PTEN甲基化在骨肉瘤发生中的作用及5-Aza-CdR去甲基化对其MG-63细胞生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨肉瘤(Osteosarcoma)是起源于间胚叶组织的最常见的原发性恶性骨肿瘤,其生物学性状极为复杂,有关其发病机理仍未完全清楚,诊断和治疗的方法依然有限。现代医学认为,肿瘤的发生是一个多阶段、多因素和多基因综合作用的过程,其生物学本质是细胞内遗传调控和表观遗传调控的紊乱与失调。近年来以不基于基因序列改变为特征的表观遗传调控在肿瘤发生中的作用备受关注,其主要表现形式是DNA甲基化,它可以直接导致相关基因的表观遗传转录沉默。基因DNA甲基化有助于肿瘤发生的早期预测及预后评估。癌基因的低甲基化、抑癌基因的高甲基化和整体基因组的低甲基化是DNA甲基化失衡状态的三种经典现象,其中尤以抑癌基因的高甲基化与肿瘤的关系最为密切,它是抑癌基因转录失活的主要途径,甚至可能成为调控基因转录的唯一的机制。
     PTEN是迄今为止发现的第一个具有双特异性磷酸酶活性的抑癌基因,是抑癌基因家族中继P53发现后在人类肿瘤中突变及缺失率最高的又一明星分子。PTEN具有抑制肿瘤生长、促进细胞凋亡及抑制血管生成等作用,能负性调控PI3K/AKt及抑制MAPK的信号转导通路对肿瘤产生影响。已有研究表明在很多人类恶性肿瘤中都存在PTEN的异常甲基化,但关于其与骨肉瘤的关系却鲜见报道。了解骨肉瘤中PTEN的甲基化状态,对寻找骨肉瘤早期诊断可能的分子标志物具有重要的临床意义。
     由于DNA甲基化不涉及DNA序列改变,因此,它是一个可逆的表观遗传学修饰过程。任何一个基因的甲基化状态是一个甲基化和去甲基化的动态平衡过程,处于甲基化异常的抑癌基因对阻断其DNA甲基化的药物非常敏感,临床上可利用这种敏感性进行基因治疗。5-Aza-CdR是已被美国FDA批准应用于骨髓增殖异常综合征及急性粒细胞白血病临床治疗的去甲基化药物,它能在体内外激发DNA的去甲基化过程,导致被甲基化沉默的抑癌基因持续激活。目前已有5-Aza-CdR作用于乳腺癌、非小细胞肺癌及前列腺癌等肿瘤的相关研究,但其与骨肉瘤的关系的研究却还是空白。因此,探讨5-Aza-CdR对肿瘤的去甲基化作用机制对防治骨肉瘤亦具有重要的临床意义。
     本研究分成三个部分。第一部分,通过MSP技术检测骨肉瘤标本中PTEN的甲基化状态并将其与患者的临床病理参数结合进行分析,以期探讨PTEN甲基化在骨肉瘤发生中的作用及其相关预后影响因素,为探寻骨肉瘤早期诊断可能的分子靶标提供依据;第二部分,通过MSP技术对三株人骨肉瘤细胞MG-63、SAOS-2和U2-OS进行筛选,选取其中PTEN完全甲基化的一株细胞进行后续细胞学功能实验,以5-Aza-CdR对其进行去甲基化干预,探讨5-Aza-CdR作用的最佳浓度与时间、细胞的生物学行为及甲基化状态,为阐明5-Aza-CdR的体外去甲基化作用机制提供实验依据;第三部分,建立人骨肉瘤MG-63细胞荷瘤裸鼠模型,以5-Aza-CdR经尾静脉注射去甲基化干预4周,观测移植瘤体积生长的动态变化及检测移植瘤的病理形态学、PTEN蛋白表达及其甲基化情况,明确5-Aza-CdR的体内去甲基化作用机制。
     第一部分骨肉瘤中PTEN的甲基化情况及其与相关临床病理参数的关系
     目的明确骨肉瘤中抑癌基因PTEN的甲基化情况,寻找早期诊断可能的分子标志物。分析PTEN甲基化和骨肉瘤临床病理参数的关系,探讨PTEN甲基化对其相关预后影响因素的影响。
     方法采集于2001年4月~2011年4月间在湖南省肿瘤医院、中南大学湘雅二医院及湘雅医院进行治疗并确诊的46例骨肉瘤患者的病理标本,其中新鲜组织21例(同时采集癌旁组织21例)、石蜡标本25例,采用HE染色、免疫组化(S-P)法检测肿瘤组织的病理形态学及PTEN表达水平,然后采用甲基化特异性PCR (MSP)技术检测骨肉瘤组织中PTEN启动子区甲基化的状态;整合所纳入骨肉瘤患者的临床资料,采用x2检验或Fisher's确切概率法分析PTEN启动子区甲基化与临床病理参数之间的关系。
     结果HE染色及免疫组化结果显示,骨肉瘤组织中病理形态学呈明显肉瘤特征,而PTEN表达较癌旁组织明显减少,两组比较有统计学差异(P<0.05)。 MSP结果显示,骨肉瘤组织中存在PTEN高甲基化状态,癌旁组织中呈低甲基化或未甲基化状态,两组比较差异有统计学意义(P<0.05)。 PTEN高甲基化与骨肉瘤的Enneking肿瘤外科分期(P=0.023)。 Price组织学分级(P=0.001)及肿瘤发生的部位(P=0.030)表现出显著的正相关(P<0.05),而与年龄、性别、病程及化疗前AKP水平等一般临床资料无明显相关(P>0.05)。PTEN高甲基化患者术后5年生存率明显低于PTEN低甲基化患者,两组比较差异有统计学意义(P<0.05)。
     结论1、PTEN在骨肉瘤中表达下调,其DNA启动子区存在高甲基化状态,PTEN高甲基化是骨肉瘤早期发生的分子特征之一。2、PTEN高甲基化状态与骨肉瘤的病理分期及分级呈显著正相关,是其独立的预后影响因素之一。
     第二部分5-Aza-CdR去甲基化对人骨肉瘤MG-63细胞生物学行为及PTEN甲基化的影响
     目的筛选PTEN完全甲基化的骨肉瘤细胞株,明确5-Aza-CdR对骨肉瘤细胞的体外去甲基化作用及对PTEN甲基化的影响,证实PTEN负性调控骨肉瘤中PI3K/AKt信号转导通路的作用机制。
     方法选取三株经典的人成骨肉瘤细胞株MG-63、SAOS-2和U2-OS,用MSP法检测其中PTEN甲基化的情况,筛选出PTEN完全甲基化的一株细胞进行后续实验,以5-Aza-CdR对其进行去甲基化干预,同时筛选出PTEN甲基化状态被完全去除时5-Aza-CdR作用的最佳浓度及时间点,并检测该细胞的生物学行为及其PTEN甲基化的情况,采用Western-Blotting法检测经去甲基化干预后该细胞株中PI3K和AKt信号分子的蛋白表达水平。
     结果在三株人骨肉瘤MG-63、SAOS-2和U2-OS中,MG-63细胞中PTEN完全甲基化,其被5-Aza-CdR完全去甲基化的最佳浓度和时间点分别为10μmol/L和24h。PTEN被完全去甲基化后的MG-63细胞在细胞凋亡、细胞周期、细胞侵袭迁移能力等细胞生物学行为方面与处理前比较差异有统计学意义(P<0.05)。 Western-Blotting结果显示,经5-Aza-CdR干预的MG-63细胞中PI3K和AKt分子蛋白的表达水平较对照组明显降低,两者表现出统计学差异(P<0.05)。
     结论1、PTEN在人骨肉瘤MG-63细胞中完全甲基化;2、MG-63细胞中PTEN甲基化被5-Aza-CdR完全去除时具有时间和浓度的依赖性;3、5-Aza-CdR能对MG-63细胞的生物学行为产生影响,能增加肿瘤细胞的凋亡率、抑制细胞生长周期及降低细胞的侵袭转移能力;4、5-Aza-CdR能降低MG-63细胞中PI3K和AKt蛋白的表达水平,证实了PTEN负性调控MG-63细胞中PI3K/AKt信号转导通路的作用机制。
     第三部分5-Aza-CdR去甲基化对裸鼠模型移植瘤PTEN表达及其甲基化的影响
     目的构建人骨肉瘤MG-63细胞荷瘤裸鼠模型;探讨5-Aza-CdR对荷瘤裸鼠模型移植瘤的影响及其在动物体内的去甲基化作用机制。
     方法采用细胞悬液异种移植皮下接种法,将人骨肉瘤MG-63细胞单悬液以1×107/200μl的活细胞浓度接种于4~6周龄裸鼠左腋肩部皮下,共接种18只动物,构建荷瘤裸鼠模型。成功建模后,将实验动物分成实验组和对照组,每组9只动物;实验组以10μmol/L浓度、1μ/g剂量的5-Aza-CdR进行尾静脉注射行去甲基化干预,而对照组则注射等量的PBS溶液,4周后处死动物,解剖移植瘤,观测并动态比较两组移植瘤体积大小和病理形态学的变化。采用IHC免疫组化法检测两组移植瘤瘤体组织中PTEN的表达情况,采取MSP技术检测两组瘤体组织中PTEN的甲基化状态,以Western-Blotting法检测并比较两组瘤体组织中PTEN蛋白表达的情况。
     结果细胞接种4周后裸鼠移植瘤的大小为5mm3,表明成功地建立了人骨肉瘤MG-63细胞荷瘤裸鼠模型。两组裸鼠模型移植瘤体积大小动态比较,在5-Aza-CdR干预至第4周时两组瘤体体积大小比较差异有统计学意义(P<0.05),实验组优于对照组。IHC结果显示,实验组移植瘤中PTEN表达明显上调,较对照组有统计学差异(P<0.05)。MSP结果显示,实验组移植瘤中PTEN呈低甲基化状态,与对照组比较有统计学差异(P<0.05)。Western-Blotting结果显示,实验组移植瘤中PTEN蛋白表达量明显增加,较对照组比较差异有统计学意义(P<0.05)。
     结论1、采用1×107/200μ1浓度的细胞悬液行皮下接种法能成功建立人骨肉瘤MG-63细胞荷瘤裸鼠动物模型;2、5-Aza-CdR能抑制人骨肉瘤MG-63细胞裸鼠模型移植瘤的生长,上调移植瘤中PTEN的表达,抑制其中PTEN的高甲基化状态,在体内发挥了其去甲基化作用。
BACKGROUND Osteosarcoma is one of primary neoplasms of the anterior mediastinum with highly variable histopathological characteristics. This heterogeneity has long hindered the development of a standardized protocol for diagnostic and prognostic evaluation of Osteosarcoma. The modified Enneking staging system, is currently the most commonly employed scoring method, but its value is limited by the fact that it assigns scores only for specific macroscopic surgical, but not histological, characteristics, making it difficult to reliably assess tumor severity in patients. Previous studies showed that multiple genetic alterations involved in many kinds of carcinomas, but the molecular mechanisms of Osteosarcoma is poorly understood. Recent data suggests that carcinomas appear to be a process that is caused by genetic alterations and by epigenetic mechanism. It mainly involves DNA methylation and histone modification. DNA methylation is one of the major mechanisms of epigenetics. Aberrant methylation of promoter regions resulting in inactivation of human tumor suppressor gene expression has been proposed to be an important mechanism in cancer. Cancer cell DNA is frequently characterized by localized gene-specific hypermethylation in TSG, the expression and status of DNA methylation of gene PTEN have already been reported in many kinds of tumor, such as lung cancer, colon cancer and oral carcinoma ea tl. Although multiple genetic and epigenetic changes have been detected in many kinds of cancer, the precise molecular mechanisms in the development and/or progression of Osteosarcoma still remain unknown. PTEN is the first TSG which has both Lipid phosphatase and Dual specificphosphatase action. The DNA mythlation can be altered by demethylation. The drug5-Aza-CdR, the DNA methyltransferase inhibitor, is the most mainly demethylation drug which has been applied for clinical treatment widely and be authorized by FDA,USA. To clarify the demethylation mechanism of the5-Aza-CdR is relatively important to the treatment of Osteosarcoma.
     There are3parts content in our research works. In part1, the DNA metyhlation status of PTEN in tissues of the Osteosarcoma was detected by MSP method, and the methylation results and the clinical data were analysed together. In part2, the cell behavior and the DNA methylation status of the MG-63cell were detected by the cytology test and the MSP method. In part3, To establish nude mouse animal models and intervene demethylatedly it through5-Aza-CdR injection, and the expression of PTEN and the DNA methylation of PTEN of the transplantation tumor were detected by WB and MSP methods.
     Part I PTEN Abnormal DNA Methylation and Its Clinical Significance in Osteosarcoma
     Objective:To investigate the expression and the promoter hypermethylation of PTEN and potential clinical significance in patients with Osteosarcoma.
     Methods:Methylation-specific PCR (MSP) method was performed for evaluating the expression and promoter region methylation patterns of PTEN in Osteosarcoma. The correlation between TSGs mRNA, TSGs methylation and clinicopathological data were analyzed.46patients with Osteosarcoma were surgically treated in the HN province tumor hospital, the2nd xiangya hospital and the xiangya hospital, and from April,2001to April,2011. The samples of Osteosarcoma were be detected by HE dye, immunohistochemistry and MSP, and the methylation status of the samples and the clinical data of the Osteosarcoma patients were analysed together for discussing the relationship between the above two.
     Results:There has been significant defference between the tumor tissue group and the non-tumor tissue group about the results of the expression of PTEN and the DNA methylation status of PTEN (P<0.05). PTEN hyermethylation is correlative with the tumor grades and stages of Osteosarcoma. Enneking surgery stages of tumor (P=0.002)、Price surgery classification (P=0.003)、position of tumor occurring (P= 0.030).
     Conclusions:1、The down-regulation of PTEN in osteosarcoma and the status of DNA methylation of promote region is hymethylation.2、PTEN hymethylation is relatively correlative with the tumor grades and stages of Osteosarcoma.
     Part II Influence of Human Osteosarcoma Cell MG-63was Demethylated by5-Aza-CdR on Cytology behavior and PTEN Methylation
     Objective:To screen completed methylation cell in the3Osteosarcoma cell lines, and to explicit the effect of demethylation of5-Aza-CdR in vitro, and to confirm the mechanism of action of the PI3K/AKt pathway can be negatively regulated by PTEN in Osteosarcoma cell line.
     Methods:The3Osteosarcoma cell lines MG-63,SAOS-2and U2-OS were detected by MSP, and the PTEN completely methylation cell line was screened, and this cell line was intervened by5-Aza-CdR in terms of difference drug density and active time. The protein of the PI3K and the AKt were detected by WB method in this cell line.
     Results:The MG-63cell line display the completely methylation in3cell lines, and the best drug density and effect time are separately10μmol/L and24h after5-Aza-CdR intervention. There has been significant difference between the intervening group and the control group (P<0.05), meanwhile, same significant difference between2groups on protein expression of the PI3K and AKt (P<0.05).
     Conclusions:1、The human Osteosarcoma MG-63cell line display the completely mythlation on PTEN.2、The MG-63cell line demonstrates the dependency of drug density and effect time after5-Aza-CdR intervention.3、5-Aza-CdR can exert an influence on cell behavior of MG-63.4、The protein expression of the PI3K and the AKt were down-regulated by5-Aza-CdR in Osteosarcoma cell line MG-63, and the mechanism of action of PTEN negatively regulates the PI3K/AKt pathway in Osteosarcoma was confirmed.
     Part Ⅲ Influence of Expression and DNA Mythlation of PTEN in Osteosarcoma Nude Mice Model Loaded Transplantation Tumor Intervened Demethylation by5-Aza-CdR
     Objective:To establish nude mice model loaded Osteosarcoma cell line MG-63transplantation tumor and to clear the demethylation effect mechanism of5-Aza-CdR in vivo.
     Methods:18nude mices which4~6weeks were used subcutaneous vaccination by1×10/200μl cell line MG-63suspension for establishing transplantation tumor loaded nude mice model. After modeling success, the animal models were divided into the group experimental(A) and control(B) separately9animals. The nude mice models of group A were intervened by5-Aza-CdR in terms of drug density10μmol/L and dose1μl/g. After4weeks, the animals were executed and the transplantation tumor were dissected. The volume of the transplantation tumor were compared between group A and B. The expression of PTEN of the transplantation tumor were detected separately by IHC method and Western-Blotting method, meanwhile, the status of DNA methylation in PTEN of it by MSP technique.
     Results:The human Osteosarcoma cell line MG-63transplantation tumor loaded nude mice models can be established successfully. There has been significant difference between the group A and B on the volume of transplantation tumor (P<0.05), and similar difference between the groups2on IHC results (P<0.05). The MSP results demonstrates that the PTEN hypomethylation status can be detected in transplantation tumor of group A and there has significant difference between the group A and B (P<0.05).Western-Blotting results demonstrates that the protein expression of the group A were up-regulation, and the same difference between the group A and B (P<0.05)
     Conclusions:1、The human Osteosarcoma cell line MG-63nude mice model loaded transplantation tumor can be established successfully through using subcutaneous vaccination method.2、The grow of the transplantation tumor of nude mice model can be inhibited by5-Aza-CdR, and the expression of PTEN of the tissue can be up-regulated and the status of PTEN hypermethylation can be inhibited by5-Aza-CdR in vivo.
引文
[1]Kazuya K, Yasumasa M. Therapy for thymic epithelial tumors:a clinical study of 1320 patients from Japan [J]. Ann Thorac Surg,2003,76:878-885.
    [2]Baylin SB, Herman JG. DNA hepermethylation in tumorigenesis:epigenetics joinsgenetics. Trends Genet,2000,16(4):168-174.
    [3]Momparler RL, Bovenzi V. DNA methylation and cancer[J]. J Cell Physiol, 2000,183(2):145-154.
    [4]Bird A. The essentials of DNA methylation. Cell,1992,70(1):5-8.
    [5]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002,3(6):415-428.
    [6]Tokugawa T, Sugihara H, Tani T, et al. Modes of silencing of p16 in development of esophageal squamous cell carcinoma. Cancer Res,2002,62 (17):4938-4944.
    [7]Herman JG, Graff JR, Myohanen S, et al. Methylation-Specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996,93(18):9821-9826.
    [8]Aguissa-Toure, A.-H.& Li, G. et al. Genetic alterations of PTEN in human melanoma[J].Cellular and Molecular Life Sciences,2012,69(11):1475-1491.
    [9]Yin, Y.& Shen, W. H. PTEN:a new guardian of the genome[J]. Oncogene,2008, 27(2):5443-5453.
    [10]Ciuffreda, L., McCubrey, J. A.& Milella, M. et al. Signaling Intermediates (PI3K/PTEN/AKT/mTOR and RAF/MEK/ERK Pathways) as Therapeutic Targets for Anti-Cancer and Anti-Angiogenesis Treatments [J]. Current Signal Transduction Therapy,2009,4(5):130-143.
    [11]Nguyen, T. T. P.Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells[J].Breast Cancer Research and Treatment,2011,130(1): 73-83.
    [12]Hino, R.Activation of DNA Methyltransferase 1 by EBV Latent Membrane Protein 2A Leads to Promoter Hypermethylation of PTEN Gene in Gastric Carcinoma[J]. Cancer Research,2009,69(8):2766-2774.
    [13]Hoebeeck J, Michels E, Pattyn F, et al. Aberrant methylation of candidate tumorsuppressor genes in neuroblastoma. Cancer Lett.2009,273(2):336-46.
    [14]Liao,W.,McNutt,M.A.& Zhu,W.-G. et al. The comet assay:A sensitive method for detecting DNA damage in individual cells[J].Methods,2009,48(2):46-53.
    [15]Dion, V.Genome-wide demethylation promotes triplet repeat instability indepen-dently of homologous recombination[J].DNA Repair,2008,7(11): 313-320.
    [16]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-Aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clinical epigenetics,2013,5(1):3-3.
    [17]Liu X, Dai X, Wu B. Study of 5-Aza-CdR on transcription regulation of RASSFIA gene in the BIU87 cell line[J].Urol Int,2009,82(1):108-112.
    [18]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation [J].N Engl J Med,2003,349 (21):2042-2054.
    [19]Zhai, F.-X. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines[J]. Journal of Cancer Research and Clinical Oncology,2012,138(8):439-449.
    [20]Yagi, S.5-aza-2'-deoxycytidine restores proapoptotic function of p53 in cancer cells resistant to p53-induced apoptosis[J]. Cancer Investigation,2008,26(7): 680-688.
    [21]Fan, X. P. Methylation status of the PTEN gene in adenoid cystic carcinoma cells[J]. Molecular Medicine Reports,2010,12(3):775-779.
    [22]Momparler, R. L. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine) [J]. Seminars in Oncology,2005 32(7):443-451.
    [23]Chiam, K., Centenera, M. M., Butler, L. M., et al. GSTP1 DNA methylation and expression status is indicative of 5-aza-2'-deoxycytidine efficacy in human prost-ate cancer cells[J]. PloS one,2011,25(6), e25634-e25634.
    [24]Xia,Z.-j,Li C.-h,Zhang,S.-l,et al. Activity of telomerase in ovary carcinoma tissues and para-carcinoma tissues[J] Journal of China Medical University, 2003,32,60-64.
    [25]Acosta,F.L.,Jr.Treatment of Enneking Stage 3 Aggressive Vertebral Hemangio-mas With Intralesional Spondylectomy Report of 10 Cases and Review of the Literature[J].Journal of Spinal Disorders & Techniques,2011,24(10):268-275.
    [26]Liu,Q.,Ma,S.,Yuan,Y.,et al.Expression of vascular endothelial growth factor and angiogenesis in osteosarcoma[J].Journal of China Medical University,2000, 29(4):278-280.
    [27]Xiaowei Lua, Yumei Gub, Dongliang Zhub,c.et al. Promoter methylation status of PTEN, SYK and surviving genes in breast cancer tissues derived from Chinese women[J]. Asian Biomedicine,2009,3(6):595-601.
    [28]Vaid, M.& Floros, J. Surfactant protein DNA methylation:A new entrant in the field of lung cancer diagnostics? (Review) [J].Oncology Reports,2009,21 (9):3-11.
    [29]Crider, K. S., Yang, T. P., Berry, R. J. et al.Folate and DNA Methylation:A Review of Molecular Mechanisms and the Evidence for Folate's Role[J]. Advances in Nutrition,2012,3(9):21-38.
    [30]Zhu, J.& Yao, X. Use of DNA methylation for cancer detection and molecular classification[J] Journal of Biochemistry and Molecular Biology,2007,40 (10):135-141.
    [31]Shanmuganathan, R. Conventional and Nanotechniques for DNA Methylation Profiling[J] Journal of Molecular Diagnostics,2013,15(6):17-26.
    [32]Tanemura A, Terando AM, Sim MS, et al. CpG island methylator phenotype predicts progression of malignant melanoma[J].Clin Cancer Res,2009,15(5):1801-1807.
    [33]Hoebeeck J, Michels E, Pattyn F, et al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma[J].Cancer Lett,2009,273(2):336-46.
    [34]Jarmalaite S, Jankevicius F, Kurgonaite K, et al. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer[J].Oncology,2008,75(3-4):145-151.
    [35]Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells[J].Nature,2002,416(24):552-556.
    [36]Halby, L. Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide[J].Chembiochem,2012,13(4):157-165.
    [37]Chik, F.& Szyf, M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors[J].Carcinogenesis,2011,32(8):224-232.
    [38]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy[J].Clinical epigenetics,2013,32(5):3-3.
    [39]Chen Z, Fan JQ, L i J, et al. Promoter hypermethylation correlates with the H sulfl silencing in human breast and gastric cancer[J].In t J Can cer,2009, 124(3):739-744.
    [40]Baylin SB, Herman JG. DNA hepermethylation in tumorigenesis:epigenetics joins genetics[J].Trends Genet,2000,16(4):168-174.
    [41]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J].Nat Rev Genet,2002,3(6):415-428.
    [42]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J].N Engl J Med,2003,349(21):2042-2054.
    [43]Ohsaka Y, Nishino H. Polymorphisms in the 5'-UTR of PTEN and other gene polymorphisms in normal Japanese individuals[J].Cytology and Genetics,2012, 46(12):74-88.
    [44]Sadeq V, Isar N, Manoochehr T. et al. Association of sporadic breast cancer with PTEN/MMAC1/TEP1 promoter hypermethylation[J].Medical Oncology, 2011,28(3):420-3.
    [45]Sadeq V, Isar N, Manoochehr T. et al. Association of sporadic breast cancer with PTEN/MMAC1/TEP1 promoter hypermethylation[J].Medical Oncology, 2011,28(7):420-3.
    [46]Esteller M. Epigenetic genes silencing in cancer:the DNA hypermethylome[J]. Human Molecular Genetics,2007,16(5):50-59.
    [47]Wen, Y.-G. Mutation analysis of tumor suppressor gene PTEN in patients with gastric carcinomas and its impact on PI3K/AKT pathway [J]. Oncology Reports, 2010,24(8):89-95.
    [48]Kang, Y. H., Lee, H. S.& Kim, W. H. et al.Promoter methylation and silencing of PTEN in gastric carcinoma[J]. Laboratory Investigation,2002,82(7:285-291.
    [49]Hino, R. Activation of DNA Methyltransferase 1 by EBV Latent Membrane Protein 2A Leads to Promoter Hypermethylation of PTEN Gene in Gastric Carcinoma[J]. Cancer Research,2009,69(8):2766-2774.
    [50]Lubecka-Pietruszewska, K., Kaufman-Szymczyk, A., Stefanska, B. et al. Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer[Jj. Biochemical and Biophysical Research Communications,2013,430(11):623-628.
    [51]Freeman SS, Allen SW, Ganti R, et al. Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors[J]. Cancer, 2008,113(6):1453-1461.
    [52]Yim, E.-K. Rak Functions as a Tumor Suppressor by Regulating PTEN Protein Stability and Function[J]. Cancer Cell,2009,15(2):304-314.
    [53]Kristensen, L. S., Nielsen, H. M.& Hansen, L. L. et al.Epigenetics and cancer treatment[J]. European Journal of Pharmacology,2009,625(10):131-142.
    [54]Kim DS, Lee SM, Yoon GS, et al. Infrequent hypermethylation of the PTEN gene in Korean non-small-cell lung cancers[J]. Cancer Science,2010, 101(4):568-572.
    [55]Minor, A., Chow, V.& Ma, S. et al. Association of abnormal DNA methylation at imprinted genes in the sperm of men with severe and very severe oligozoos-permia and genomic variants[J]. Human Reproduction,2011,26(3):1286-1295.
    [56]Yim, E.-K.Rak Functions as a Tumor Suppressor by Regulating PTEN Protein Stability and Function[J].Cancer Cell,2009,15 (4):304-314.
    [57]Lubecka-Pietruszewska, K., Kaufman-Szymczyk, A., Stefanska, B. et al.Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer[J].Biochemical and Biophysical Research Communications,2013,430(11):623-628.
    [58]Nguyen,T.T.P.Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells[J].Breast Cancer Research and Treatment,2011,130(1):73-83.
    [59]朱悦,范广宇,王星铎,等.肿瘤抑癌基因PTEN在骨及软组织肿瘤中的突变[J].中华医学杂志,2001,81(11):715-718.
    [60]Chetram, M. A.& Hinton, C. V. PTEN regulation of ERK1/2 signaling in cancer[J] Journal of Receptors and Signal Transduction,2012,32(6):190-195.
    [61]Billam, M., Sobolewski, M.& Davidson, N. et al. Effects of a novel DNMT inhibitor zebularine on human breast cancer cells. Proceedings of the American Association for Cancer Research[J].Annual Meeting,2008,49(2),619-620.
    [62]Robert MF, Morin S, Beaulieu N, et al. DNMT I is required to maintain CpG methylation and aberrant gene silencing in human cancer cells[J]. Nat Genet, 2003,33(1):61-65.
    [63]Robertson KD,Brown KD. et al. DNMT1 knockout delivers a strong blow to genome stability and cell viability[J]. Nat Genet,2007,39(3):289-290.
    [64]Brueckner B, Kuck D, Lyko E. et al. DNA methyltransferase inhibitors for cancer therapy[J]. Cancer Journal,2007,13(1):17-22.
    [65]Yu JN, Xue CY'Wang XG.et al.5-Aza-2'-deoxycytidine(5-AZA-CdR)leads to down-regulation of Dnmtl and gene expression in preimplantation mouse embryos[J].Zygote,2009,17(2):137-145.
    [66]Dong, S. W. Research on the reactivation of Syk expression caused by the inhibition of DNA promoter methylation in the lung cancer [J].Neoplasma,2011, 58(1):89-95.
    [67]Shuto, A. the esophagus and stomach. Ⅱ. The current status of comprehen-sivegene analysis of esophageal cancer[J].Cancer & chemotherapy,2009,36(8): 1435-1441.
    [68]Silverman LR.Targeting hypomethylation of DNA to achieve cellular differentia tion in myelodysplastic syndromes (MDS) [J]. Oncologist,2001, 6(5):8-14.
    [69]Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histoeompatibility complex-encoded molecules[J]. Cancer lmmunol Immunother,2009,58(4):589-601.
    [70]Zhu, B., Chen, Z. T., Cheng, X. M. et al. Induction of TRAG-3 expression in A549 lung adenocarcinoma cell line by 5-aza-2'deoxyazacytidine[J]. Lung Cancer,2002,38(2):321-322.
    [71]Adair, S. J.& Hogan, K. T. Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules[J].Cancer Immunology Immunotherapy,2009,58(4):589-601.
    [72]Sandra, C-M. et al. Anticancer Activity and Anti-inflammatory Studies of 5-Aryl-l,4-benzodiazepine Derivatives [J].Anti-Cancer Agents in Medicinal Chemistry,2012, (12)5:611-618.
    [73]Coral S, Sigalotti L, Altomonte M, et al.5-aza-2'-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunot herapeutic impl ications. Cl in Cancer Res,2002,8(8):2690-2695.
    [74]Missiaglia E, Donadelli M, Palmieri M, et al. Growth delay of human pancreatic cancer cells by methylase inhibitor 5-aza-2'-deoxycytidine treatment is associat-ed with activation of the interferon signalling pathway[J]. Oncogene,2005, 24(1):199-211.
    [75]Martelli AM, Evangelisti C, Chiarini F, et al. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients [J]. Oncotarget,2010,1 (2):89-103.
    [76]Osaki M, Oshimura M, Ito H. PI3KAkt pathway:its functions and alterations in human cancer [J]. Apoptosis,2004,9(6):667-676.
    [77]Ahlmann, E., Patzakis, M., Roidis, N., et al.Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes[J].Journal of Bone and Joint Surgery-American,2002,84(3):716-720.
    [78]Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin:do all roads pass through mTOR[J]. Oncogene,2006,25(48):6347-60.
    [79]Milton DT, Riely GJ, Azzoli CG, et al. Phase 1 trial of everolimus and gefitinib in patients with advanced non small-cell lung cancer[J]. Cancer,2007, 110(3):599-605.
    [80]Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines [J].Cell Signal,2007, 19(1):129-138.
    [81]Coral S, Sigalotti L, Gasparollo A, et al. Prolonged upregulation of the expressi-on of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2'-deoxycytidine (5-AZA-CdR) [J]. J Immunother,2009, 22(1):16-24.
    [82]Liao, W., McNutt, M. A.& Zhu, W-G. et al. The comet assay:A sensitive method for detecting DNA damage in individual cells[J]. Methods,48(2): 46-53.
    [83]Liu X, Dai X, Wu B. Study of 5-Aza-CdR on transcription regulation of RASSFIA gene in the BIU87 cell line[J].Urol Int,2009,82(1):108-112.
    [84]Otterson, G. A., Hileman, T., Duan, W., et al. Valproic acts as an HDAC inhibitor in cells and works synergistically with the DNMT inhibitor,5-aza-2'-deoxycytidine[J].Proceedings of the American Association for Cancer Research Annual Meeting,2004,45(7):368-368.
    [85]Momparler, R. L. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine) [J]. Seminars in Oncology,200532(7):443-451.
    [86]Shi XB, Chen AM, Cai XH, et al. Establishment and characterization of cell sublines with high and low metastatic potential derived from human osteosarcoma[J]. Chinese Medical Journal.2005;118(8):687-690.
    [87]Yagi, S.5-aza-2'-deoxycytidine restores proapoptotic function of p53 in cancer cells resistant to p53-induced apoptosis[J]. Cancer Investigation,2008,26(7): 680-688.
    [88]Ren, J.-z.& Huo, J.-r.5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice[J]. Chinese journal of oncology,2012,34(3):6-10.
    [89]Christoph, F. et al. Methylation of tumour suppressor genes APAF-1 andDAPK-1 and in vitro effects of demethylating agents in bladder and kidneycancer[J]. British Journal of Cancer,2006,95(12):1701-1707.
    [90]Hassler, M. R. et al. Antineoplastic activity of the DNA methyltransferase inhibitor5-aza-2'-deoxycytidine in anaplastic large cell lymphoma[J]. Biochimie, 2012,94(22):2297-2307.
    [91]Lu, F. et al. Synergistic effect of DNA methylation inhibitor and histone deacety-lase inhibitor on RASSFIA gene expression in U266 cells [J]. Zhonghua xue ye xue za zhi,2010,31(9):223-227.
    [92]ShenW J, Dai DQ, Teng Y, et a.l Regulation of demethylation and re-expression of RASSFIA gene in gene in gastric cancer cell lines by combined treatment of 5-Aza-CdR and Nab[J]. World J.Gastroentero,2008,14(4):595-600.
    [93]Lee E J, Lee BB, K im SJ, et a.l Histone deacetylase inhibitor scriptaid Induces cell cycle arrest and epigen et ic change in colon cancer cells[J]. Int J.Onco,2008,33 (4):767-776.
    [94]Fuka iK, Yokosuk aO, Ch ib aT, et al. Hepatocyte grow th factor activator Inhibitor 2/placental bikunin(HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma[J].Can cer Res,2003,63(24):8674-8679.
    [95]Buckstein R, Yee K, Wells RA.5-azacytidine in myelodysplastic syndromes: A clinical practice guideline[J].Cancer Treat Rev,2011,37(2):160-167.
    [96]Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome:A study of the cancer and leukemia group B[J].J Clin Oncol,2002,20(10):2429-2440.
    [97]Soriano A, Yang H, Faderl S, et al. Safety and clinical activity of the combina-tion of 5-azacytidine, valproic acid, and all trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome[J].Blood,2007 110(7):2302-2308.
    [98]Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes[J].J Clin Oncol,2009,27(11):1850-1856.
    [99]Zhang C, Li K, Wei L, et al. p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma[J]. J Clin Pathol,2007,60(11):1249-1253.
    [100]Bruserud,O.,K.J.Tronstad,and R.Berge,In vitro culture of human osteosarcoma cell lines:a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum[J]. J Cancer Res Clin Oncol,2005.131 (6):34-40.
    [101]Griffiths EA, Gore SD. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes[J].Semin Hematol, 2008,45(1):23-30.
    [102]Shinojima, T. Heterogeneous epigenetic regulation of TIMP3 in prostate cancer [J].Epigenetics,2012,56(7):1279-1289.
    [103]Schmelz K, Sattler N, Wagner M, et al. Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and-independent mechanisms[J]. Leukemia,2005,19(1):103-111.
    [104]Old Y, Issa J EReview:Recent clinical trials in epigenefic therapy[J].Rev Recent Clin Trials,2006,1(2):169-82.
    [105]师长宏,施新猷,朱德生等.LJH-OS人骨肉瘤裸鼠原位移植模型的建立及其生物学特性[J].中国实验动物学报,1999,7(2):102-106.
    [106]Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival and reduces infections and hospitalizations in patients with WHO-defin-ed acute myeloid leukaemia compared with conventional care regimens:an up-date[J]. cancer medical science,2008,24(2):121.
    [107]G,tze K, Platzbecker U, Giagounidis A, et al. Azacitidine for treatment of patients with myelodysplastic syndrome practical recommendations of the german MDS study group[J].Ann Hematol,2010,89(9):841-850.
    [108]Silverman LR, Fenaux P, Mufti GJ, et al. Continued azacitidine therapy beyond time of first response improves quality of response in patients with higher-risk myelo dysplastic syndromes[J]. Cancer,2011,117(12):2697-2702.
    [109]Gurion R, Vidal L, Gafter-Gvili A, et al.5-azacitidine prolongs overall survival in patients with myelodysplastic syndrome a systematic review and meta-analy-sis [J]. Haematologica,2010,95(2):303-310.
    [110]Muller-Thomas C, Schuster T, Peschel C, et al. A limited number of 5-azaci tidine cycles can be effective treatment in MDS[J].Ann Hematol,2009,88(3): 213-219.
    [111]Silverman LR, Mckenzie DR, Peterson BL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome:Studies 8421,8921, and 9221 by the cancer and leukemia groupB[J].J Clin Oncol,2006,24(24): 3895-3903.
    [112]Buckstein R, Yee K, Wells RA. et al.5-azacytidine in myelodysplastic syndr-omes:A clinical practice guideline[J].Cancer Treat Rev,2011,37(2): 160-167.
    [113]Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes[J].J Clin Oncol,2009,27 (11):1850-1856.
    [114]Shinojima, T. Heterogeneous epigenetic regulation of TIMP3 in prostate cancer [J].Epigenetics,2012,20(7):1279-1289.
    [115]Momparle,Zhai,F.-X.RUNX3 is involved in caspase-3-dependent apoptosis ind-uced by acombination of 5-aza-CdR and TSA in leukaemia cell lines[J] Journal of CancerResearch and Clinical Oncology,2012,138(8):439-449.
    [116]Jiang, L.-y., Lian, M., Wang, H. et al. Inhibitory Effects of 5-Aza-2'-Deoxycy-tidine and Trichostatin A in Combination with p53-Expressing Adenovirus on Human Laryngocarcinoma Cells[J].Chinese Journal of Cancer Research, 2012,24(12):232-237.
    [117]Fan, B., Zhang, C. The Silencing of RECK Gene is Associated with Promoter Hypermethylation and Poor Survival in Hepatocellular Carcinoma[J]. Interna-tional Journal of Biological Sciences,2012,24(8):451-458.
    [118]Shang D, Liu Y Liu Q, et al. Synergy of 5-aza-2'-deoxycytidine(DAC)and paclitaxel in both androgen dependent and independent prostate cancer cell lines[J].Cancer Lett,2009,278(1):82-87.
    [119]Gorica Nikoloski, Bert A. van der Reijden, Joop H. et al. Jansen. Mutations in epigenetic regulators in myelodysplastic syndromes[J].Int J Hematol,2012,95 (1):8-16.
    [120]Chiam, K.,Lubbert M, Bertz H, Ruter B, et al. Non-intensive treatment with low-dose 5-aza-2'-deoxycytidine(DAC)prior to allogeneic blood SCT of older MDS/AML patients[J].Bone Marrow Transplant,2009,13(6):1476-5365.
    [121]Lemaire, M.,Gore SD. New Ways to Use DNA Methyltransferase Inhibitors for the Treatment of Myelodysplastic Syndrome[J].Hematology Am Soc Hematol Educ Program,2011,18(9):550-555.
    [122]Otterson, Gore SD, B aylin S, Sugar E, et al. Comb ined DNA m ethyltran sferase and histone deacety lase inh ib ition in the treatment of myeloid neoplasms[J].Cancer Res,2006,66(12):6361-6369.
    [123]Chiam, K., Garcia-M anero G, K antarjianHM.et al. Phase 1/2 study of the com bination of 5-Aza-2'-deoxycytidine with valproicacid in patients with leukemia [J]. Blood,2006,108(10):3271-3279.
    [124]Yagi,S.,Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodyna-mic analysis of 5-Aza-2'-deoxycytidine (decitabine) in the design of its dosesch-edule for cancer therapy[J].Clinical epigenetics,2013,16(5):3-3.
    [125]Ren, J., Javier Bola-nos-Meade, B. Douglas Smith.5-Azacytidine as Salvage Treatment in Relapsed Myeloid Tumors after Allogeneic Bone Marrow Transp-lantation [J].Biol Blood Marrow Transplant,2011,17(5):754-748.
    [126]Christoph, F.,San Miguel Amigo L,Franco Osorio R,et al.Azacitidine adverse effects in patients with myelodysplastic syndromes[J].Adv Ther,2011,28(14):6-11.
    [127]Hassler, M.,Martinez-Frances A.Adverse effects of azacitidine:Onset, duration, and treatment[J].Adv Ther,2011,28(14):1-5.
    [128]Lu, F.,Liao, W., McNutt, M. A.et al. The comet assay:A sensitive method for detecting DNA damage in individual cells[J].Methods,2009,48(12):46-53,
    [129]Wang,L.-F.,Huang,S.,Huang,C, et al. Effect of 5-Aza-CdR on biologicalactivity and inhibitor of DNA binding 4 gene expression in human erythroleu kemia cell line K562[J] Journal of experimental hematology/ChineseAssociation of Pathophysiology,2011,19(8):1388-1392.
    [130]Ren, J.-Z.& Huo, J.-R. Effect of 5-Aza-CdR on expression and methylation of E-cadherin gene in human colon carcinoma cells[J].Chinese journal of cancer, 2010,29(5):28-42.
    [131]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy[J].Clinical epigenetics,2013,28(5):3-9.
    [132]Aguissa-Toure, A.-H., Li, G. et al. Genetic alterations of PTEN in human melanoma[J]. Cellular and Molecular Life Sciences,2012,69(4):1475-1491.
    [133]Li, B.,Yang,Yuehua.Adenovirus-mediated overexpression of BMP-9 inhibits hu-man osteosarcoma cell growth and migration through downregulation of the PI3 K/AKt pathway[J].International Journal of Oncology,2012,41(5):1809-1819.
    [1]Baylin SB, Herman JG DNA hepermethylation in tumorigenesis:epigenetics joins genetics[J]. Trends Genet,2000,16(4):168-174.
    [2]Momparler RL, Bovenzi V. DNA methylation and cancer[J]. J Cell Physiol, 2000,183(2):145-154.
    [3]Aguissa-Toure, A.-H.& Li, G. et al. Genetic alterations of PTEN in human melanoma[J].Cellular and Molecular Life Sciences,2012,69(11):1475-1491.
    [4]Salmena, L., Carracedo, A.& Pandolfi, P. P. et al.Tenets of PTEN tumor suppression[J]. Cell,2008,133(4):403-414.
    [5]Keniry, M.& Parsons, R. The role of PTEN signaling perturbations in cancer and in targeted therapy[J]. Oncogene,2008,27(2):5477-5485.
    [6]Yin, Y.& Shen, W. H. PTEN:a new guardian of the genome[J]. Oncogene,2008, 27(2):5443-5453.
    [7]Mc Cubrey, J. A.Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors:How Mutations Can Result in Therapy Resistance and How to Overcome Resistance[J].Oncotarget,2012,3(2):1068-1111.
    [8]Aguissa-Toure, A.-H.& Li, G. Genetic alterations of PTEN in human melanoma[J].Cellular and Molecular Life Sciences,2012,69(12):1475-1491.
    [9]Salmena, L., Carracedo, A.& Pandolfi, P. P. et al.Tenets of PTEN tumor suppression[J].Cell,2008,133(4):403-414.
    [10]Keniry, M.& Parsons, R. The role of PTEN signaling perturbations in cancer and in targeted therapy[J].Oncogene,2008,27(2):5477-5485.
    [11]Knobbe, C. B., Lapin, V., Suzuki, A. et al.The roles of PTEN in development, physiology and tumorigenesis in mouse models:a tissue-by-tissue survey[J].Oncogene,27(2):5398-5415.
    [12]Heald, B. Frequent Gastrointestinal Polyps and Colorectal Adenocarcinomas in a Prospective Series of PTEN Mutation Carriers[J].Gastroenterology, 2010.139(6):1927-1933.
    [13]Ming, M.& He, Y.-Y. PTEN:New Insights into Its Regulation and Function in Skin Cancer[J] Journal of Investigative Dermatology,2009,129(7):79.
    [14]Ming, M.& He, Y.-Y. PTEN in DNA damage repair[J].Cancer Letters,2009, 319(01):125-129.
    [15]Buckler, J. L., Liu, X.& Turka, L. A. et al.Regulation of T-cell responses by PTEN[J].Immunological Reviews,2008,224(6):239-248.
    [16]Wang, X.& Jiang, X. PTEN:a default gate-keeping tumor suppressor with a versatile tail[J].Cell Research,2008,18(8):807-816.
    [17]Okumura, N., Yoshida, H., Kitagishi, Y. et al.Alternative splicings on p53, BRCA1 and PTEN genes involved in breast cancer[J].Biochemical and Biophysical Research Communications,2011,413(8):395-399.
    [18]Ciuffreda, L., McCubrey, J. A.& Milella, M. et al. Signaling Intermediates (PI3K/PTEN/AKT/mTOR and RAF/MEK/ERK Pathways) as Therapeutic Targets for Anti-Cancer and Anti-Angiogenesis Treatments [J]. Current Signal Transduction Therapy,2009,4(5):130-143.
    [19]Chetram, M. A.& Hinton, C. V. PTEN regulation; of ERK1/2 signaling in cancer[J] Journal of Receptors and Signal Transduction,2012,32(11):190-195.
    [20]Zhang, P., Chen, J.-h.& Guo, X.-1. et al. New insights into PTEN regulation mechanisms and its potential function in targeted therapies[J].Biomedicine & Pharmacotherapy,2012,66(4):485-490.
    [21]Bonavida, B.& Baritaki, S. The Novel Role of Yin Yang 1 in the Regulation of Epithelial to Mesenchymal Transition in Cancer Via the Dysregulated NF-kappa B/Snail/YY1/RKIP/PTEN Circuitry [J].Critical Reviews in Oncogenesis, 2011,16(5),211-226.
    [22]Carico, C. Loss of PTEN Is Not Associated with Poor Survival in Newly Diagnosed Glioblastoma Patients of the Temozolomide Era[J].Plos One, 2012,7(3):145-153.
    [23]Hafsi, S.Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (Review) [J].International Journal of Oncology,2012,40(13), 639-644.
    [24]Mester, J. L., Zhou, M., Prescott, N. et al. Papillary Renal Cell Carcinoma Is Associated With PTEN Hamartoma Tumor Syndrome[J].Urology,2011,79(11): 185-194.
    [25]Lertkhachonsuk, R., Tantbirojn, P.& Paiwattananupant, K. et al. PTEN and MDM2 Expression in the Prediction of Postmolar Gestational Trophoblastic Neoplasia[J].Journal of Reproductive Medicine,2012,57(12):333-340.
    [26]Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis [J]. Biophysical Acta,2007,24 (12):1-9.
    [27]Assinder, S. J., Dong, Q., Kovacevic, Z. et al. The TGF-beta, PI3K/Akt and PTEN pathways:established and proposed biochemical integration in prostate cancer [J].Biochemical Journal,2009,417(16):411-421.
    [28]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation [J].N Engl J Med,2003,349 (21):2042-2054.
    [29]Vaid, M.& Floros, J. Surfactant protein DNA methylation:A new entrant in the field of lung cancer diagnostics? (Review) [J].Oncology Reports,2009,21(9): 3-11.
    [30]Crider, K. S., Yang, T. P., Berry, R. J. et al.Folate and DNA Methylation:A Review of Molecular Mechanisms and the Evidence for Folate's Role[J]. Advances in Nutrition,2012,3(9):21-38.
    [31]Zhu, J.& Yao, X. Use of DNA methylation for cancer detection and molecular classification[J] Journal of Biochemistry and Molecular Biology,2007,40 (10):135-141.
    [32]Shanmuganathan, R. Conventional and Nanotechniques for DNA Methylation Profiling[J].Journal of Molecular Diagnostics,2013,15(6):17-26.
    [33]Tanemura A, Terando AM, Sim MS, et al. CpG island methylator phenotype predicts progression of malignant melanoma[J].Clin Cancer Res,2009,15(5):1801-1807.
    [34]Hoebeeck J, Michels E, Pattyn F, et al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma[J].Cancer Lett,2009,273(2):336-46.
    [35]Jarmalaite S, Jankevicius F, Kurgonaite K, et al. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer[J].Oncology,2008,75(3-4):145-151.
    [36]Peterson, L. M. Molecular Characterization of Endometrial Cancer:A Correlative Study Assessing Microsatellite Instability, MLH1 Hypermethylation, DNA Mismatch Repair Protein Expression, and PTEN, PIK3CA, KRAS, and BRAF Mutation Analysis[J].International Journal of Gynecological Pathology, 2012,31(5):195-205.
    [37]Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells[J].Nature,2002,416(24):552-556.
    [38]Halby, L. Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide[J].Chembiochem,2012,13(4):157-165.
    [39]Chik, F.& Szyf, M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors[J].Carcinogenesis,2011,32(8):224-232.
    [40]Peterson LM, Kipp BR, Halling KC, et al. Molecular Characterization of Endometrial Cancer:A Correlative Study Assessing Microsatellite Instability, MLH1 Hypermethylation, DNA Mismatch Repair Protein Expression, and PTEN, PIK3CA, KRAS, and BRAF Mutation Analysis[J].International Journal of Gynecological Pathology,2012,31(6):195-205.
    [41]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy[J].Clinical epigenetics,2013,32(5):3-3.
    [42]Chen Z, Fan JQ, L i J, et al. Promoter hypermethylation correlates with the H sulfl silencing in human breast and gastric cancer[J].In t J Can cer,2009, 124(3):739-744.
    [43]Baylin SB, Herman JG. DNA hepermethylation in tumorigenesis:epigenetics joins genetics[J].Trends Genet,2000,16(4):168-174.
    [44]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J].Nat Rev Genet,2002,3(6):415-428.
    [45]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J].N Engl J Med,2003,349(21):2042-2054.
    [46]McEllin, B.PTEN Loss Compromises Homologous Recombination Repair in Astrocytes:Implications for Glioblastoma Therapy with Temozolomide or Poly(ADP-Ribose) Polymerase Inhibitors[J]. Cancer Research,2010,70(9): 5457-5464.
    [47]Esteller M. Epigenetic genes silencing in cancer:the DNA hypermethylome[J]. Human Molecular Genetics,2007,16(5):50-59.
    [48]Wen, Y.-G et al. Mutation analysis of tumor suppressor gene PTEN in patients with gastric carcinomas and its impact on PI3K/AKT pathway [J].Oncology Reports,2010,24(8):89-95.
    [49]Kang, Y. H., Lee, H. S.& Kim, W. H. et al.Promoter methylation and silencing of PTEN in gastric carcinoma[J]. Laboratory Investigation,2002,82(7:285-291.
    [50]Hino, R.Activation of DNA Methyltransferase 1 by EBV Latent Membrane Protein 2A Leads to Promoter Hypermethylation of PTEN Gene in Gastric Carcinoma[J]. Cancer Research,2009,69(8):2766-2774.
    [51]Ioffe,Y.J.,Chiappinelli,K.B.,Mutch,D.G,et al.Phosphatase and tensin homolog (PTEN) pseudogene expression in endometrial cancer:a conserved regulatory mechanism important in tumorigenesis?[J].Gynecologic Oncology,2012,124 (10):340-346.
    [52]Kim DS, Lee SM, Yoon GS, et al. Infrequent hypermethylation of the PTEN gene in Korean non-small-cell lung cancers[J]. Cancer Science,2010, 101(4):568-572.
    [53]Wang, C., Yang, R., Yue, D. et al. Expression of FAK and PTEN in Bron-chioloalveolar Carcinoma and Lung Adenocarcinoma[J].Lung,2009,187(8): 104-109.
    [54]Alvi, M. A. DNA Methylation as an Adjunct to Histopathology to Detect Prevalent, Inconspicuous Dysplasia and Early-Stage Neoplasia in Barrett's Esophagus[J].Clinical cancer research:an official journal of the American Association for Cancer Research,2013,19(12):878-888.
    [55]Rahmani,A.,Alzohairy, M., Babiker, A.Y.,et al.Clinicopathological significance of PTEN and bcl2 expressions in oral squamous cell carcinoma[J]. International Journal of Clinical and Experimental Pathology,2012,5(7):965-971.
    [56]Huang, K.-H.Methylation of RASSF1A, RASSF2A, and HIN-1 Is Associated with Poor Outcome after Radiotherapy, but not Surgery, in Oral Squamous Cell CarcinomaClinical Cancer Research,2009,15(8):4174-4180.
    [57]Sadeq V, Isar N, Manoochehr T. et al. Association of sporadic breast cancer with PTEN/MMAC1/TEP1 promoter hypermethylation[J].Medical Oncology, 2011,28(3):420-3.
    [58]Rizvi, M. M. A. Aberrant promoter methylation and inactivation of PTEN gene in cervical carcinoma from Indian population[J] Journal of Cancer Research and Clinical Oncology,2011,137(11):1255-1262.
    [59]Bonavida, B.& Baritaki, S. The Novel Role of Yin Yang 1 in the Regulation of Epithelial to Mesenchymal Transition in Cancer Via the Dysregulated NF-kappa B/Snail/YY1/RKIP/PTEN Circuitry[J].Critical Reviews in Oncogenesis,2011, 16(2):211-226.
    [60]Freeman SS, Allen SW, Ganti R, et al. Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors[J]. Cancer, 2008,113(6):1453-1461.
    [61]Yim, E.-K. Rak Functions as a Tumor Suppressor by Regulating PTEN Protein Stability and Function[J]. Cancer Cell,2009,15(2):304-314.
    [62]朱悦,范广宇,王星铎,等.肿瘤抑癌基因PTEN在骨及软组织肿瘤中的突变[J].中华医学杂志,2001,81(11):715-718.
    [63]Yim, E.-K.Rak Functions as a Tumor Suppressor by Regulating PTEN Protein Stability and Function[J].Cancer Cell,2009,15(4):304-314.
    [64]Lahtz, C., Stranzenbach, R., Fiedler, E., et al.Methylation of PTEN as a Prognostic Factor in Malignant Melanoma of the Skin[J] Journal of Investig-ative Dermatology,2010,130(2):620-622.
    [65]Kristensen, L. S., Nielsen, H. M.& Hansen, L. L. et al.Epigenetics and cancer treatment[J]. European Journal of Pharmacology,2009,625(10):131-142.
    [66]Mueller, S. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome[J].Neuro- Oncology,2012,14(8):1146-1152.
    [67]Dai, F., Zhang, Y., Zhu, X., et al.Anticancer role of MUC1 aptamer-miR-29b chimera in epithelial ovarian carcinoma cells through regulation of PTEN methylation[J].Targeted Oncology,2012,7(12):217-225.
    [68]Villa-Moruzzi, E. PTPN12 controls PTEN and the AKT signalling to FAK and HER2 in migrating ovarian cancer cells[J].Molecular and Cellular Biochemistry, 2013,375(18):151-157.
    [69]Colacino, J. A. Comprehensive Analysis of DNA Methylation in Head and Neck Squamous Cell Carcinoma Indicates Differences by Survival and Clinicopat-hologic Characteristics[J].Plos One,2013,8(14):324-332.
    [70]Russo,D.,Damante,G.,Puxeddu,E.,et al.Epigenetics of thyroid cancer and novel therapeutic targets [J]. Journal of Molecular Endocrinology,2011,46(7):R73-R81.
    [71]Bennett, K. L.Germline and Somatic DNA Methylation and Epigenetic Regulation of KILLIN in Renal Cell Carcinoma[J].Genes Chromosomes & Cancer,2011,50(10):654-661.
    [1]Baylin SB, Herman JG. DNA hepermethylation in tumorigenesis:epigenetics joinsgenetics. Trends Genet,2000,16(4):168-174.
    [2]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002,3(6):415-428.
    [3]Hoebeeck J, Michels E, Pattyn F, et al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett.2009,273(2):336-46.
    [4]MOMPARLER R L. Epigenetic therapy of cancer with 5-Aza-2'-deoxycy tidine (decitabine)[J]. Semin Oncol,2005,32(5):443-451.
    [5]Medina-Franco JL,Caulfield T.Advances in the computational development of DNA methyltransferase inhibitors [J].Drug Discov Today,2011,16(10):418-425.
    [6]Sekeres MA, Steensma DP. Defining prior therapy in myelodysplastic syndromesand criteria for relapsed and refractory disease:implications for clinical trialdesign and enrollment[J].Blood,2009,114(13):2575-2580.
    [7]Lubbert M, Suciu S, Baila L, et al. Low-dose decitabine versus best supportivecare in elderly patients with intermediate-or highrisk myelodysplastic syndrome(MDS) ineligible for intensive chemotherapy:final results of the randomizedphase Ⅲ study of the European Organisation for Research and Treatment ofCancer Leukemia Group and the German MDS Study[J]. J Clin Oncol,2011,29(15):1987-1996.
    [8]Zhu,Wei-Guo;Otterson,Gregory A.The interaction of histone deacetylase inhibi-tors and DNA methyltransferase inhibitors in the treatment of human cancer cells[J].Current Medicinal Chemistry-Anti-Cancer Agents,2003,3(3):187-199.
    [9]Momparler RL. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine) [J]. Seminars in Oncology,2005,32(5):443-451.
    [10]Karahoca, Metin; Momparler, Richard L,et al. Pharmacokinetic and pharmaco-dy namic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dosesche dule for cancer therapy [J]. Clinical epigenetics,2013,5(1):3.
    [11]Flotho C,Claus R,Batz C,et al.The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells[J].Leukemia,2009,23(6):1019-1028.
    [12][Medina-Franco JL, Caulfield T.Advances in the computational development of DNA methyltransferase inhibitors[J].Drug DiscovToday,2011,16(10):418-425.
    [13]Dion,V.Genome-wide demethylation promotes triplet repeat instability indepen-dently of homologous recombination[J].DNA Repair,2008,7(11):313-320.
    [14]Huang, G. X., Koshkina, N. V.& Kleinerman, E. S. et al. Fas Expression in Metastatic Osteosarcoma Cells Is Not Regulated by CpG Island Methylation[J]. Oncology Research,2009,18(2):31-39.
    [15]Billam, M., Sobolewski, M.& Davidson, N. et al. Effects of a novel DNMT inhibitor zebularine on human breast cancer cells. Proceedings of the American Association for Cancer Research[J].Annual Meeting,2008,49(2),619-620.
    [16]Yu JN, Xue CY'Wang XG.et al.5-Aza-2'-deoxycytidine(5-AZA-CdR)leads to down-regulation of Dnmtl and gene expression in preimplantation mouse embryos[J].Zygote,2009,17(2):137-145.
    [17]SzyfM. Targeting DNA methylation in cancer. Bull Cancer,2006,93(9):961-972.
    [18]Robert MF, Morin S, Beaulieu N, et al. DNMT I is required to maintain CpG methylation and aberrant gene silencing in human cancer cells[J]. Nat Genet, 2003,33(1):61-65.
    [19]Brueckner B, Kuck D, Lyko E. et al. DNA methyltransferase inhibitors for cancer therapy[J]. Cancer Journal,2007,13(1):17-22.
    [20]Dong,S.W.Research on the reactivation of Syk expression caused by the inhibition of DNA promoter methylation in the lung cancer[J].Neoplasma, 2011,58(1):89-95.
    [21]Shuto, A. the esophagus and stomach. Ⅱ. The current status of comprehensive gene analysis of esophageal cancer[J].Cancer & chemotherapy,2009,36(8): 1435-1441.
    [22]Robertson KD,Brown KD. et al. DNMT1 knockout delivers a strong blow to genome stability and cell viability[J]. Nat Genet,2007,39(3):289-290.
    [23]Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histoeompatibility complex-encoded molecules[J]. Cancer lmmunol lmmunother,2009,58(4):589-601.
    [24]Zhu, B., Chen, Z. T., Cheng, X. M. et al. Induction of TRAG-3 expression in A549 lung adenocarcinoma cell line by 5-aza-2'-deoxyazacytidine[J]. Lung Cancer,2002,38(2):321-322.
    [25]Adair, S. J.& Hogan, K. T. Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules[J].Cancer Immunology Immunothera-py,2009,58(4):589-601.
    [26]Sandra, C-M. Anticancer Activity and Anti-inflammatory Studies of 5-aza-2'-deoxycytidine Derivatives [J]. Anti-Cancer Agents in Medicinal Chemistry,2012, (12)5:611-618.
    [27]Liu, Z. Multipoint quantification of multimarker genes in peripheral blood and micrometastasis characteristic in peri-operative esophageal cancer patients. Cancer Letters[J].2008,261 (1):46-54.
    [28]Silverman LR.Targeting hypomethylation of DNA to achieve cellular differentia tion in myelodysplastic syndromes (MDS) [J]. Oncologist,2001, 6(5):8-14.
    [29]Mengus, C.MAGE-A10 cancer/testis antigen is highly expressed in high-grade non-muscle-invasive bladder carcinomas [J]. International Journal of Cancer, 132(10):2459-2463.
    [30]Chen, Z. T, Zhu, B.& Wu, Y. Z. et al.Expression of TRAG-3 antigen in non-small-cell lung carcinomas[J].Lung Cancer,2002 38(1):101-102.
    [31]Coral S,Sigalotti L,Gasparollo A, et al. Prolonged upregulation of the expressi-on of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2'-deoxycytidine (5-AZA-CdR)[J].J lmmunother,2009,22(1): 16-24.
    [32]Tavis, John E. Cheng, Xiaohong.The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes[J].PLOS PATHOGENS,2013,9(1):45-49.
    [33]Parmenopoulou,V.Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis, biochemical, and structural evaluation[J].Bioorganic & Medicinal Chemistry,2012,9(1):7184-7193.
    [34]Missiaglia E, Donadelli M, Palmieri M, et al. Growth delay of human pancreatic cancer cells by methylase inhibitor 5-aza-2'-deoxycytidine treatment is associat-ed with activation of the interferon signalling pathway[J]. Oncogene,2005, 24(1):199-211.
    [35]Otterson, G. A., Hileman, T., Duan, W., et al. Valproic acts as an HDAC inhibitorin cells and works synergistically with the DNMT inhibitor, 5-aza-2'-deoxycytidine[J].Proceedings of the American Association for Cancer Research Annual Meeting,2004,45(7):368-368.
    [36]Momparler, R. L. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine) [J]. Seminars in Oncology,2005 32(7):443-451.
    [37]Garcia-M anero G, K antarjianHM, S anchez-GonzalezB, et al. Phasel/2 study of the combination of 5-aza-2c-deoxycytidine with valproic acid in patients with leukemia[J]. Blood,2006,108(10):3271-3279.
    [38]Soulieres, D. Phase II study on 5-aza-2'-deoxycytidine (decitabine) therapy in patients with stage IIIB/V non-small cell lung cancer (NSCLC) [J]. Annals of Oncology,200415(3):182-182.
    [39]Chai, G HDAC Inhibitors Act with 5-aza-2'-Deoxycytidine to Inhibit Cell Proliferation by Suppressing Removal of Incorporated Abases in Lung Cancer Cells[J]. Plos One,2008,3(6):464-470.
    [40]Kang, H.-F. RUNX3 gene promoter demethylation by 5-Aza-CdR induces apoptosis in breast cancer MCF-7 cell line[J]. Oncotargets and Therapy, 2013,6:411-417.
    [41]Zhai, F.-X. RUNX3 is involved in spase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines [J]. Journal of Cancer Research and Clinical Oncology,2012,138(8),439-449.
    [42]Chiam, K., Centenera, M. M., Butler, L. M., et al. GSTP1 DNA methylation and expression status is indicative of 5-aza-2'-deoxycytidine efficacy in human prostate cancer cells[J]. PloS one,2011,25(6), e25634-e25634.
    [43]Li, X.-Y. Blockade of DNA methylation enhances the therapeutic effect of gefitinib in non-small cell lung cancer cells[J],Oncology Reports 29:1975-1982.
    [44]Fan, X. P. Methylation status of the PTEN gene in adenoid cystic carcinoma cells[J]. Molecular Medicine Reports,2010,12(3):775-779.
    [45]Chiam, K., Centenera, M. M., Butler, L. M. et al. GSTP1 DNA Methylation and Expression Status Is Indicative of 5-aza-2'-Deoxycytidine Efficacy in Human Prostate Cancer Cells[J]. Plos One,2011,14(6):123-134.
    [46]Yagi,S.5-aza-2'-deoxycytidine restores proapoptotic function of p53 in cancer cells resistant to p53-induced apoptosis[J].Cancer Investigation,2008,26(7):680-688.
    [47]Ren, J.-z.& Huo, J.-r.5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice[J]. Chinese journal of oncology,2012,34(3):6-10.
    [48]Christoph, F. et al. Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer[J].British Journal of Cancer,2006,95(12):1701-1707.
    [49]Hassler, M. R. et al. Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine in anaplasticlarge cell lymphoma[J]. Biochi-mie,2012,94(22):2297-2307.
    [50]Lu, F. et al. Synergistic effect of DNA methylation inhibitor and histone deacety-lase inhibitor on RASSF1A gene expression in U266 cells[J]. Zhonghua xue ye xue za zhi,2010,31(9):223-227.
    [51]Liao, W., McNutt, M. A.& Zhu, W.-G. The comet assay:A sensitive method for detecting DNA damage in individual cells. Methods,2009,48(1):46-53.
    [52]Zheng, Z. et al.5-Aza-2'-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins. Faseb Journal,2012 26 (3):449-459.
    [53]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-Aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clinical epigenetics,2013,5(1):3-3.
    [54]Ramos, E. A. S. et al. Epigenetic Changes of CXCR4 and Its Ligand CXCL12 as Prognostic Factors for Sporadic Breast Cancer. Plos One,2011,6 (12): 1454-1459.
    [55]Fuka iK, Yokosuk aO, Ch ib aT, et al. Hepatocyte grow th factor activator Inhibitor 2/placental bikunin(HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma[J].Can cer Res,2003,63(24):8674-8679.
    [56]Lee E J, Lee BB, K im SJ, et a.l Histone deacetylase inhibitor scriptaid Induces cell cycle arrest and epigen et ic change in colon cancer cells[J].Int J.Onco, 2008,33 (4):767-776.
    [57]Shinojima, T. Heterogeneous epigenetic regulation of TIMP3 in prostate cancer [J].Epigenetics,2012,20(7):1279-1289.
    [58]Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome:A study of the cancer and leukemia group B[J].J Clin Oncol,2002,20(10):2429-2440.
    [59]Schmelz K, Sattler N, Wagner M, et al. Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and-independent mechanisms[J]. Leukemia,2005,19(1):103-111.
    [60]Soriano A, Yang H, Faderl S, et al. Safety and clinical activity of the combina-tion of 5-azacytidine, valproic acid, and all trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome[J].Blood,2007 110(7):2302-2308.
    [61]Buckstein R, Yee K, Wells RA.5-azacytidine in myelodysplastic syndromes: A clinical practice guideline [J].Cancer Treat Rev,2011,37(2):160-167.
    [62]Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes[J].J Clin Oncol,2009,27 (11):1850-1856.
    [63]Griffiths EA,Gore SD. DNA methyltransferase and histone deacetylase inhibit- tors in the treatment of myelodysplastic syndromes[J].Semin Hematol,2008,45 (1):23-30.
    [64]Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival and reduces infections and hospitalizations in patients with WHO-defined acute myeloid leukaemia compared with conventional care regimens:an up-date[J]. cancer medical science,2008,24(2):121.
    [65]G,tze K, Platzbecker U, Giagounidis A, et al-Azacitidine for treatment of patients with myelodysplastic syndrome practical recommendations of the german MDS study group[J].Ann Hematol,2010,89(9):841-850.
    [66]Silverman LR, Fenaux P, Mufti GJ, et al. Continued azacitidine therapy beyond time of first response improves quality of response in patients with higher-risk myelodysplastic syndromes[J]. Cancer,2011,117(12):2697-2702.
    [67]Zhai, F.-X. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines[J] Journal of Cancer Research and Clinical Oncology,2012,138(8):439-449.
    [68]Jiang, L.-y., Lian, M., Wang, H. et al. Inhibitory Effects of 5-Aza-2'-Deoxycy-tidine and Trichostatin A in Combination with p53-Expressing Adenovirus on Human Laryngocarcinoma Cells [J]. Chinese Journal of Cancer Research, 2012,24(12):232-237.
    [69]Gurion R, Vidal L, Gafter-Gvili A, et al.5-azacitidine prolongs overall survival in patients with myelodysplastic syndrome a systematic review and meta-analy-sis [J]. Haematologica,2010,95(2):303-310.
    [70]Buckstein R, Yee K, Wells RA. et al.5-azacytidine in myelodysplastic syndr-omes:A clinical practice guideline [J].Cancer Treat Rev,2011,37(2):160-167.
    [71]Old Y, Issa J EReview:Recent clinical trials in epigenefic therapy [J].Rev Recent Clin Trials,2006,1(2):169-82.
    [72]Muller-Thomas C, Schuster T, Peschel C, et al. A limited number of 5-azaci tidine cycles can be effective treatment in MDS [J].Ann Hematol,2009,88 (3): 213-219.
    [73]Silverman LR, Mckenzie DR, Peterson BL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome:Studies 8421,8921 and 9221 by the cancer and leukemia groupB[J].J Clin Oncol,2006,24 (24):3895-3903.
    [74]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy[J].Clinical epigenetics,2013,16(5):3-3.
    [75]Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes[J].J Clin Oncol,2009,27 (11):1850-1856.
    [76]Karahoca, M.& Momparler, R. L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy[J].Clinical epigenetics,2013,28(5):3-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700