多晶硅薄膜ECR-PECVD低温生长结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多晶硅(Poly-Si)薄膜以其优异的光电性能与较低的制备成本,在能源信息产业中日益成为一种非常重要的电子材料,在大规模集成电路和半导体分立器件中得到广泛应用。目前多晶硅薄膜的发展趋势为低成本和高光电转换效率。为极大限度地降低成本,人们已研究了多种能在廉价玻璃衬底上低温沉积多晶硅薄膜的方法。其中电子回旋共振等离子体增强化学气相沉积技术(ECR-PECVD),具有等离子体密度高、电离度大、无电极、高活性等特点,是一种很有发展潜力的低温沉积工艺。
     本论文采用ECR-PECVD的方法在普通玻璃片上沉积多晶硅薄膜,通过改变沉积温度、气源流量、微波功率以及引入中间层,利用反射高能电子衍射(RHEED)、透射电子显微镜(TEM)、X射线衍射、Raman光谱等分析手段,对薄膜的微观组织结构进行了观察分析,研究了多晶硅薄膜的微观生长结构以及不同工艺参数对多晶硅薄膜结构的影响规律。
     实验结果表明,该方法制得的多晶硅薄膜多以(220)取向择优生长。多晶硅薄膜存在纵向生长的不均匀性,初始阶段沉积得到非晶孵化层,然后由非晶向多晶转变,得到成柱状生长的多晶硅薄膜。不同工艺参数对薄膜结晶状态存在一个中间最优值,优化沉积参数对多晶硅薄膜的晶化至关重要。在未引入中间层条件下,衬底温度Ts=300℃、氢气流量FR(H2)=25sccm、微波功率P=600W时,多晶硅薄膜结晶状态最好,且呈最佳的(220)取向。而通过引入中间层,薄膜质量会显著提高,薄膜不仅具有很好的晶化率,并且其晶粒呈明显的柱状生长。
By its outstanding photoelectricity performance and the low cost of manufacture, the polycrystalline silicon(poly-Si) thin film becomes one kind of extremely important electronic material in. the energy and information industries, and applied widely in the large scale integrated circuit and the semiconductor separation component. Recently, in order to reduce the manufacturing cost of the poly-Si thin film, many kinds of low temperature deposition technology have been developed. The electron cyclotron resonance (ECR) microwave plasma enhanced chemical vapour deposition (ECR-PECVD) is a particularly good means of depositing thin films at low temperatures because the ion energy in the plasma is very low and electron energy is high, and it has the advantage of high plasma density and activity.
     The polycrystalline silicon thin films were prepared on glass by ECR-PECVD technique using SiH4 and H2 as source gases. The microstructure and the effects of the deposition parameters, which include the substrate temperature, the flow ratio of H2, the microwave power and the seed layers were investigated by RHEED, TEM,XRD and Raman spectrum.
     The results showed that most of the poly-Si films have a (220) preferential orientation. The interface states of the poly-Si films were observed by TEM. It consists of two layers, which are amorphous incubation and polycrystalline silicon columnar texture layer. The films without the seed layers with the optimum crystal state can be deposited at a substrate temperature of 300℃, a hydrogen flow ratio of 25sccm, and a microwave power of 600W. The films with the seed layers have a higher crystalline fraction, and grow with a strong texture.
引文
[1]王长贵.新能源和可再生能源的现状和展望.太阳能光伏产业发展论坛,乌鲁木齐,2003:4-17.
    [2]赵富鑫,魏彦章.太阳电池及其应用.北京:国防工业出版社,1985:13.
    [3]Lodhi M A K.Photovoltaics and hydrogen:Future energy options.Energy Conversion and Management.1997,38(18):1881-1893.
    [4]赵玉文.太阳电池新近展.物理学与新能源材料.2004,2:99-105.
    [5]Chapin D M,Fuller C S,Pearson G L.A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power.J.Appl.Phys.1954,25(5):676-677.
    [6]季秉厚,王万录.多晶硅薄膜与薄膜太阳电池.太阳能学报特刊.1999:102-114.
    [7]Allen M,Hermann.Polycrystalline thin-film solar cells-A review.Solar Energy Materials and Solar Cells.1998,55:75-81.
    [8]刘恩科.光电池及其应用.北京:科学出版社,1991:18-28.
    [9]蒋荣华,肖顺珍.硅基太阳能电池与材料.新材料产业.2003,116(7):8-13.
    [10]Willeke G P.Thin crystalline silicon solar cells.Solar Energy Materials and Solar Cells.2002,72:191-200.
    [11]赵争鸣,刘建政,孙晓瑛等.太阳能光伏发电及其应用.北京:科学出版社,2005:11-39.
    [12]刘祖明,李杰慧,张忠文等.晶体硅太阳电池产业技术发展.上海:上海交通大学出版社,2003:51-54.
    [13]Schultz O,Glunz S W,Goldschmidt J C et al.Thermal oxidation processes for high-efficiency multicrystalline silicon solar cells.Proc of 19th European Photovoltaic Solar Energy Conference,Paris,2004:96-102.
    [14]Rohatgi A,Chert A,Sana P et al.High efficiency multicrystalline silicon solar cells.Solar Energy Materials and Solar Cells.1994,34:227-236.
    [15]Zhao J H,Wang A H,Campell P et al.A 19.8%efficient honeycomb multicrystalline silicon solar cells with improved light trapping.Electron Devices IEEE Transactions.1999,46(10):1978-1983.
    [16]Inomata Y,Fukui K,Shirasawa K.Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method.Solar Energy Materials and Solar Cells.1997,48:237-242.
    [17]李仲明.极富发展前景的多晶硅薄膜太阳电池.新材料产业.2003,7:14-16.
    [18]Green M A.Recent developments in photovoltaics.Solar Energy.2004,76:3-8.
    [19]耿新华,孙云,王宗衅等.薄膜太阳电池的研究进展.物理.1999,2:96-102.
    [20]Carlson D E,Wronski C R,Pankove J I.Properties of amorphous silicon and a-Si Solar Cells.RCA Review.1977,38(2):211-225.
    [21]顾祖毅,田立林,富力文.半导体物理学.北京:电子工业出版社,1995:26-32.
    [22]Lechner.P,Schade H.Photovoltaic thin-film technology based on hydrogenated amorphous silicon.Prog Photovoltiacs.2002,10:85-98.
    [23]Ayra R R,Carlson D E.Amorphous silicon p Vmodule manufacturing at BP Solar.Prog Photovoltaics.2002,10:67-68.
    [24]Werner J H,Bergemann R B.Perspectives of crystalline silicon thin film solar cells.Proc.11~th International Photovoltaic Science and Engineering Conference,Japan,1999:923-928.
    [25]Catchpole K R,McCann M J,Weber K J et al.A review of thin-film crystalline silicon for solar cell applications.Part 2:Foreign substrates.Solar Energy Materials and Solar Cells.2001.68(2):173-215.
    [26]张静全,蔡伟,郑家贵等.CdTe太阳能电池研究进展.半导体光电.2000,21(2):88-92.
    [27]马廷丽.新材料科学及其实用技术.北京:清华大学出版社,2004:1-16.
    [28]张凤鸣.多晶硅薄膜太阳电池.太阳能学报.2003,24(4):555-564.
    [29]曲喜新,杨邦朝,姜节俭等.电子薄膜材料.北京:科学出版社,1996:56-58.
    [30]王阳元,T.I.卡明斯,赵宝瑛等.多晶硅薄膜及其在集成电路中的应用.北京:科学出版社,2001:38-42.
    [31]刘刚,余岳辉,史济群等.半导体器件-电力、敏感、光子微波器件.北京:电子工业出版社,2000:77-78.
    [32]胡芸菲,沈辉,梁宗存等.多晶硅薄膜太阳电池的研究与进展.太阳能学报.2005,26(2):200-206.
    [33]Sen Z.Solar energy in progress and future research trends.Progress in Energy and Combustion Science.2004,30:367-416.
    [34]lwaniczko E,Xu Y,Schropp R E I et al.Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD.Thin Solid Films.2003,430:212-215.
    [35]Ide Y,Saito Y,Yamada Aet al.Microcrystalline silicon thin film solar cells prepared by hot wire cell method.3~rd world conference on Photovoltaic Energy Conversion,Japan,2003:1772-1775.
    [36]liduka R,Heya A,Matsumura H.Study on cat-CVD poly-Si films for solar cell application.Solar Energy Materials and solar cells.1997,48:2?9-285.
    [3?]Brockhoff A M,Ullersma E H C,Meiling H et al.Structure and hydrogen content of stable hot-wire-deposited amorphous silicon.Appl.Phys.Left.1998,73(22):3244-3246.
    [38]Rath J K,Barbon A,Schropp R E I.Limited influence of grain boundary defects in hot-wire CVD polysilicon films on solar cell performance.Journal of Non-Crystalline Solids.1998,227-230:1277-1281.
    [39]Feenstra K F,Schropp R E I,Van W F.Deposition of amorphous silicon films by hot-wire chemical vapor deposition.J.Appl.Phys.1999,85:6843-6852.
    [40]Jatindra K R,Stannowski B,Patrick A T T et al.Application of hot-wire chemical vapor-deposited Si:H films transistors and solar cells.Thin Solid Films.2001,395:320-329.
    [41]Lee J C,Jung Y S,Kworn S Wet al.The influence various parameters on microcrystalline silicon film and solar cells by hot-wire CVD.3~rd world conference on Photovoltaic Energy Conversion,Korea,2003:1659-1662.
    [42]Klein S,Finger F.High efficiency thin film solar cells with intrinsic microcrystalline silicon prepared by hot-wires CVD.MRS.2002,A26.2:71.
    [43]Einhaus R,Vazsonyi E,Szlufcik J et al.Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions.Proceeding on IEEE 26~th PVSC,Anaheim,1997:167-170.
    [44]Ikuta K,Toyoshima Y,Yamasaki S et al.STM and Raman study of the evolution of the surface morphology in μc-Si:H.Journal of Non-Crystalline Solids.1996,198-200:863-866.
    [45]Takagi T,Hayshi R,Ganguly G et al.Gas-phade diagnosis and high-rate growth of stable a-Si:H.Thin Solid Films.1999,345(1):75-79.
    [46]Fukawa M,Suzuki S,Guo L et al.High rate growth of microcrystalline silicon using a high-pressure depletion method with VHF plasma.Solar Energy Materials and Solar Cells.2001,66:217-223.
    [47]Scheib M,Schroder B,Oechsner H.Deposition of nanocrystalline silicon films(nc-Si:H)from a pure ECWR-SiH4 Plasma.Journal.of Non-Crystalline Solids.1996,198-200:895-898.
    [48]Imajyo N.High rate deposition of μc-Si with plasma gun CVD.Journal of Non-Crystalline Solids.1996,198-200:935-939.
    [49]黄创君,林璇英,林揆训等.低温制备高质量多晶硅薄膜技术及其应用.功能材料.2001,32(6):561-563.
    [50]Cicala G.,Capezzuto P,Bruno G.Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF4-H2-He at low temperature.Thin Solid Film.1999,337:59-62.
    [51]Kim H,Lee G,Kim D et al.A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization.Current Applied Physics.2002,2(2):129-133.
    [52]D' Asaro L A,Landorf R W,Furnanage R A.In semiconductor silicon.New Jersey:R.R.Haberechi and E.L.Kern,Electrochem.Soc.Princiton,1969:233.
    [53]Nishida S,Nakagawa K,Iwane M et al.Si film growth using liquid phase epitaxy method and its application to thin-film crystalline Si solar cell.Solar Energy Materials and Solar Cells.2001,65(1):525-532.
    [54]Matsuyama T,Terada N,Baba T et al.High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method.Journal of Non-Crystalline Solids.1996,198-200:940-944.
    [55]Hatalis M K,Greve D W.Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films.J.Appl.Phys.1988,63(7):2260-2266.
    [56]Hasegawa S,Sakamoto S,Inokuma T et al.Structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane.Applied Physics Letter.1993,62(11):1218-1220.
    [57]Zhang X,Zhang T Y,Wong M et al.Residual-stress relaxation in poly-silicon thin films by high-temperature rapid thermal annealing.Sensors and Actuators.1998,A 64:109-115.
    [58]Singh R,Fakhruddin M,Poole K F et al.Rapid photo thermal processing as a semiconductor manufacturing technology for the 21~st century.Applied Surface Science.2000,168:198-203.
    [59]陈光华,邓金祥.新型电子薄膜材料.北京:化学工业出版社,2002:70-74.
    [60]饶瑞,徐重阳,孙国彩等.微波退火低温晶化研究.压电与声光.2001,23(1):53-55.
    [61]Andra.G,Bergmann J,Falk F et al.Multicrystalline Silicon Thin Films:Laser Crystallization Conditions and Properties.POLYSE98,Geneva,1998:123-128.
    [62]Yamamoto K,Kawaguchi Y,Yasunaga T et al.Cracking behavior of AIP-coated metal nitrides under tensile stress.Surface and Coatings Technology.1999,113(3):218-225.
    [63]Fischer H,Gereth R,Link E et al.Contribution to silicon solar cell technology.Energy Conversion.1972,12(3):103-107.
    [64]Vetterl O,Finger F,Carius R et al.Intrinsic Microcrystalline Silicon:a New Material for Photovoltaic.Solar Energy Materials&Solar Cells.2000,62:97-108.
    [65]Hara K,Itoh K,Kamiya M et al.A new Type of Columnar Grain in Structure in Obliquely Deposited Films.Journal of Magnetism and Magentic Materials.1995,148:19-20.
    [66]Collins R W,Ferlauto A S,Ferreira G M et al.Evolution of Microstructure and Phase in Amorphous,Protocrystalline,and Microcrystalline Silicon Studied by Real Time Spectroscopic Ellipsometry.Solar Energy Materials and Solar Cells.2003,78:143-180.
    [67]徐茵,顾彪,秦福文等.GaN 薄膜低温外延的ECR-PAMOCVD技术.半导体技术.1998,23(2):37.
    [68]Tonks L,Langmuir I.Oscillations in Ionized Gases.Phys.Rev.1929,33(2):195-210.
    [69]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科学技术大学出版社,1998:117-119.
    [70]Hollahan J R,Bell A T.Techniques and applications of plasma chemistry.New York:John Wiley and Sons Inc,1974:195-208.
    [71]Hasegawa S,Morita M,Kurata Y.Effects of in situ plasma supply in undoped and boron-doped polycrystalline silicon by low-pressure chemical vapor deposition at 500-840℃.J.Appl.Phys.1988,64(8):4154-4160.
    [72]Panagiotis D,Christofides,Armaou A.Control and optimization of multiscale process systems.Computers and Chemical Engineering.2006,30(11-12):1670-1686.
    [73]Salabas A,Gousset G,Alves L L.Charged particle transport modelling in silane- hydrogen radio-frequency capacitively coupled discharges.Vacuum.2002,69:213-219.
    [74]Denysenko I,Ostrikov K,Rutkevych P P et al.Numerical simulation of nanoparticle-generating electronegative plasmas in the PECVD of nanostructured silicon film.Computational Materials Science.2004,30:303-307.
    [75]Zenbutsu S,Sasaki T.Growth of GaN single crystal films using electron cyclotron resonance plasma excited metalorganic vapor phase epitaxy.Appl.Phys.Lett.1986,48(13):870-872.
    [76]Samukawa S,Mori S,Sasaki M.Ion current density and its uniformity at the electron cyclotron resonance position in electron cyclotron resonance plasma.Vac.Sci.Technol.1999,A9(1):85-90.
    [77]Ma J H,Kawarada H,Yonehara T et al.Selective nucleation and growth,of diamond particles by plasma-assisted chemical vapor deposition.Appl.Phys.Lett.1989,55(11):1071-1073.
    [78]Xu Y,Gu B,.Qin F.W.Electron cyclotron resonance plasma enhanced metalorganic chemicaI vapor deposition system with monitoring in situ for epitaxial growth of group-Ⅲnitrides.Vacuum Science and Technology.2004,22:302-308.
    [79]Asmussen J.Electron cyclotron resonance microwave discharge for etching and thin-film deposition.J.Vac.Sci.Technol.1989,A7(3):883-888.
    [80]秦福文.RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长:(博士学位论文).大连:大连理工大学,1994.
    [81]李树棠.晶体X射线衍射学基础.北京:冶金工业出版社,1990:92-94.
    [82]从秋兹.多晶硅二维X射线衍射.北京:科学出版社,1997:89.
    [83]Droz C.Thin Film Microcrystalline Silicon Layers and Solar Cells:Microstructure and Electrical Performances:(PhD Thesis).Switzerland:University of Neuchatel,2003.
    [84]Das D,Jana M.Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme.Soiar Energy Materials and Solar Cells.2004,81(2):169-181.
    [85]Moon B Y,Younb Y H,Won S H et al.Polycrystalline silicon film deposited by ICP-CVD.Solar Energy Materials and Solar Cells.2001,69(2):139-145.
    [86]曹青,叶志镇.反射高能电子衍射的原理及其应用.材料科学与工程.1994,12(3):56-58.
    [87]Ekanayake G,Quinn T,Reehal H S et al.Large-grained polycrystalline silicon films on glass by argon-assisted ECRCVD epitaxial thickening of seed layers.Journal of Crystal Growth.2007,299(2):309-315.
    [88]Gogoi P,Dixit P N,Agarwal P.Amorphous silicon films with high deposition rate prepared using argon and hydrogen diluted silane for stable solar cells.Solar Energy Materials and Solar Cells.2007,91(13):1253-1257.
    [89]Yamamoto K,Yoshimi M,Tawada Y et al.Thin film Si solar cell fabricated at low temperature.Journal of Non-Crystalline Solids.2000,266-269:1082-1087.
    [90]Collins R W,Ferlauto A S,Ferreira G M et al.Evolution of microstructure andphase in amorphous,protocrystalline,and microcrystalline silicon studied by real time spectroscopic ellipsometry.Solar Energy Materials and Solar Cells.2003,78:143-180.
    [91]Venerl O,Finger F,Carius R et al.Intrinsic microcrystalline silicon:A new material for photovoltaics.Solar Energy Material and Solar cells.2000,62:97-108.
    [92]Tsai C C,Anderson G B,Thompson R et al.Estimates of the diffusion rate of the dominant paramagnetic defect in hydrogenated amorphous silicon.Journal of Non-Crystalline Solids.1989,114:396-398.
    [93]刘明海,胡希伟,邬钦崇等.电子回旋共振等离子体源的数值模拟.物理学报.2000,49(3):497-501.
    [94]Das U,Morrison S,Centurioni E et al.Thin film silicon materials and solar cells grown by pulsed PECVD technique.Circuits,Device and System.2003,150(4):282-286.
    [95]Hsiao H L,Hwang H L,Yang A B et al.Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution.Applied Surface Science.1999,142:316-321.
    [96]Matsuda A,Takai M,Nishimoto T et al.Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate.Solar Energy Materials and Solar Cells.2003,78:3-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700