexist mixed system.
     Obtain operation data of biotrickling filter in case of non-steady state by changing the operating conditions. Results showed that the biofilter has strong buffering capacity when the inlet NOx concentration changed, when the inlet NOx concentration suddenly increased from 352.3mg/m3 to 754.9 mg/m3 didn’t lead the system crash, the treatment capacity of reactor can be recovered if adjust the NOx concentration in time. Biofilter after 2d and 5d outage, the NOx removal ability can be restored with the restart time of 12h and 42h. Complete cessation of water supply in case of outages 10d, all of the microorganisms of the tower are inactive, if supply gas and water during the outage period, the purification effect of biofilter can be restored.
     The biofilm plugged up the biofilter after running for some time, so this study uses gas-water backwash method to wash the biofilter. The optimum backwash cycle and the ability to recover of the biofilter after backwash were studied. Backwash cycle is 10-15 days. After backwashing biofillter will take some time (about 60 hours or so) to restore normal denitrification capacity.
     According to the kinetic calculation models,the NOx biological elimination and the NO outlet concentration were calculated to the change of inlet concentration. The calculated data show that the kinetic model constructed based on the“absorption-biofilm”theory was valuably applied to the NO removal process of the biofilter, and could offer guidance and help for the relative theory or practical operation.
引文
[1]张楚莹,王书肖,邢佳,等.中国能源相关的氮氧化物排放现状与发展趋势分析[J].环境科学学报, 2008, 28(12): 2470-2479
    [2]国家环保总局.燃煤二氧化硫排放污染防治技术政策[M].北京: 2002
    [3]行勇.固体吸附/再生法同时脱硫脱硝技术的研究[J].广州化工, 2003: 4-6
    [4]中国火电厂氮氧化物排放控制技术方案研究报告[R].北京:中国环保产业协会, 2008
    [5]刘孜,易斌,高晓晶,等.我国火电行业NOx排放现状及减排建议[J].环境保护, 2008, 402(16): 7-10
    [6]童志权.工业废气净化与利用[M].北京:化学工业出版社, 2001
    [7]彭浩,张晓云.我国氮氧化物治理技术的现状和研究进展[J].广东化工, 2009, 36(12)12: 83-85
    [8]高冠帅.我国氮氧化物综合治理概述[J].科协论坛, 2009, 2: 120
    [9]钱斌.燃煤锅炉氮氧化物的污染及控制技术综述[J].有色冶金设计与研究, 2000: 40-46
    [10]王海强,吴忠标.烟气氮氧化物脱除技术的特点分析[J].能源与环境, 2004: 26-28
    [11]岳涛,庄德安,杨明珍,等.我国燃煤火电厂烟气脱硫脱硝技术发展现状[J].能源研究与信息, 2008, 24(3): 125-130
    [12]戚栋,李春荣,阎颖等.高压脉冲电晕技术脱硫脱硝的研究进展[J].高电压技术, 2003: 32-42
    [13]魏恩宗,高翔骆,仲泱.电晕发电烟气脱硝机理探讨[J].电站系统工程, 2003: 1-3
    [14] Forzatti P. Present status and perspectives in De-NOx catalysis[J]. Catalysis, 2001: 221-236
    [15]贾剑晖,氨氮废水处理过程中的好氧反硝化研究[J].南平师专学报, 2004, 23(2): 70-74
    [16] Samdam G. Microbes nosh on NOx in flue gas[J]. Chemical Engineering, 1993, 100(10): 25-26
    [17] Barnes J M, Apel W A, Barrett K B. Removal of nitrogen oxides from gas stream usingbiofiltration[J]. Journal of Hazardous Materials, 1995, 41: 315-326
    [18] Flanagan W P, Apel W A, Barnes J M, et al. Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams[J]. Fuel, 2002, 81: 1953-1961
    [19] Yang W F, Hsing J H, et al. The effects of selected parameters on the nitric oxide removal by biofilter[J]. Journal of Hazardous Materials, 2007, 148: 653-659
    [20]蒋文举,毕列锋,李旭东.生物法废气脱硝研究[J].环境科学, 1999(5): 34-38
    [21]郭斌,马一太,任爱玲,等.生物法净化含NOx尾气的研究[J ].环境工程, 2003, 21(2): 37 - 41
    [22]张华,赵由才.矿化垃圾反应床反硝化处理NO废气的初步研究[J].环境工程, 2005, (23)2: 39-41
    [23]蒋然,黄少斌,范利荣.在有氧条件下用生物过滤系统去除NOx[J].环境科学学报, 2007, 27(9): 1469-1475
    [24]路涛,贾双燕,李晓姜.关于烟气脱硝的SNCR工艺及其技术经济分析[J].现代电力, 2004, 21(1): 17-22
    [25] Davidova Y B, Schroeder E D, Chang D P Y. Biofiltration of nitric oxide[A] Proceedings of the 90th Annual Meeting and Exhibition of A&WMA[C]. Canada: Toronto, Ontario, 1997(6): 8 - 13
    [26] Okuno K., hirai M, Sugiyama M, Haruta K, Shoda M, Microbial removal of nitrogen monoxide(NO)under aerobic conditions[J]. Biotechnology Letter, 2000, 22: 77-79
    [27] Chou M S, Lin J H. Biotrickling filtration of nitric oxide[J]. Journal of the Air &Waste Management Association, 2000, 50: 502 - 508
    [28]陈建孟, Lance H,陈浚, Daniel PYC.自养型生物过滤器硝化氧化一氧化氮[J].环境科学, 2003, 24(2): 1-6
    [29]张华,赵由才.矿化垃圾生物反应床处理NOx废气的工艺与机理研究[J].给水排水, 2003, 29(5): 98
    [30] Nagase H, Yoshihara K, Eguchi K, et al. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae[J]. Biochemical Engineering Journal, 2001, 7 (3): 241-246
    [31] Woertz J R, Kinney K A, Szaniszlo P J. A fungal vapor-phase bioreactor for theremoval of nitric oxide from waste gas stream[J]. Journal of the Air & Waste Management Association, 2001, 51: 859-902
    [32] Chagnot E, Taha S, Martin G, et al. Treatment of nitrogen oxides on a percolating biofilter after preconcentration on activated carbon[J]. Proc Biochem, 1998, 36 (6): 617-624
    [33] Buisman C J N, Dijkman H, Verbraak L, et al. Process for purifying flue gas containing nitrogen oxides[J]. US Patent, 1999, April 6
    [34]金耀民,陈建孟.络合吸收结合生物转化去除氮氧化物技术[J].环境污染治理技术与设备, 2003, 4(7): 37-40
    [35] Devinny J S. Clearing the air biologically [J]. Civil Engineering, 1998, 68(9): 46-49
    [36]张华.矿化垃圾生物反应床处理NOx废气的工艺与机理研究[D],上海:同济大学污染控制与资源化研究国家重点实验室, 2002
    [37] Robertson L A, van Neil E W J, Torremans R A M, et al. Simultaneous nitrification and denitrification in aerobic chemo stat cultures of Thiosphaera pantotropha[J]. Applied and Environmental Microbiology, 1988, 11 (54): 2812 - 2818
    [38] Frette L, Gejlsbjerg B, Westermann P. Aerobic denitrifiers isolated from an alternating activated sludge system[J]. FEMS Microbiology Ecology, 1997, 24(4): 363-370
    [39] Bell L C, Ferguson S J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha[J]. European Journal of Biochemistry, 1991, 273: 423- 427
    [40] Chen F, Xia Q, Ju L K. Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD (P) H fluorescence[J]. Applied and Environmental Microbiology, 2003, 69 (11): 6715- 6722
    [41]胡林林,王建龙,文湘华,等.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报, 2003, 9 (4): 444-447
    [42] Takaya N, Catalan S M, Sakaguchi Y, et al. Aerobic denitrification bacteria that produced low levels of nitrous oxide[J]. Applied and Environmental Microbiology, 2003, 69 (6): 3152- 3157
    [43] Su J J, Liu B Y, Liu C Y. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudom onasstutzeri SU2newly isolated from the active sludge of a piggery wastewater treatment system[J]. Journal of Applied Microbiology, 2001, 90: 457-462
    [44]张光亚,方柏山,闵航,等.好氧同时硝化-反硝化菌的分离鉴定及系统发育分析[J],应用与环境生物学报, 2005, 11(2): 226-228
    [45]孔庆鑫,李君文,王新为,等.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J].应用与环境生物学报, 2005, 11(2): 222-225
    [46] Robertson L A, Cornelisse R, De V P, et al. Aerobic denitrification in various heterotrophic nitrifiers[J]. Antonie van Leeuwenhoek, 1989, 56: 289-299
    [47] Patureau D, Zumstein E, Delgenes J P, et a1. Aerobic denitrifiers isolated from diverse natural and managed ecosystems[J]. Microbial Ecology, 2000, 39: 145-152
    [48] Naoki T, Maria A B, Yasushi S, et a1. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology, 2003, 69(6): 3152-3157
    [49] Ridgway H F, Safarik J, Phipps D, et a1. Identification and catabolic activity of well-derived gasoline degrading bacteria from a contaminated aquifer[J]. Applied and Environmental Microbiology, 1990, 56: 3565-3575
    [50] KesserúP, Kiss I, Bihari Z, et al. Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butannovora cells[J]. Bioresource Technology, 2003, 87: 75-80
    [51] Mia K, Seong Y J, Su J Y, et al. Aerobic denitrification of Pseudomonas putida AD-21at different C/N ratios[J]. Journal of Bioscience and Bioengineering, 2008, 106(5): 498-502
    [52] Joo H S, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4[J]. Journal of Bioscience and Bioengineering, 2005, 100 (2): 184- 191
    [53]张光亚,陈培钦,好氧反硝化菌的分离鉴定及特性研究[J].微生物学杂志, 2005, 25(6): 23-25
    [54] Joong K K, Kyoung J P, Kyoung S C, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains[J]. Bioresource Technology, 2005, 96: 1897-1906
    [55] Lukow T, Diekmann H. Aerobic denitrification by a newly isolated heterotrophicbacterium strain TL1[J]. Biotechnology Letter, 1997, 19: 1157-1159
    [56] Robertson L A, Kuenen J G. Aerobic denitrification: A controversy revived[J]. Archives of Microbiology, 1984, 139: 351-354
    [57] Patureau D, Bernet N, Delgenes J P, et al. Effect of Dissolved Oxygen and Carbon-nitrogen Loads on Denitrification by an Aerobic Consortium[J]. Applied Microbiology & Biotechnology, 2000, 54(4): 535-542
    [58] Wilson L P, Bouwer E J. Biodegradation of aromatic compounds under mixed oxygen/ denitrifying conditions: A review[J]. Journal of Industrial Microbiology & Biotechnology, 1997, 18: 116-130
    [59] Jetten M S M, Logemann S, Muyzer G, et al. Novel Principle in the Microbial Conversion of Nitrogen Compounds[J]. Antonie van Leeuwenhoek, 1997, 41: 75-93
    [60] Bell L C, Richardson D J, Ferguson S. Perplasmic and membrane bound respiratory nitrate reductases in Thiosphaera pantotropha[J]. FEBS Letters, 1990, 39(6): 85-87
    [61] Stouthamer A H, De Boer A P N, van der J. Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria[J]. Antonie van Leeuwenhoek, 1997, 71: 1-2
    [62] Pochana K. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Science and Technology, 1999: 61-68
    [63] Ali R D, Fikret K. Kinetics of sequential nitrification and denitrification processes [J]. Enzyme and Microbial Technology, 2000, 27(122): 37-42
    [64] Huang H K, Tseng S K. Nitrate reduction by Citrobacter diversus under aerobic environment[J]. Applied Microbiology Biotechnology, 2001, 55: 90-94
    [65] Yoshie S, Noda N, Tsuneda S E A. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems[J]. Applied and Environmental Microbiology, 2004
    [66] Firth J R,Edward C. Analysis of denitrification by Pseudomonas stutzeri under nutrient-limited conditions using membrane inlet mass spectrometry[J]. Journal of Applied Microbiology, 2000, 88(5): 853-859
    [67] Schalk-otte S, Seviour R J, Kuenen J G, et al. Nitrous oxide (N2O)production by Alcaligenes faecalis during feast and famine regimes[J]. Water Research, 2000, 34(7):2080-2088
    [68] Kshirsagar M, Gupta A B. Aerobic denitrification studies on Activated sludge Mixed with Thiosphaera pantotropha[J]. Environment Technology, 1994, 16(1): 35-43
    [69] Joo H S, Hiraia M, Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Reseach, 2006, 40(16): 3029-3036
    [70] Third K A, Gibbs B, Newland M C R. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor[J]. Water Research, 2005, 39: 3523-3530
    [71] Boopathy R, Bonvillain C, Fontenot Q E A. Biological treatment of low-salinity shrimp aquaculture wastewater using sequencing batch reactor[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 16-19
    [72] Daijun Zhang, Peili Lu, Tengrui Long E A. The integration of methanogensis with simultaneous nitrification and denitrification in a membrane bioreactor[J]. Process Biochemistry, 2005, 40(2): 541-547
    [73] Qin L, Liu Y. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor[J]. Chemosphere, 2006, 63(6): 926-933
    [74] Wang S G, Liu X W, Gong W X, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor[J]. Bioresource Technology, 2007, 98(11): 2142-2147
    [75] Tan Y W, Croiset E, Douglas M A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel, 2006, 85(4): 507-512
    [76] Lee B D, Apel W A, Smith W A. Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off gas streams[J]. Environment Progress, 2001, 20: 157-167
    [77]范利荣,黄少斌,杨军等.生物滤塔体系好氧反硝化菌的分离鉴定与特性研究[J].微生物学通报, 2008, 35(5): 679-684
    [78]沈耀良,王宝贞.废水生物处理新技术[M].北京:中国环境科学出版社, 1999: 20-23
    [79]李平,张山,刘德立.细菌好氧反硝化研究进展[J].微生物学杂志, 2005, 25(1):60-64
    [80] Bang DY, Watanabe Y, Noike T. An experimental study on aerobic denitrification with polyvinyl alcohol as a carbon source in biofilms. Water Science and Technology, 1995, 22 (8): 235- 242
    [81] Neef A, Zaglauer A, Meier H, et al. Population analysis in a denitrification sand filter: Conventional and in situ of Paracoccus spp. in methanol-fed biofilms[J]. Applied and Environmental Microbiology, 1996, 62 (12): 4329-4339
    [82]张丹,徐慧,李相力,等.限氧自养硝化-反硝化生物脱氮新技术[J].应用生态学报, 2003, 14 (12): 2333-2336
    [83]中国环境状况公告,北京:国家环保总局, 2000.
    [84] Rhoads T W, Marks J R, Siebert P C. Overview of industrial source control for nitrogen oxides[J]. Environmental Progress, 1990, 9(2): 126-130
    [85] William P F, William A A, Joni M B, et al. Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams[J]. Fuel, 2002, 81: 1953-1961
    [86]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展[J].环境科学研究, 2000, 13(5): 50-53
    [87]陈建孟, Lance H,陈浚, Daniel P Y C.自养型生物过滤器硝化氧化一氧化氮[J].环境科学, 2003, 24(2): l-6
    [88]马放,王弘宇,周丹丹.好氧反硝化生物脱氮机理分析及研究进展[J].工业用水与废水, 2005, 36(2): 11-14
    [89] Stouthamer A H. Metabolic pathways in Paracoccus denitrification and closely related bacteria in relation to the phylogeny of prokaryotes [J]. Antonie van Leeuwenhoek, 1992, 61(1): 11- 33
    [90]樊凌雯,冯安吉,张肇铭.应用生物技术净化硝酸尾气小试[J].应用与环境生物学报, 1999(5): 61-63
    [91]季学李,羌宁,何坚.生物滴滤器净化甲苯废气研究[J].上海环境科学, 2000, 19(8) :369 - 372
    [92] Wu G, Conti B. A high performance biofilter for VOC emission control [J]. Journal of the Air &Waste Management Association, 1998, 48(7): 627 - 636
    [93]王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社, 2001: 357-359
    [94]张杰,陈秀荣.曝气生物滤池反冲洗的特性[J].环境科学, 2003, 24(5): 86-91
    [95]曹相生.污水深度处理中的生物强化过滤技术研究[D] .哈尔滨:哈尔滨工业大学, 2003: 103-106
    [96] Ottengraf S P P, van den Oever A H C, Kinetics of organic compound removal from waste gases with a biological filter[J]. Biotechnology and Bioengineering, 1983, 25 (12): 3089-3102
    [97] Jennings P A, Snoeyink J S, and Chian E S K. Theoretical model for a submerged biological filter[J]. Biotechnology and Bioengineering, 1976, 18: 1249
    [98] Shareefdeen Z, Baltzis B C, Young-Sook O, Richard B, Biofiltration of Methanol Vapor[J]. Biotechnology and Bioengineering, 1993, 41: 512-524
    [99] Deshusses M A, Hamer G, et al. Behavior of biofilters for waste air biotreatment Dynamic model development[J]. Environmental Science Technology, 1995, 29 (4): 1048
    [100] Devinny J S, Deshusses M A, Webster T S. Biofiltration for Air Pollution Control[M]. Boca Raton, Fla: Lewis, 1999: 165-299
    [101] Hodge D S and Devinny J S, Modeling removal of air contaminants by biofiltration[J]. Journal Environment Engineering, 1994, 121 (1): 21
    [102]孙佩石,黄兵,黄若华.生物法净化挥发性有机废气的吸附-生物膜理论模型与模拟研究[J].环境科学, 2002, 23(3): 14-1
    [125] Awad H H, Stanbury D M. Autoxidation of NO in aqueous solution[J]. International Journal of Chemical Kinetics, 1993, 25: 375-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700