功能化有机场效应管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机场效应管(OFET)以其低成本且可大批量生产、制作工艺简单、机械柔性、重量轻、可大面积化及化学稳定性等优点,使得它在开关、智能卡、传感器、环形振荡器、平板显示、鉴别标签及集成电路等领域具有潜力的应用,引起了极大的关注。经过二十几年的发展,OFET已经取得了巨大的进展,成为重要的电子器件之一。在OFET中,双极性OFET由于其适用于有机集成电路(ICs)中的互补电路和实现场效应与光发射集成于一体的有机光发射场效应晶体管,成为近几年的研究目标。因此功能化的OFET逐渐提上日程。
     本论文首先综述了有机电子学器件中OFET近20年的发展历史、应用及研究意义,讨论了OFET目前研究中存在的问题与发展趋势。总结了OFET器件的基本结构及有机半导体材料、栅绝缘层材料、电极材料等OFET常用的基本材料。阐述了OFET的工作原理及其界面接触理论,然后总结了提高OFET器件性能的一些方法。
     针对目前OFET的研究现状和存在的一些问题,以OFET为研究对象,从选材入手,制备了基于聚合物栅绝缘层的并五苯OFET、基于并五苯与C60异质结的双极性OFET和基于铝电极单一并五苯有源层的类双极性OFET等器件。
     本论文的主要研究工作有以下几个方面:
     (1)以聚合物材料聚甲基丙烯酸甲酯(PMMA)和聚酰亚胺(Polyimide)分别作为栅绝缘层,高迁移率并五苯为有源层材料,低成本的铝为源漏电极,ITO作为栅电极,制备了OFET器件,器件具有典型的P-沟道传输特性。另外,制备了基于不同厚度的PMMA栅绝缘层的并五苯OFET器件。研究了绝缘层厚度对器件性能的影响,并分析了半导体与绝缘层界面偶极子效应对器件性能的影响。
     (2)制备了基于C60与并五苯异质结的双极性OFET,其中C60作为N-沟道材料,高迁移率的并五苯作为P-沟道材料和C60的保护层,PMMA作为栅绝缘层,低成本的铝作为源漏电极。空穴和电子迁移率分别达到1.0877×10-1cm2/V·s和1.6186×10-2cm2/V·s。双极性OFET成为功能化OFET的重要组成部分。
     (3)制备了基于单一并五苯有源层的类双极性OFET。通过一些理论分析证明了该实验方案的可行性。在硅衬底的SiO2绝缘层上旋涂表面能与并五苯相匹配的无氢氧基的PMMA作为栅绝缘层的修饰层,有助于并五苯晶粒的生长,降低了电子在其界面的陷阱,选择功函数位于并五苯LUMO与HOMO能级之间的Al作为源漏电极有利于实现双极性电荷传输,从而为低成本功能化OFET奠定了基础。
Organic field effect transistors(OFET)have attracted great attention for potential application in basic switching elements, smart cards, sensing devices, ring-oscillators, ?at panel displays, identification tags and integrated circuit, due to their low cost processing, facile procedure, mechanical ?exibility, lightweight, large-area and chemical stability. By the development of over the last two decades, considerable improvements have been achieved. OFET becomes one of the most important electronical devices. Among the OFET devices, ambipolar OFET have become research targets since they are potentially available for complementary circuits in organic integrated circuits and organic light-emitting field effect transistors, which could achieve the function of field-effect and light emitting. Thus functional OFET are put on the agenda.
     Firstly, the evolution history in the latest two decades, application and research significance of OFET was summarized. The existing problem and developmental trends of OFET were discussed. Secondly, the basic structure and commonly used materials, such as organic semiconductor material, gate insulating layer material and electrode material of OFET were summarized. The principle and interface contact theory of OFET was studied in detail. Then some methods of improving performance of OFET were described.
     According to the research status and some existing issues of OFET, taking OFET as the object of study, pentacene OFET based on polymer gate insulator and ambipolar OFET based on a pentacene/C60 heterojunction were fabricated, respectively. Finally, quasi-ambipolar OFET based on aluminum electrode and single pentacene active layer were fabricated.
     The major work is summarized as follows:
     (1) Pentacene OFET based on PMMA and Polyimide gate dielectrics have been fabricated on ITO-coated glass substrate using ITO as gate electrode, respectively. Aluminum is using as source and drain electrodes. The devices exhibit typical P-channel characteristics. In addition, pentacene-based OFET using various thickness PMMA gate dielectrics are fabricated. The interface properties between gate insulator and pentacene active layer and the effects of the insulator thickness on the performance of the devices have been investigated, respectively.
     (2) Ambipolar OFET with a heterostructure of pentacene/C60 have been fabricated, in which the C60 layer functions as an n-type channel, while the pentacene layer functions as both a p-type channel and a sealing capsule for the C60 layer. PMMA is employed as gate insulating layer and low-cost Al is used as S/D electrodes. The ambipolar OFET, operating in an ambient atmosphere, exhibit a hole mobility of 1.0877×10-1cm2/V·s in the p-type operation and an electron mobility of 1.6186×10-2cm2/V·s in the n-type operation. Ambipolar OFET is the important part of functional OFET.
     (3) Single pentacene active layer-based quasi-ambipolar OFET have been fabricated. Firstly, the feasibility of the experimental program is confirmed by theoretical analysis. A thin PMMA-modified layer is spin-coated on SiO2 gate dielectric. The presence of ambipolar behavior is attributed to the relatively small surface energy on the PMMA-modified SiO2 gate dielectric as compared to that on the bare SiO2 surface. Thus the enhanced grain growth of pentacene takes place and hence reduce grain boundary density. Al is used as S/D electrodes, which possess a suitable work function to balance the hole and electron injection into the highest occupied and the lowest unoccupied molecular orbitals of pentacene, which lay the foundation for functional OFET.
引文
[1] X. -H. Zhang, B. Kippelen, Low-voltage C60 organic field-effect transistors with high mobility and low contact resistance[J]. Appl. Phys. Lett. 2008, 93(13): 133305.
    [2] Masatoshi Kitamura, Yasuhiko Arakawa, Pentacene-based organic field-effect transistors[J]. J. Phys.: Condens. Matter. 2008, 20(18): 184011.
    [3] Jér?me Cornil, Jean-Luc Brédas, Jana Zaumseil, et al. Ambipolar Transport in Organic Conjugated Materials[J]. Adv. Mater. 2007, 19(14): 1791–1799.
    [4] Rongbin Ye, Mamoru Baba, Kazunori Suzuki, et al. Improved performance of ?uorinated copper phthalocyanine thin film transistors using an organic pn junction: Effect of copper phthalocyanine film thickness[J]. Thin Solid Films. 2009, 517(9): 3001–3004.
    [5] Zhou L S, All-organic active matrix flexible display[J]. Appl. Phys. Lett. 2006, 88(8): 083502.
    [6] Suzuhi T, Flat panel displays for ubiquitous product applications and related impurity doping technologies[J]. J. Appl. Phys. 2006, 99(11): 111101.
    [7] Kim Y H, Organic thin film transistor-driven liquid crystal display on flexible polymer substrate[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes&Review Papers. 2004, 43(6): 3605–3608.
    [8] Tsumura A, Koezuka H, Ando T. Field-effect transistor with a polythiophene thin film[J]. Appl. Phys. Lett. 1986, 49(18): 1210–1212.
    [9] Gamier E, Hajlaoui R, Yassar A. All-polymer field-effect transistor realized by printing techniques[J]. Science. 1994, 256(5179): 1684–1686.
    [10] R. C. Haddon, A. S. Perel, R. C. Morris, et al. C60 thin film transistor[J]. Appl. Phys.Lett. 1995, 67(1): 121–123.
    [11] Laquindanum J G, Katz H E, Morphological Origin of Higll Mobility in Pentacene Thin-Film Transistors[J]. Chem. Mater. 1996, 8(11): 2542–2544.
    [12] Lin Y Y, Gundlach D J, Nelson S E, Stacked Pentacene layer organic thin-film transistor with Improved characteristics[J]. IEEE Electron. Device Lett. 1997, 18(12): 606–608.
    [13] DodabalaPur A, Bao Z, Organic smart pixels[J]. Appl. Phys. Lett. 1998, 73(2): 142–144.
    [14] Bao Z, Lovinger A J, Brown J, New Air-Stable n-Channel Organic Thin Film Transistors[J]. Am. Chem. Soc. 1998, 120(1): 207–208.
    [15] Gundlach D J, Kuo C C, Nelson S F, et al. High-mobility low-voltage organic thilm transistors[J]. IEEE Electron. Device Lett. 1999, 99(9): 111–114.
    [16] J. H. Sch..o n, A. Dodabalapur, Ch. Kloc, et al. A Light-Emitting Field-Effect Transistor[J]. Science. 2000, 290(3): 963–965.
    [17] X. Linda Chen, Andrew J. Lovinger, Zhenan Bao, et al. Morphological and Transistor Studies of Organic Molecular Semiconductors with Anisotropic Electrical Characteristics[J]. Chem. Mater. 2001, 13(4): 1341-1348.
    [18] Seong Hyun Kim, Yong Suk Yang, Jung Hun Lee,et al. Organic field-e?ect transistors using perylene[J]. Optical Materials. 2002, 21(02): 439–443.
    [19] Jianfeng Yuan, Jian Zhang, Jun Wang, et al. Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes[J]. Appl. Phys. Lett. 2003, 82(22): 3967–3969.
    [20] Marcus Ahles, Roland Schmechel, and Heinz von Seggern. N-type organic field-effect transistor based on interface-doped pentacene[J]. Appl. Phys. Lett. 2004, 85(19): 4499–4501.
    [21] van Woudenbergh T, Wildeman J, Blom P W M, Charge injection across a Polymeric heterojunction[J]. Phys. Rev. B. 2005, 71(20): 205216.
    [22] Chu C W, Li S H, Yang Y, High-Performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Appl. Phys. Lett. 2005, 87(19): 193508.
    [23] Cui T, Liang G, Dual-Gate Pentacene Field-Effect Transistors Based on a Nano-Assembled SiO2 nanoparticle Thin Film as the Gate Dielectric Layer[J]. Appl. Phys. Lett. 2005, 86(6): 64102.
    [24] H E A Huitema, G H Gelinck, J B P H van der Putten, et al. Active-Matrix Displays Driven by Solution-Processed Polymeric Transistors[J]. Adv. Mater. 2002, 14(17): 1201–1204.
    [25] B. Crone, A. Dodabalapur, Y. Y. Lin, et al. Large-scale complementary integrated circuits based on organic transistors[J]. Nature. 2000, 403(6769): 521–523.
    [26] C. D. Dimitrakopoulos, P. R. L. Malenfant, Organic Thin Film Transistors for Large Area Electronics[J]. Adv. Mater. 2002, 14(2): 99–117.
    [27] A. Dodabalapur, H. E. Katz, L. Torsi, et al. Organic heterostructure field-effect transistors[J]. Science. 1995, 269(5230): 1560–1562.
    [28] Haibo Wang, Jun Wang, Xuanjun Yan, et al. Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport[J]. Appl. Phys. Lett. 2006, 88(13): 133508.
    [29] X. H. Zhang, B. Domercq, B. Kippelen, High-performance and electrically stable C60 organic field-effect transistors[J]. Appl. Phys. Lett. 2007, 91(9): 092114.
    [30] Rongbin Ye, Mamoru Baba, Kazunori Suzuki, et al. Fabrication of highly air-stable ambipolar thin-film transistors with organic heterostructure of F16CuPc and DH-α6T[J]. Solid-State Electronics. 2008, 52(1): 60–62.
    [31] Hu Yan, Tsubasa Kagata, Hidenori Okuzaki, Ambipolar pentacene/C60-based field-effect transistors with high hole and electron mobilities in ambient atmosphere[J]. Appl. Phys. Lett. 2009, 94(2): 023305.
    [32] Kim F S, Guo X G, Watson M D, et al. High-mobility Ambipolar Transistors and High-gain Inverters from a Donor-Acceptor Copolymer Semiconductor[J]. Adv. Mater. 2010, 22(4): 478–482.
    [33] Kazuhiko Yamane, Hisao Yanagi, Ambipolar organic light emitting field effect transistors with modified asymmetric electrodes[J]. Appl. Phys. Lett. 2007, 90(16): 162108.
    [34] Tomo Sakanoue, Masayuki Yahiro, Chihaya Adachi, et al. Ambipolar light-emitting organic field-effect transistors using a wide-band-gap blue-emitting small molecule[J]. Appl. Phys. Lett. 2007, 90(17): 171118.
    [35] R. C. G. Naber, M. Bird, H. Sirringhaus, A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors[J]. Appl. Phys. Lett. 2008, 93(2): 023301.
    [36] Martin Schidleja, Christian Melzer, Heinz von Seggern. Electroluminescence from a pentacene based ambipolar organic field-effect transistor[J]. Appl. Phys. Lett. 2009, 94(12): 123307.
    [37] Hoon-Seok Seo, Ying Zhang, Min-Jun An, et al. Fabrication and characterization of air-stable, ambipolar heterojunction-based organic light-emitting field-effect transistors[J]. Organic Electronics. 2009, 10(7): 1293–1299.
    [38] Jana Zaumseil, Richard H. Friend, Henning Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor[J]. Nature Materials. 2006, 5(1): 69–74.
    [39] Ebinazar B. Namdas, Ifor D. W. Samuel, Deepak Shukla, et al. Organic light emitting complementary inverters[J]. Appl. Phys. Lett. 2010, 96(4): 043304.
    [40] Rogers J A, Bao Z, Balduin K, et al. Recent progress in plastic electronics[J]. Proceedings of National Academy of Sciences. 2001, 98: 4835–4839.
    [41] Drury C J, Mutsaers C M J, Hart C M, et al. Low-cost all polymer integrated circuits[J]. Appl Phys Lett. 1998, 73(1): 108–110.
    [42] Ahles M, Schmechel R, Seggern H V, N-type organic field-effect transistor based on interface-doped pentacene[J]. Appl. Phys. Lett. 2004, 85(19): 4499–4451.
    [43] Chua L L, Zaumseil J, Chang J F, et al. General observation of n-type field-effect behaviour in organic Semiconductors[J]. Nature. 2005, 434(7030): 194–199.
    [44] Antonio Facchetti, Semiconductors for organic transistors[J]. Materials Today. 2007, 10(3): 28–37.
    [45] Chong-an Di, Yun-qi Liu, Gui Yu, et al. Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors[J]. Accounts Of Chemical Research. 2009, 42(10): 1573-1583.
    [46] Tang C. W, VanSlyke S. A, Organic electroluminescent diodes[J]. Appl. Phys. Lett. 1987, 51(12): 913–915.
    [47] Kim J. Y, Lee K, Coates N. E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science. 2007, 317(5835): 222-225.
    [48] Meijer E. J, De Leeuw D. M, Setayesh S, et al. Solution-processed ambipolar organic field-effect transistors and inverters[J]. Nat. Mater. 2003, 2(10): 678–682.
    [49] Rost C, Karg S, Riess W, et al. Ambipolar Light emitting organic field-effect transistor[J]. Appl. Phys. Lett. 2004, 85(9): 1613–1615.
    [50] Chu C. W, Li S. H, Chen C. W, et al. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Appl. Phys. Lett. 2005, 87(19): 193508.
    [51] Chen F. C, Kung L. J, Chen T. H, et al. Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors[J]. Appl. Phys. Lett. 2007, 90(7): 073504.
    [52] Gundlach D. J, Royer J. E, Park S. K, et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits[J]. Nat. Mater. 2008, 7(3): 216–221.
    [53] Wen Y. G, Liu Y. Q, Di C. A, et al. Improvements in stability and performance of N, N′-dialkyl perylene diimide-based n-type thin-film transistors[J]. Adv. Mater. 2009, 21(16): 1631–1635.
    [54] I. Manunza, A. Bonfiglio, Pressure sensing using a completely ?exible organic transistor[J]. Biosensors and Bioelectronics. 2007, 22: 2775–2779.
    [55] Y. C. Hu, G. F. Dong, L. D. Wang, et al. Organic Light-Emitting Diodes Driven by Organic Transistors[J]. Chin. Phys. Lett. 2004, 21(4): 723–725.
    [56] P. Liu, Y. L. Wu, Y. N. Li, et al. Enabling Gate Dielectric Design for All Solution-Processed, High-Performance, Flexible Organic Thin-Film Transistors[J]. J. Am. Chem. Soc. 2006, 128(14): 4554–4555.
    [57] C. A. Di, G. Yu, Y. Q. Liu, et al. High-Performance Organic Field-Effect Transistors with Low-Cost Copper Electrodes[J]. Adv. Mater. 2008, 20(7): 1286–1290.
    [58] H. Klauk, M. Halik, U. Zscieschang, et al. High-mobility polymer gate dielectric pentacene thin film transistors[J]. J. Appl. Phys. 2002, 92(9): 5259–5263.
    [59] S. Lee, B. Koo, J. Shin, et al. Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance[J]. Appl. Phys. Lett. 2006, 88(16): 162109.
    [60] W. Y. Chou, C. W. Kuo, H. L. Cheng, et al. Effect of surface free energy in gate dielectric in pentacene thin-film transistors[J]. Appl. Phys. Lett. 2006, 89(11): 112126.
    [61] M. Halik, H. Klauk, U. Zschieschang, et al. Low-voltage organic transistors with an amorphous molecular gate dielectric[J]. Nature(London). 2004, 431(7011): 963–966.
    [62] Y. Yang, S. H. Kim, K. Shin, et al. Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics[J]. Appl. Phys. Lett. 2006, 88(17): 173507.
    [63] J. Veres, S. Ogier, G. Lloyd, et al. Gate Insulators in Organic Field-Effect Transistors[J]. Chem. Mater. 2004, 16(23): 4543–4555.
    [64] S. Scheinert, G. Paasch, M. Schrodner, et al. Subthreshold characteristics of field effect transistors based on poly(3-dodecylthiophene) and an organic insulator[J]. J. Appl. Phys. 2002, 92(1): 330–337.
    [65] H. Klauk, M. Halik, U. Zschieschang, et al. Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates[J]. Appl. Phys. Lett. 2003, 82(23): 4175–4177.
    [66] G. Horowitz, F. Deloffre, F. Garnier, et al. All-organic field-effect transistors made of PI-conjugated oligomers and polymeric insulators[J]. Synth. Met. 1993, 54(1-3): 435–445.
    [67] R. Schroeder, L. A. Majewski, M. Grell, Improving organic transistor performance with Schottky contacts[J]. Appl. Phys. Lett. 2004, 84(6): 1004–1006.
    [68] C. A. Lee, D. W. Park, S. H. Jin, et al. Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly(vinyl alcohol) gate insulator[J]. Appl. Phys. Lett. 2006, 88(25): 252102.
    [69] C. D. Sheraw, D. J. Gundlach, T. N. Jackson, Spin-on polymer gate dielectric for high performance organic thin film transistors[J]. Mater. Res. Soc. Symp. Proc. 2000, 558: 403–408.
    [70] S. M. Pyo, J. K. Choi, Y. N. Oh, et al. Effect of surface-modified polyimide gate insulator through hybridization on the performance of organic thin-film transistors[J]. Appl. Phys. Lett. 2006, 88(17): 173501.
    [71] S. M. Pyo, M. Y. Lee, J. H. Jeon, et al. An Organic Thin-Film Transistor with a Photoinitiator-Free Photosensitive Polyimide as Gate Insulator[J]. Adv. Funct. Mater. 2005, 15(4): 619–626.
    [72] Taek Ahn, Yoojeong Choi, Hyun Min Jung, et al. Fully aromatic polyimide gate insulators with low temperature processability for pentacene organic thin-film transistors[J]. Organic Electronics. 2009, 10(1): 12–17.
    [73] Youngjun Yun, Christopher Pearson, Michael C. Petty, Pentacene thin film transistors with a poly(methyl methacrylate) gate dielectric: Optimization of device performance[J]. J. Appl. Phys. 2009, 105(3): 034508.
    [74] Tsung-Syun Huang, Yan-Kuin Su, Po-Cheng Wang, Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer[J]. Appl. Phys. Lett. 2007, 91(9): 092116.
    [75] Feng Yan, Yi Hong, Helen L. W. Chan, Measurement of ultralow injection current to polymethyl-methacrylate film[J]. Appl. Phys. Lett. 2008, 92(24): 243301.
    [76] H. Klauk, M. Halik, U. Zdchieschang, et al. High-mobility polymer gate dielectric pentacene thin film transistors[J]. J. Appl. Phys. 2002, 92(9): 5259–5263.
    [77] H. Sirringhaus, T. Kawase, R. H. Friend, et al. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science. 2000, 290(5499): 2123–2126.
    [78] G. H. Gelinck, T. C. T. Geuns, D. M. de Leeuw, High-performance all-polymer integrated circuits[J]. Appl. Phys. Lett. 2000, 77(10): 1487–1489.
    [79] T. Kawase, H. Sirringhaus, R. H. Friend, et al. Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits [J]. Adv. Mater. 2001, 13(21): 1601–1605.
    [80] K. Jain, M. Klosner, M. Zemel, et al. Flexible electronics and displays: High-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production[J]. Proc. IEEE. 2005, 93(8): 1500–1510.
    [81] Y. Noguchi, T. Sekitani, T. Someya, Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers[J]. Appl. Phys. Lett. 2006, 89(25): 253507.
    [82] J. A Cheng, C. S chuang, M. N Chang, et al. Controllable carrier density of pentacene field-effect transistors using polyacrylates as gate dielectrics[J]. Organic Electronics. 2008, 9(6): 1069–1075.
    [83] P. V. Necliudov, M. S. Shur, D. J. Gundlach, et al. Modeling of organic thin film transistors of different designs[J]. J. Appl. Phys. 2000, 88(11): 6594–6597.
    [84] K. Seshadri, C. D. Frisbie, Potentiometry of an operating organic semiconductor field-effect transistor[J]. Appl. Phys. Lett. 2001, 78(7): 993–995.
    [85] G. Horowitz, Field-effect transistors based on short organic molecules[J]. J. Mater. Chem. 1999, 9(9): 2021–2026.
    [86] C. D. Dimitrakopoulos, D. J. Mascaro, Organic thin-film transistors: A review of recent advances [J]. IBM J. Res. Dev. 2001, 45(1) : 11–27.
    [87] Dhananjay, Chun-Wei Ou, Chuan-Yi Yang, et al. Ambipolar transport behavior in In2O3/pentacene hybrid heterostructure and their complementary circuits[J]. Appl. Phys. Lett. 2008, 93(3): 033306.
    [88] Qingshuo Wei, Keisuke Tajima, Kazuhito Hashimoto. Bilayer Ambipolar Organic Thin-Film Transistors and Inverters Prepared by the Contact-Film-Transfer Method[J]. Applied materials & interfaces. 2009, 1(9): 1865–1868.
    [89] K. Tada, H. Harada, and K. Yoshino, Polymeric bipolar thin-film transistor utilizing conducting polymer containing electron transport dye[J]. J. J. Appl. Phys. 1996, 35(7B): L944–L946.
    [90] Wataru Takashima, Tsutomu Murasaki, Shuichi Nagamatsu, et al. Unipolarization of ambipolar organic field effect transistors toward high-impedance complementary metal-oxide-semiconductor circuits[J]. Appl. Phys. Lett. 2007, 91(7): 071905.
    [91] K. Itaka, M. Yamashiro, J. Yamaguchi, et al. High-Mobility C60 Field-Effect Transistors Fabricated on Molecular- Wetting Controlled Substrates[J]. Adv. Mater. 2006, 18(13): 1713–1716.
    [92] E. Kuwahara, Y. Kubozono, and T. Hosokawa, Fabrication of ambipolar field-effect transistor device with heterostructure of C60 and pentacene[J]. Appl. Phys. Lett. 2004, 85(20): 4765–4767.
    [93] P. Cosseddu, A. Bonfiglio, I. Salzmann, et al. Ambipolar transport in transparent and flexible all-organic heterojunction field effect transistors at ambient conditions[J]. Organic Electronics. 2008, 9(2): 191–197.
    [94] J. Cornil, J.-L. Bredas, J. Zaumseil, et al. Ambipolar Transport in Organic Conjugated Materials[J]. Adv. Mater. 2007, 19(14): 1791–1799.
    [95] J. R. Ostrick, A. Dodabalapur, L. Torsi, et al. Conductivity-type anisotropy in molecular solids[J]. J. Appl. Phys. 1997, 81(10): 6804–6808.
    [96] J. Zaumseil, H. Sirringhaus, Electron and Ambipolar Transport in Organic Field-Effect Transistors[J]. Chem. Rev. 2007, 107(4): 1296–1323.
    [97] T. D. Anthopoulos, G. C. Anyfantis, G. C. Papavassiliou, et al. Air-stable ambipolar organic transistors[J]. Appl. Phys. Lett. 2007, 90(12): 122105.
    [98] B. A. Jones, A. Facchetti, M. R. Wasielewski, et al. Tuning Orbital Energetics in Arylene Diimide Semiconductors. Materials Design for Ambient Stability of n-Type Charge Transport[J]. J. Am. Chem. Soc. 2007, 129(49): 15259–15278.
    [99] Chih-Wei Chu, Chao-Feng Sung, Yuh-Zheng Lee, et al. Improved performance in n-channel organic thin film transistors by nanoscale interface modification[J]. Organic Electronics. 2008, 9(2): 262–266.
    [100] T. Yasuda, T. Goto, K. Fujita, T. Tsutsui, Ambipolar pentacene field-effect transistors with calcium source-drain electrodes[J]. Appl. Phys. Lett. 2004, 85(11): 2098–2100.
    [101] T.-F. Guo, Z.-J. Tsai, S.-Y. Chen, et al. Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors[J]. J. Appl. Phys. 2007, 101(12): 124505.
    [102] Th.B. Singh, F.Meghdadi, S. Günes, et al. High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric[J]. Adv. Mater. 2005, 17(19): 2315–2320.
    [103] C.-Y. Yang, S.-S. Cheng, C.-W.Ou, et al, et al. Realization of ambipolar pentacene thin film transistors through dual interfacial engineering[J]. J. Appl. Phys. 2008, 103(9): 094519.
    [104] T. Sakanoue, M. Yahiro, C. Adachi, et al. Electrical characteristics of single-component ambipolar organic field-effect transistors and effects of air exposure on them[J]. J. Appl. Phys. 2008, 103(9): 094509.
    [105] T. Takahashi, T. Takenobu, J. Takeya, et al. Ambipolar organic field-effect transistors based on rubrene single crystals[J]. Appl. Phys. Lett. 2006, 88(3): 033505.
    [106] S. Takebayashi, S. Abe, K. Saiki, K. Ueno, Origin of the ambipolar operation of a pentacene field-effect transistor fabricated on a poly(vinyl alcohol)-coated Ta2O5 gate dielectric with Au source/drain electrodes[J]. Appl. Phys. Lett. 2009, 94(8): 083305.
    [107] T. F. Guo, Z. J. Tsai, S. Y. Chen, et al. In?uence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors[J]. J. Appl. Phys. 2007, 101(12): 124505.
    [108] T. B. Singh, F. Meghdadi, S. Günes, et al. High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric[J]. Adv. Mater. (Weinheim, Ger.) 2005, 17(19): 2315–2320.
    [109] N. Benson, M. Schidleja, C. Melzer, et al. Complementary organic field effect transistors by ultraviolet dielectric interface modification[J]. Appl. Phys. Lett. 2006, 89(18): 182105.
    [110] Kei Noda, Shinji Tanida, Hiroshi Kawabata, et al. N-channel operation of pentacene thin-film transistors with ultrathin polymer gate buffer layer[J]. Synthetic Metals. 2010, 160(1-2): 83–87.
    [111] A Nollau, M. Pffeifer, T. Fritz, et al. Controlled n-type doping of a molecular organic semiconductor: Naphthalene tetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio) -tetrathiafulvalene (BEDT-TTF)[J]. J. Appl. Phys. 2000, 87(9):4340–4343.
    [112] Samarendra P. Singh, Alan Sellinger, Ananth Dodabalapur,Electron transport in copper phthalocyanines[J]. J. Appl. Phys. 2010, 107(4): 044509.
    [113] S. Tanida, K. Noda, H. Kawabata, et al. N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer[J]. Thin Solid Films. 2009, 518(2): 571–574.
    [114] Eiji Kuwahara, Haruka Kusai, Takayuki Nagano, et al. Fabrication of a logic gate circuit based on ambipolar field-e?ect transistors with thin films of C60 and pentacene[J]. Chemical Physics Letters. 2005, 413(4–6): 379–383.
    [115] M. Kitamura Y. Arakawa, Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates[J]. Appl. Phys. Lett. 2007, 91(5): 053505.
    [116] J. Shi, H. Wang, D. Song, et al. n-Channel, Ambipolar, and p-Channel Organic Heterojunction Transistors Fabricated with Various Film Morphologies[J]. Adv. Funct. Mater. 2007, 17(3): 397–400.
    [117] S. Cho, J. Yuen, J. Y. Kim, et al. Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene[J]. Appl. Phys. Lett. 2006, 89(15): 153505.
    [118] H. Klauk, M. Halik, U. Zschieschang, et al. Flexible organic complementary circuits[J]. IEEE Trans. Electron Devices. 2005, 52(4): 618–622.
    [119] D. J. Gundlach, K. P. Pernstich, G. Wilckens, et al. High mobility n-channel organic thin-film transistors and complementary inverters[J]. J. Appl. Phys. 2005, 98(6): 064502.
    [120] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, et al. Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors[J]. Appl. Phys. Lett. 2004, 85(18): 4205–4207.
    [121] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, et al. Organic inverter circuits employing ambipolar pentacene field-effect transistors[J]. Appl. Phys. Lett. 2006, 89(3): 033512.
    [122] W. Y. Chou, C. W. Kuo, H. L. Cheng, et al. Effects of edge dislocations and intentional Si doping on the electron mobility of n-type GaN films[J]. Appl. Phys. Lett. 2006, 89(11): 112126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700