位错芯区结构及杂质-位错相互作用的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于密度泛函理论,本文对位错芯区结构和杂质-位错相互作用进行了理论研究。
    利用第一原理总能计算,首次在 Peierls-Nabarro 框架下研究了量子力学自旋效应和广义梯度近似修正对体心立方结构铁中广义堆垛能以及刃位错芯区结构和性质的影响。计算结果表明,滑移系的广义堆垛能敏感于体系的自旋状态,因而对广义堆垛能的计算需要考虑与磁性相关的自旋效应;对滑移系[1-11](110),仅在包含自旋的情况下可以给出合理的广义堆垛能曲线。与非自旋极化的计算相比,自旋极化的计算给出了较窄的位错芯区、较高的不稳定堆垛能和较大的最大原子回复应力。
    利用第一原理 DMol 方法,研究了体心立方结构铁中[100](010)刃位错芯区间隙型碳掺杂的择优占位、能量学和掺杂电子结构。计算发现,在位错芯区,电荷密度呈现不均匀分布;芯区 Fe 原子的局域态密度在 Fermi 能级附近出现明显劈裂;C 原子与近邻 Fe 原子成键,且杂化主要来自 C 的 2p 轨道和 Fe 的 3d轨道。能量学计算表明,与压缩区相比,C 原子更倾向于进入位错的扩张区和芯区中心,位错芯区中心对 C 原子表现出捕获效应,因而可形成碳-位错复合体。
    利用第一原理计算,研究了 B2 结构 FeAl 中轻杂质 B、C、N、O、P 和 S与刃位错的相互作用以及掺杂效应,通过将杂质与位错的相互作用分解为原子尺寸不匹配相关的力学效应和电子结构相关的化学效应,分析了这两种效应对杂质-位错相互作用的影响,并与经典理论进行了对比。
    基于实验观测结果,研究了 B 在 FeAl [100](010)刃位错芯区的偏聚,讨论了影响 B 偏聚的可能因素。B 的 Cottrell 气团出现在位错压缩区且伴有 Al 减少的实验现象不能归结为简单的 B 替换 Al 或间隙式 B 原子掺杂。计算表明,存在如下几种可能的偏聚机制:B 在位错芯区的扩张区以间隙原子形式存在,与经典的 Cottrell 理论预期相符;同时,B 间隙原子借助于 B 替位能够在压缩区和位错线形成聚集态;B 原子倾向于与空位形成复合体而向位错线偏聚。
Based on density functional theory, the dislocation core structure and theimpurity-dislocation interactions are theoretically investigated in thisdissertation.
    The effects of spin polarization and generalized gradient corrections onthe generalized stacking-fault (GSF) energies and the edge dislocationproperties in bcc Fe are firstly studied by using the first-principles totalenergy calculations within the framework of Peierls-Nabarro model. Ourcalculation shows that the GSF energy is sensitive to the spin state of thesystem and only spin-polarized calculations can give a reasonable GSF energyfor the [1-11](110) slip system. Hence, it is crucial to include thespin-polarization for calculating the GSF energies in bcc Fe. We demonstratethat the spin-polarized calculations give a narrower dislocation core width,higher unstable stacking fault energy, and larger maximum restoring stress, ascompared with the non-spin-polarized calculations.
    Using the first-principles real-space DMol method, we have investigatedthe site preferences, energetics, and doping effects of interstitial carbon in thebcc Fe [100](010) edge dislocation core. It is found that: (i) aninhomogeneous electron density distribution occurs in the dislocation coreregion;(ii) an evident splitting of the local densities of states near the Fermienergy can be identified for the Fe atoms in the dislocation core;(iii) thehybridization between C and Fe mainly comes from C-2p and Fe-3d orbitals.Energetic calculations show that C prefers to segregate to the expansionregion and the center in the dislocation core. The strongest trapping effectappears at the dislocation core center, indicating the formation ofC-dislocation complex.
    The interactions of light impurities B, C, N, O, P, and S with [100](010)edge dislocation in B2-ordered FeAl as well as their doping effects are studied
    in detail. The impurity-dislocation interaction is attributed to two parts: themechanical effect which is correlated with atomic size misfit, and thechemical effect which is related to the electronic bonding. The underlyingfactors governing the impurity-dislocation interactions are analyzed.The segregation of boron to [100](010) edge dislocation core inB2-ordered FeAl is studied through the first-principles total energycalculations. Several possible microscopic mechanisms are initially proposedaccording to the experimental observations. We demonstrate that the observedboron Cottrell atmosphere accompanied with large Al depletion in thecompressed region of dislocation core can not be ascribed to the singlesubstitution of boron for Al or simple interstitial states. Instead, ourcalculation results suggest that: (i) boron can segregate to the dilated region asinterstitials, which is consistent with the classical Cottrell theory;(ii) theboron interstitials possibly cluster together via the bridges of B substitution(for Al) both along the dislocation line and in the compressed regions, and (iii)boron and vacancy tend to form boron-vacancy complex and segregate to thedislocation line.
引文
[1] Frenkel J. Zur theorie der elastizitatsgrenze und der festigkeit kristallinischer korper. Z. Phys. 1926, 37: 572-609.
    [2] Volterra V. Sur l'équilibre des corps élastiques multiplement connexes. Annales scientifiques de l' école Normale Superieure. 1907, 24: 401-518.
    [3] Hirth J P and Lothe J. Theory of Dislocations (2nd ed.). New York: McGraw-Hill, 1982.
    [4] Taylor G I. The mechanism of plastic deformation of crystals. I-Theoretical. II—Comparison with observations. Proc. Roy. Soc. 1934, A145: 362-404.
    [5] Polanyi M. Z. Phys. 1934, 89: 660-664.
    [6] Orowan E. Z. Phys. 1934, 89: 634-659.
    [7] Burgers J M. Some Considerations on the Fields of Stress Connected with Dislocations in a Regular Crystal-Lattice. Proc. Kon. Ned. Akad. Wet. 1939, 42: 293-325, 378-399.
    [8] Kontorova TA and Frenkel Ya.I. On the theory of plastic deformation and twinning I. JETP. 1938, 8: 89-95, 1340-1348.
    [9] Peierls R. The Size of a Dislocation. Proc. Phys. Soc. London. 1940, 52: 34-37.
    [10] Nabarro F R N. Dislocations in a Simple Cubic Lattice. Proc. Phys. Soc. London 1947, 59: 256-72.
    [11] Cottrell A H. Effect of Solute Atoms on the Behaviour of Dislocations. In: Mott N F, eds. Report of a Conference on Strength of Solids. Bristol, 1947: 30-38. London: Physical Society, 1948;Cottrell A H and Bilby B A. Proc. Soc., London, Sect. A. 1949, 62: 49.
    [12] Heidenreich R D and Shockley W. Study of Slip in Aluminum Crystals by Electron Microscope and Electron Diffraction Methods. In: Mott N F, eds. Report of a Conference on Strength of Solids. Bristol. 1947. London: Physical Society, 1948. 57-75.
    [13] Hirsch P B, Horne RW, and Whelan M J. Direct observations of the arrangement and motion of dislocations in aluminium. Philos. Mag. 1956, 1: 677-684.
    [14] Vitek V. Structure of dislocation cores in metallic materials and its impact on their plastic behaviour. Progress in Materials Science, 1992, 36: 1-27.
    [15] Hirth J P. Some current topics in dislocation theory. Acta Mater. 2000, 48: 93-104.
    [16] Vitek V and Srolovitz D J, eds. Atomistic Simulation of Materials: Beyond Pair Potentials. New York: Plenum, 1989.
    [17] Caplson A E. In: Ehrenereich H and Turnbull D, eds. Solid State Physics. 1990, 43: 1.
    [18] Daw M S and Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 1983, 50: 1285-1288;Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 1984, 29: 6443-6453.
    [19] Finnis M W and Sinclair J E. A simple empirical N-body potential for transition metals. Philos Mag A, 1984, 50: 45-55;Erratum. 1986, 53: 161.
    [20] Ackland G J, Tichy G, Vitek V, and Finnis M W. Simple N-body potentials for the noble metals and nickel. Philos. Mag. A, 1987, 56: 735-756.
    [21] Johnson R A. Analytic nearest-neighbor model for fcc metals. Phys. Rev. B, 1988, 37: 3924-3931.
    [22] Ackland G J and Vitek V. Many-body potentials and atomic-scale relaxations in noble-metal alloys. Phys. Rev. B, 1990, 41: 10324-10333.
    [23] H?kkinen H, M?kinen S, and Manninen M. Edge dislocations in fcc metals: microscopic calculations of core structure and positron states in Al and Cu. Phys. Rev. B, 1990, 41: 12441-12453.
    [24] Huang J, Meyer M, and Pontikis V. Core structure of a dissociated easy-glide dislocation in copper investigated by molecular dynamics. Phys. Rev. B, 1990, 42: 5495-5504.
    [25] Kogure Y and Kosugi T. Simulation of dislocation dynamics in fcc metals. J. Phys. III, 1996, 6: C8-195.
    [26] Rasmussen T, Jacobsen K W, Leffers T, and Pedersen O B. Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper. Phys. Rev. B, 1997, 56: 2977- 2990.
    [27] Schroll R, Vitek V, and Gumbsch P. Core properties and motion of dislocation in NiAl. Acta Mater. 1998, 46: 903-918.
    [28] Panova J and Farkas D. Atomistic simulation of dislocation core configurations in TiAl. Philos. Mag. A, 1998, 78: 389-404.
    [29] Kohlhammer S, F?hnle M, and Schoeck G. The structure of [010] dislocations in Ni3Al. Scripta. Mater. 1998, 39: 359-363.
    [30] Farkas D and Rodriguez P L. Embedded atom study of dislocation core structure in Fe. Scripta Metall. Mater. 1994, 30: 921-925.
    [31] Farkas D, Schon C G, De Lima M S F, and Goldenstein H. Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys. Acta Mater. 1996, 44: 409-419.
    [32] Zhou S J, Preston D L, Lomdahl P S, et al. Large-scale molecular dynamics simulations of dislocation intersection in copper. Science, 1998, 279: 1525-1527.
    [33] Chang J, Cai W, Bulatov V V, and Yip S. Dislocation motion in BCC metals by molecular dynamics. Mater. Sci. Eng. 2001, A309-310: 160-163.
    [34] Ercolessi F and Adams J B. Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 1994, 26: 583-588.
    [35] Fang Q F, and Wang R. Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum. Phys. Rev. B, 2000, 62: 9317-9324.
    [36] Mei J and Davenport J W. Free-energy calculations and the melting point of Al. Phys. Rev. B, 1992, 46: 21-25.
    [37] Voter A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Phys. Rev. Lett. 1997, 78: 3908-3911.
    [38] Hohenberg P C and Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964, 136: B864-B871.
    [39] Kohn W and Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140: A1133-A1138.
    [40] Spence J C H, Kolar H R, Huang Y, et al. In: Materials Theory, Simulations and Parallel Algorithms, MRS Symposia Proceedings No. 408. Pittsburgh: Materials Research Society, 1996: 261.
    [41] Jones R, Umerski A, Sitch P, Heggie M I, and ?berg S. First-principles calculations of dislocations in semiconductors. Phys. Status Solidi A, 1993, 137: 389-399.
    [42] Nandedkar A S and Narayan J. Atomic structure of dislocations in silicon, germanium and diamond. Philos. Mag. A, 1990, 61: 873-891.
    [43] Lehto N and ?berg S. Effects of dislocation interactions: Application to the period-doubled core of the 90° partial in silicon. Phys. Rev. Lett. 1998, 80: 5568-5571.
    [44] Bigger J R K, McInnes D A, Sutton A P, et al. Atomic and electronic structures of the 90° partial dislocation in silicon. Phys. Rev. Lett. 1992, 69: 2224-2227.
    [45] Blase X, Lin K, Canning A, Louie S G, et al. Structure and energy of the 90° partial dislocation in diamond: a combined ab initio and elasticity theory analysis. Phys. Rev. Lett. 2000, 84: 5780-5783.
    [46] Ismail-Beigi S and Arias T A. Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in bcc transition metals. Phys. Rev. Lett. 2000, 84: 1499-1502.
    [47] Duesbery M S and Vitek V. Plastic anisotropy in bcc transition metals. Acta Mater. 1998, 46:1481-1492.
    [48] Rao S I, Hernandez C, Simmons J P, et al. Green's function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations. Philos. Mag. A 1998, 77: 231-256.
    [49] Woodward C and Rao S I. Flexible ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. Phys. Rev. Lett. 2002, 88: 216402-1~4.
    [50] Rao S I and Woodward C. Atomistic simulations of a / 2? 1 11? screw dislocations in bcc Mo using a modified generalized pseudopotential theory potential. Philos. Mag. A, 2001, 81:1317-1327.
    [51] Paxton A F. In: Pettifour D G and Cottrell A H, eds. Electron Theory in Alloy Design. London : Institute of Materials, 1992: 158.
    [52] Juan Y M and Kaxiras E. Generalized stacking fault energy surfaces and dislocation properties of silicon: a first-principles theoretical study. Philos. Mag. A, 1994, 74: 1367-1384.
    [53] Ehman J and F?hnle M. Generalized stacking-fault energies for TiAl: mechanical instability of the (111) antiphase boundary. Philos. Mag. A, 1998, 77: 701-714.
    [54] Jóos B, Ren Q, and Duesbery M S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Phys. Rev. B, 1994, 50: 5890-5898;Erratum. Phys. Rev. B, 1996, 53: 11882.
    [55] Schoeck G. The generalized Peierls-Nabarro model. Philos. Mag. A, 1994, 69: 1085-1095.
    [56] Schoeck G. The core energy of dislocations. Acta Metall. Mater. 1994, 43, 3679- 3684.
    [57] Schoeck G. The Peierls dislocation: Line energy, line tension, dissociation and deviation. Acta Metall. Mater. 1997, 45: 2579-2605.
    [58] Ren Q, Jóos B, and Duesbery M S. Test of the Peierls-Nabarro model for dislocations in silicon. Phys. Rev. B, 1995, 52: 13223–13228;Erratum. 1996, 53: 11883.
    [59] Medeveda N I, Mryasov O N, Gornostyrev Yu N, et al. First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl. Phys. Rev. B, 1996, 54: 13506-13514.
    [60] Bulatov V V and Kaxiras1 E. Semidiscrete variational Peierls framework for dislocation core properties. Phys. Rev. Lett. 1997, 78: 4221-4224.
    [61] Jóos B, and Duesbery M S. The Peierls stress of dislocations: an analytic formula. Phys. Rev. Lett. 1997, 78: 266-269.
    [62] Nabarro F R N. Theoretical and experimental estimates of the Peierls stress. Philos. Mag. A, 1997, 75: 703-711.
    [63] Schoeck G. The core structure of ? 001? dislocations in bcc metals. Philos. Mag. Lett. 1997, 76: 15-24;Deviations from Volterra dislocations. Philos. Mag. Lett. 1998, 77: 141-146.
    [64] Schoeck G. The ?1 00? dislocation in L12 ordered alloys. Mater. Sci. Eng. 1998, A241: 14-18.
    [65] Nabarro F R N. Fifty-year study of the Peierls-Nabarro stress. Mater. Sci. Eng. 1997, A234-236: 67-76.
    [66] Duesbery M S and Richardson G Y. The dislocation core in crystalline materials. CRC Crit. Rev. Solid State Mater. Sci. 1991, 17: 1-46.
    [67] Kaxiras E and Duesbery M S. Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition. Phys. Rev. Lett. 1993, 70: 3752-3755.
    [68] Hartford J, von Sydow B, Wahnstr?m G, and Lundqvist B I. Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles. Phys. Rev. B, 1998, 58: 2487-2495.
    [69] Mryasov O N, Gornostyrev Yu N, and Freeman A J. Generalized stacking-fault energetics and dislocation properties: Compact versus spread unit-dislocation structures in TiAl and CuAu. Phys. Rev. B, 1998, 58: 11927-11932.
    [70] Lu G, Kioussis N, Bulatov V V, and Kaxiras E. Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B, 2000, 62: 3099-3108.
    [71] Lu G, Kaxiras E. Can vacancies lubricate dislocation motion in aluminum? Phys. Rev. Lett. 2002, 89: 105501-1~4.
    [72] Myers S M, Baskes M I, Birnbaum H K, et al. Hydrogen interactions with defects in crystalline solids. Rev. Mod. Phys. 1992, 64(2): 559–617, and references therein.
    [73] Suzuki H. In: Nabarro F R N, eds. Dislocation in Solids. Netherland: North-Holland Publ. Co, 1979, Vol. 4, Chapter 15.
    [74] Abramov V O, and Abramov O V. Dokl. Acad. Nauk. SSSR, 1991, 318: 883.
    [75] Anokhin A O, Galperin M L, Gornostyrev Yu N, et al. The effect of electronic localized states at dislocations on the 'chemical' impurity-dislocation interaction. Philos. Mag. B, 1996, 73: 845-860.
    [76] Kontsevoi O Y, Gornostyrev Y N, Freeman A J, et al. Electronic mechanisms of impurity-dislocation interactions in intermetallics: NiAl. Phillos. Mag. Lett. 2001, 81: 455-463.
    [77] Vannarat S, Sluiter M H F, and Kawazoe Y. First-principles study of solute-dislocation interaction in aluminum-rich alloys. Phys. Rev. B, 2001, 64: 224203-1~8.
    [78] Feng Y Q, Wang C Y. Electronic effects of light impurities on edge dislocation motion in iron at T=0 K. Journal of Alloys and Compounds, 2000, 312: 219–227.
    [79] Niu Y, Wang S Y, Zhao D L, Wang C Y. The electronic effect of N impurity in an ?1 00? edge dislocation core system in alpha-iron. Comput. Mater. Sci. 2001, 22: 144-150.
    [80] Niu Y, Wang S Y, Zhao D L, et al. The electronic effect in the ?1 00? edge dislocation core system with a carbon atom in alpha-iron: a first-principles study. J. Phys.: Condens. Matter. 2001, 13: 4267-4276.
    [81] Wilde J, Cerezo A, and Smith G D W. Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron. Scripta Mater. 2000, 43: 39-48.
    [82] Blavette D, Cadel E, Fraczkiewicz A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science, 1999, 286: 2317-2319.
    [83] Jones R, Umerski A, Stich P, et al. First-principles calculations of dislocations in semiconductors. Phys. Status Solidi A, 1993, 137: 389-99.
    [84] Maiti A, Kaplan T, Mostoller M, et al. Ordering of As impurities in a Si dislocation core. Appl. Phys. Lett. 1997, 70: 336-338.
    [85] Lehto N and ?berg S. Interaction of vacancies with partial dislocations in silicon. Phys. Rev. B, 1997, 56: R12706-R12709.
    [86] Kaplan T, Liu F, Mostoller M, et al. First-principles study of impurity segregation in edge dislocations in Si. Phys. Rev. B, 2000, 61: 1674-1676.
    [87] Labush R and Shr?ter. In: Nabarro F R N, eds. Disloations in Solids. Amsterdam: North-Holland, 1980, 5:127.
    [88] Hirsch P B. Dislocations in semiconductors. Mater. Sci. Technol. 1985, 1: 666-677.
    [89] Fall C J, Jones R, Briddon P R, et al. Influence of dislocations on electron energy-loss spectra in gallium nitride. Phys. Rev. B, 2002, 65: 245304-1~8.
    [90] Lymperakis L, Neugebauer J, Albrecht M, et al. Strain induced deep electronic states around threading dislocations in GaN. Phys. Rev. Lett. 2004, 93: 196401-1~4.
    [91] Friedel J. Dislocations. New York: Pergamon Press, 1964.
    [92] Kontsevoi O Y, Gornostyrev Y N, Mryasov O N, et al. Electron localization on dislocations in metals: Real-space first-principles calculations. Phys. Rev. B, 2001, 64: 134103-1~12.
    [93] 陈继勤,陈敏熊,赵敬世. 晶体缺陷. 浙江大学出版社,1992.
    [94] 杨顺华. 晶体位错理论基础. 第一卷. 北京:科学出版社,1998.
    [95] Kohn W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 1999, 71: 1253-1266.
    [96] Ceperley D M and Alder B J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45: 566-569.
    [97] Vosko S H, Wilk L, and Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58: 1200-1211.
    [98] Von Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case. J. Phys. C, 1972, 5: 1629-1642.
    [99] Asada T and Terakura K. Cohesive properties of iron obtained by use of the generalized gradient approximation. Phys. Rev. B, 1992, 46: 13599-13602.
    [100] Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45: 13244-13249.
    [101] Perdew J P, Burke K, and Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77: 3865-3868;Erratum. Phys. Rev. Lett. 1997, 78: 1396.
    [102] Becke A D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 1988, 88: 2547-2553.
    [103] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37: 785-789.
    [104] Payne M C, Teter M P, Allan D C, Arias T A, and Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64: 1045–1097.
    [105] Monkhorst H J and Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13: 5188-5192.
    [106] 谢希德,陆栋,主编. 固体能带理论. 上海:复旦大学出版社,1998.
    [107] Hamann D R, Schlüter M, and Chiang C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43: 1494-1497.
    [108] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41: 7892–7895.
    [109] Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92: 508-517.
    [110] Delley B. Analytic energy derivatives in the numerical local-density-functional approach. J. Chem. Phys. 1991, 94: 7245-7250.
    [111] Andzelm J, Wimmer E, Salahub D R. Spin density functional approach to the chemistry of transition metal clusters: Gaussian-type orbital implementation. In: Salahub D R, Zerner M C, Eds. The Challenge of d- and f-Electrons: Theory and Computation. ACS Symposium ser. 1989, 394.
    [112] Versluis L, Ziegler T. The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J. Chem. Phys. 1988, 88: 322-328.
    [113] 尚家香. 金属界面复合体电子结构和能量学研究:[博士学位论文]. 北京:钢铁研究总院,2001.
    [114] Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 1955, 23: 1833-1840.
    [115] Vitek V. Theory of core structures of dislocations in body-centered cubic metals. Cryst. Latt. Def. 1974, 5: 1-34.
    [116] Medvedeva N I, Mryasov O N, Gornostyrev Yu N, et al. First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl. Phys. Rev. B, 1996, 54: 13506-13514.
    [117] Parr R G and Yang W. Density Functional Theory of Atoms and Molecules. New York: Oxford, 1989.
    [118] Wang C S, Klein B M, and Krakauer H. Theory of magnetic and structural ordering in iron. Phys. Rev. Lett. 1985, 54: 1852-1855.
    [119] Jones R O and Gunnarsson O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61: 689-746.
    [120] Els?sser C, Zhu J, Louie S G, et al. Ab initio study of iron and iron hydride: II. Structural and magnetic properties of close-packed Fe and FeH. J. Phys.: Condens. Matter 1998, 10: 5113-5129.
    [121] Takahashi S and Ikeda K. Magnetic-moment distribution and superlattice dislocations in the L12-type structure. Phys. Rev. B, 1983, 28: 5225-5231.
    [122] Takahashi S. Superlattice dislocations and magnetic properties. In: Suzuki H, et al., eds. Dislocations in Solids. University of Tokyo Press, 1985: 499-502.
    [123] Moroni E G, Kresse G, Hafner J, and Furthmüller J. Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids. Phys. Rev. B, 1997, 56: 15629-15646.
    [124] Nabarro F R N. Dislocations in Solids. Netherland: North-Holland Publ. Co, 1979-1984, Vol. 2, Chapter 6.
    [125] Murnaghan F D. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA, 1944, 30: 244-247.
    [126] Kaye G W C and Laby T H. In: Tables of Physical and Chemical Constants, London : Longman, 15th edition, 1993.
    [127] Rice J R. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids, 1992, 40: 239-271.
    [128] Gan Y X and Jang B Z. A parametric derivation method for solving the Peierls-Nabarro dislocation equation with a non-sinusoidal law of interatomic forces. J. Mater. Sci. Lett. 1996, 15: 2044-2047.
    [129] Bullough R and Perrin R C. In: Rosenfield A R, et al., eds. Dislocations Dynamics. New York: McGraw-Hill, 1968: 175.
    [130] Gehlen P C, Rosenfield A R and Hahn G T. Structure of the ?1 00? edge dislocation in iron. J. App. Phys. 1968, 39: 5246-5254.
    [131] Johnson R A. Point-defect calculations for an fcc lattice. Phys. Rev. 1966, 145: 423-433.
    [132] Wang Y U, Jin Y M. Cuitino A M, Khachaturyan A G. Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater. 2001, 49: 1847-1857.
    [133] Shen C, Wang Y. Incorporation of γ-surface to phase field model of dislocations: simulating dislocation dissociation in fcc crystals. Acta Mater. 2004, 52: 683–691.
    [134] Speich G R. Trans. Soc. Min. Eng. AIME, 1969, 245: 2553-2564.
    [135] Miller M K, Beaven P A, and Smith G D W. Metall. Trans. A 1981, 12A: 1197.
    [136] Chang L, Barnard S J, and Smith G D W. In: Krauss G and Repas P E, eds. Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products. Warrendale: ISS-AIME, 1992: 19.
    [137] Duesbery M S. In: Nabarro F R N, eds. Dislocations in Solids. Amsterdam: North-Holland, 1989, 8: 67.
    [138] Chang J, Cai W, Bulatov V V, and Yip S. Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Comput. Mater. Sci. 2002, 23: 111-115.
    [139] Béré A and Serra A. Atomic structure of dislocation cores in GaN. Phys. Rev. B 2002, 65, 205323-1~10.
    [140] Cahn R W and Haasen P, eds. Physical Metallurgy, Amsterdam: North-Holland, 1996.
    [141] Molotskii M and Fleurov V. Spin effects in plasticity. Phys. Rev. Lett. 1997, 78: 2779-2782.
    [142] Altshits V I, Darinskaya E V, and Kazakova O L. Magnetoplastic effect in irradiated NaCl and LiF crystals. JETP. 1997, 84: 338-344.
    [143] Golovin Yu I, Mogutnov R B, Baskakov A A, et al. Effect of a magnetic field on the plasticity and photo- and electroluminescence of ZnS single crystals. JETP Lett. 1999, 69: 127-132.
    [144] Wu R, Freeman A J, and Olson G B. First principles determination of the effects of phosphorous and boron on iron grain boundary cohesion. Science, 1994, 265: 376-380.
    [145] Jhi S H, Ihm J, Louie S G, and Cohen M L. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature, 1999, 399: 132-124.
    [146] Shang J X and Wang C Y. First-principles investigation of brittle cleavage fracture of Fe grain boundaries. Phys. Rev. B, 2002, 66: 184105-1~10.
    [147] Gornostyrev Yu N, Katsnelson M I, Medvedeva N I, et al. Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations. Phys. Rev. B, 2000, 62: 7802-7808.
    [148] Kioussis N, Herbranson M, Collins E, et al. Topology of electronic charge density and energetics of planar faults in fcc metals. Phys. Rev. Lett. 2002, 88: 125501-1~4.
    [149] Messmer R P and Briant C L. The role of chemical bonding in grain boundary embrittlement. Acta Metall. 1982, 30: 457-467.
    [150] Hong S Y and Anderson A B. Diffusion and surface segregation of carbon in alpha -Fe: Molecular-orbital theory. Phys. Rev. B, 1989, 40: 7508-7512.
    [151] Hirth J P and Lothe J. Theory of Dislocations. New York: Wiley Press, 1982: 670.
    [152] Cottrell A H. Dislocations and Plastic Flow in Crystals. Oxford: Clarendon Press, 1953;Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME, 1958, 212: 192-203.
    [153] Fleischer R L. Solution hardening. Acta Metall. 1961, 9: 996-1000.
    [154] Cottrell A H, Hunter S C, and Nabarro F R N. Electrical interaction. of a dislocation and a solute atom. Philos. Mag. 1953, 44: 1064-1067.
    [155] Eshelby J D. In: Seitz F and Turnbull D, eds. Solid State Physics: Advances in Research and Applications. New York: Academic Press, 1956, Vol. 3, 79.
    [156] Stoloff N S. Iron aluminides: present status and future prospects. Mater. Sci. Eng. 1998, A258: 1-14.
    [157] Yamaguchi M, Inui H, and Ito K. High-temperature structural intermetallics. Acta Mater. 2000, 48: 307-322.
    [158] Liu C T. Recent advances in ordered intermetallics. Mater. Chem. Phys. 1995, 42: 77-86.
    [159] Fraczkiewicz A. Influence of boron on the mechanical properties of B2-ordered FeAl alloys. Materials Transactions, JIM. 2000, 41: 166-169.
    [160] Liu C T. Intergranular fracture and boron effects in Ni3Al and other intermetallics-introductory paper. Scripta Metall. Mater. 1991, 25: 1231- 1236.
    [161] Fu C L, Ye Y Y, Yoo M H, et al. Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl. Phys. Rev. B, 1993, 48: 6712-6715.
    [162] Fraczkiewicz A, Gay A S, and Biscondi M. On the boron effect in FeAl (B2) intermetallic alloys. Mater. Sci. Eng. 1998, A258: 108-114.
    [163] Medvedeva N I, Gornostyrev Yu N, Novikov D L, et al. Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl. Acta Mater. 1998, 46: 3433-3442.
    [164] Djajaputra D and Cooper B R. Systematic first-principles study of impurity hybridization in NiAl. Phys. Rev. B, 2002, 66: 205108-1~8.
    [165] Besson R, Legris A, and Morillo J. Comprehensive ab initio thermodynamic treatment of impurities in ordered alloys: Application to boron in B2 Fe-Al. Phys. Rev. Lett. 2002, 89, 225502-1~4.
    [166] Cadel E, Fraczkiewicz A, and Blavette D. Atomic scale investigation of impurity segregation to crystal defects. Annu. Rev. Mater. Res. 2003, 33: 215-231.
    [167] Wang C Y, Liu S Y, and Han L G. Electronic structure of impurity (oxygen)–stacking-fault complex in nickel. Phys. Rev. B, 1990, 41: 1359-1367.
    [168] Wang C Y and Zhao D L. Mater. Res. Soc. Symp. Proc. 1994, 571: 318.
    [169] http://www.webelements.com/.
    [170] 冯端. 金属物理学. 第一卷:结构与缺陷. 北京:科学出版社,1998. 305~308.
    [171] Eberhart M E, Vvedensky D D. Localized grain-boundary electronic states and intergranular fracture. Phys. Rev. Lett. 1987, 58: 61-64.
    [172] Felkins K, Leighly Jr H P, and Jankovic A. The Royal Mail Ship Titanic: Did a Metallurgical Failure Cause a Night to Remember? Journal of Metallurgy, 1998, 50: 12-18.
    [173] Cadel E, Fraczkiewicz A, and Blavette D. Atomic scale observation of Cottrell atmospheres in B-doped FeAl (B2) by 3D atom probe field ion microscopy. Mater. Sci. Eng. 2001, A309-310: 32-37.
    [174] Fu C L and Painter G S. Point defects and the binding energies of boron near defect sites in Ni3Al: A first-principles investigation. Acta Mater. 1997, 45: 481-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700