咪唑类离子液体表面印迹聚合物的制备、性能及在环境样品前处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体由于具有极低的蒸汽压、几乎不挥发、电化学窗口宽、结构可调控等优点,近年来作为可以替代传统挥发性有机溶剂的“绿色”溶剂,应用于多个领域。然而,目前的研究发现,咪唑类离子液体的毒性与一些传统有机溶剂相当,甚至更高。由于许多离子液体在水中有一定的溶解度,它在多个领域中的广泛使用将会导致部分离子液体的流失,进而污染生态环境。但是,由于离子液体的特殊性质,给分析检测带来了一定的困难。因此,研究环境样品中微量咪唑类离子液体的分析方法对离子液体的环境监测具有重要意义。
     作为一种通过量身定做的方式来构建的稳定聚合物网络,分子印迹聚合物由于具有亲和性好、特异识别能力强、选择性高、抗干扰能力强、稳定性和再生性好、使用寿命长等优点,而被广泛的应用于色谱分离、固相萃取、化学传感等多个领域中。
     本论文采用先进的表面印迹技术,分别以氯化1-丁基-3-甲基咪唑离子液体、氯化1-乙基-3-甲基咪唑离子液体及氯化1-羟乙基-3-甲基咪唑离子液体为模板,制备了三种离子液体表面印迹聚合物。通过多种技术手段对印迹聚合物的表观形貌及化学组成进行了表征,对三种印迹聚合物的静态吸附性能、动态固相萃取性能以及在实际环境样品中的使用性能进行了系统研究。具体的内容如下:
     1、概述了离子液体的结构特点、毒性以及现有的分析检测方法,对分子印迹技术的研究进展进行了综述,包括分子印迹技术的分类、原理、制备方法及应用。介绍了论文的研究意义和研究内容,共引用参考文献167篇。
     2、设计合成了三种新型的咪唑类离子液体表面印迹聚合物。采用扫描电镜、红外光谱分析、比表面积和孔径分析等手段对聚合物的结构信息及化学组成进行表征,通过紫外光谱和核磁共振氢谱的变化研究了模板分子与功能单体之间的作用方式,以此来了解印迹聚合物对模板分子可能的识别机制。
     3、通过吸附等温线、吸附动力学及选择性吸附实验考察了三种表面印迹聚合物的静态吸附性能。结果显示:印迹聚合物对模板分子的吸附量远远大于非印迹聚合物对模板分子的吸附量,且吸附等温线数据可以用Langmuir模型和Langmuir-Freundlich等吸附等温模型进行拟合;三种印迹聚合物在40min内都可以达到对模板分子的吸附平衡,且吸附动力学特性可以通过假二级动力学方程进行拟合;选择性吸附研究表明,三种咪唑类离子液体表面印迹聚合物都可以从结构类似物或复杂多变的环境样品中选择性识别模板分子。
     4、将合成的氯化1-丁基-3-甲基咪唑离子液体表面印迹聚合物和氯化1-乙基-3-甲基咪唑离子液体表面印迹聚合物作为固相萃取剂制备成固相萃取柱。采用固相萃取技术,考察了固相萃取柱的上样体积、流速、洗脱剂的种类和用量等参数。在优化条件下,将固相萃取技术与高效液相色谱联用,对固相萃取柱的选择性分离富集性能进行评估。结果显示,由两种印迹聚合物制备的固相萃取柱均能从环境样品中选择性分离富集模板离子液体及其结构类似物,且对实际水样中相应的离子液体进行检测时,氯化1-丁基-3-甲基咪唑离子液体和氯化1-乙基-3-甲基咪唑离子液体的回收率均在90%以上,显现出很好的实用性能。
     5、在上述研究基础上,对论文的主要成果和结论进行了总结,对本课题和当前分子印迹技术发展中所存在的问题进行了分析,对今后分子印迹技术的发展提出了自己的见解和建议。
Because of their attractive properties such as negligible vapor pressure, non-volatility, wideelectrochemical window and regulatable structure and so on, ionic liquids (ILs) have been extensivelyapplied to many areas as “green” substitutes for conventionally volatile organic solvents. However, somestudies suggested that toxicity of alkyl-imidazolium ILs is similar to some conventionally used organicsolvents, or even higher. Wide application would inevitably result in the loss of them, and resulting inpollutions of eco-environment. While the special properties of ILs made them difficult to be analyzed anddetected. Therefore, it is important to determine trace alkyl-imidazolium ILs in environmental samples.
     Molecular imprinting has become the topic research of many researchers for the construction of stablepolymeric networks in tailor-made fashion in recent years. Due to its outstanding advantages of goodaffinity, strong specific recognition ability, high selectivity, powerful anti-interference ability, betterstability and reusability, long life and among others, molecular imprinting technology has been wildly usedin many fields such as chromate-graphic separation, solid phase extraction, and chemical sensors and soon.
     In this paper, three novel surface molecular imprinted polymers(MIP) were prepared by using1-butyl-3-methylimidazolium chloride ILs (C4mimCl),1-ethyl-3-methylimidazolium chloride ILs(C2mimCl) and1-ethyl hydroxyl-3-methylimidazolium chloride ILs (C2OHmimCl) as the template,respectively. The as-prepared imprinting polymers were characterized by various techniques, its staticadsorption properties such as adsorption isotherm, adsorption kinetics and absorption selectivity, dynamicadsorption properties and adsorption properties in environmental water samples were studied in detail. Themain research results are listed as follows:
     1, The structural properties, toxicity and the present analytical methods were first discussed, then thestudies on the molecular imprinting technique, including the classification, preparation principle, methods,application in solid phase extract, were reviewed. Finally, the target, content and novelty stament have beenintroduced briefly. Here167references were cited.
     2, Three novel alkyl-imidazolium ILs surface molecular imprinted polymers were prepared. SEM micrographs, BET surface area analysis and (FT-Ir) spectra were selected to characterize the structuralinformation and chemical composition. Interaction between the template molecule and functional monomerwas studied through the changes of UV spectroscopy and1HNMR titration. Accordingly, the possiblemolecular recognition mechanism was also investigated
     3, The static adsorption performance of the three surface molecularly imprinted polymers was testedby the adsorption isotherms, kinetic curve and selective adsorption experiments. And the results suggestedthat the molecularly imprinted polymer had a significantly higher adsorption capacity for the templatecompared with the corresponding non-imprinted polymer. The experimental data of adsorption isothermfitted to the Langmuir and the Langmuir-Freundlich model very well, and the maximum adsorptioncapacity, the total number of binding sites and the mean association constant were calculated accordingly.The adsorption kinetic experiments suggested that three imprinted polymers achieved the adsorptionequilibrium within40min, and the adsorption process could be described by pseudo-second order kinetics.Results from the adsorption selectivity experiments showed that this three surface molecularly imprintedpolymers can separate and extract the template selectively from the complex matrixes and structuralanalogs.
     4, The solid phase extraction columns were prepared by using C4mimClMIP and C2mimClMIP as thesolid phase sorbents. Various parameters were optimized for the solid phase extraction columns, such asloading volumn, flow rate, eluent solvent and so on. Under the optimized column parameters, solid phaseextraction column coupled with HPLC was used for the evaluation of the separation and extractionproperties for alkyl-imidazolium ionic liquids. The results showed that the two solid phase extractioncolumns can separate and extract the template IL and its structural analogs from complex matrix, and whenthey were applied to the determination of the IL in environmental water samples, the recoveries was i over90%for the two ILs, and exhibited excellent practical properties.
     5, Summarized the main research results and conclusions of this thesis; point out the problems need tobe resolved in this topic and present molecular imprinted technique; and put forward my views andsuggestions for the future work of the this technique.
引文
[1] Van Rantwijk, F., Sheldon, R. A. Biocatalysis in ionic liquids [J]. Chem. Rev.,2007,107:2757-2785.
    [2] Freemantle, M. Designer solvents-Ionic liquids may boost clean technology development [J]. Chem. Eng.News,1998,76:32-37.
    [3] Rogers, R. D., Seddon K. R. Ionic liquids-solvents of the future [J]. Science,2003,302(5646):792-793.
    [4] Cho, C.W., Jeon, Y.C., Pham, T.P.T., et al. The ecotoxicity of ionic liquids and traditional organicsolvents on microalga Selenastrum capricornutum [J]. Ecotoxicol. Environ. Safe,2008,71(1):166-171.
    [5] Wilkes, J. S., Properties of ionic liquid solvents for catalysis [J]. J. Mol. Catal. A: Chem.,2004,214(1):11-17.
    [6] Stock, F., Hoffmann, J., Ranke, J. Effects of ionic liquids on the acetylcholinesterase-a structure-activityrelationship consideration [J]. Green Chem.,2004,6:286-290.
    [7] Ranke, J., Molter, K., Stock, F. Biological effects of imidazolium ionic liquids with varying chain lengthsin acute Vibrio fischeri and WST-1cell viability assays [J]. Ecotoxicol. Environ. Safe,2004,58:396-404.
    [8] Stepnowski, P., Skladanowsklkl, A.C., Ludwiczakud, A. Evaluating cytotoxicity of ionic liquids usinghuman cell line HeLa [J]. Hum. Exp. Toxicol.,2004,23(11):513-517.
    [9] Torrecilla, J. S., García, J., Rojo, E., et al. Estimation of toxicity of ionic liquids in leukemia rat cell lineand acetylcholinesterase enzyme by principal component analysis, neural networks and multiple linealregressions [J]. J. Hazard. Mater.,2009,164(1):182-194.
    [10] Izadiyan, P., Fatemi, M. H. Cytotoxicity estimation of ionic liquids based on their effective structuralfeatures [J]. Chemosphere,2011,84:553-563.
    [11] Li, X.Y., Jing, C. Q., Lei, W. L., et al. Apoptosis caused by imidazolium-based ionic liquids in PC12cells[J]. Ecotoxi. Environ. Safe,2012,83:102-107.
    [12] Lee, S. M., Chang, W. J., Choia, R., et al. Influence of ionic liquids on the growth of escherichia coli [J].Korean. J. Chem. Eng.,2005,22(5):687-690.
    [13] Matsumoto, M., Mochiduki, K., Fukunishi, K. Extraction of organic acids using imidazolium-based ionicliquids and their toxicity to Lactobacillus rhamnosus[J]. Sep. Purif. Technol.,2004,40(1):97-101.
    [14] Pernak, J., Goc, I., Mirska, I. Anti-microbial activities of protic ionic liquids with lactate anion [J].GreenChem.,2003,5:52-56.
    [15] Alberto, E. E., Rossato, L. L., Alves, S. H. Imidazolium ionic liquids containing selenium: synthesis andantimicrobial activity [J]. Org. Biomol. Chem.,2011,9:1001-1003.
    [16] Coleman, D., pulák, M., Garcia, M. T. Antimicrobial toxicity studies of ionic liquids leading to a 'hit'MRSA selective antibacterial imidazolium salt [J]. Green Chem.,2012,14:1350-1356.
    [17] Jastorff, B., Molter, K., Behrend, P. Progress in evaluation of risk potential of ionic liquids basis for aneco-design of sustainableproducts [J]. Green Chem.,2005,7:362-372.
    [18]杨芬芬,孟洪,李春喜.离子液体对三种农作物发芽和生长的毒性研究[J].环境工程学报,2009,3(4):751-754.
    [19] Pretti, C., Chiappe, C., Pieraccini, D., et al. Acute toxicity of ionic liquids to the zebrafish (Danio rerio)[J]. Green Chem.,2006,8:238-240.
    [20] Swatloski, R. P., Caldwell, K. A., Rogers, R. D., et al. Using caenorhabditis elegans to probe toxicity of1-alkyl-3-methylimidazolium chloride based ionic liquids [J]. Chem. Commun.,2004,4(6):668-669.
    [21] Bernot, R. J., Brueseke, M. A., Evans-White, M. A., et al. Acute and chronic toxicity ofimidazolium-based ionic liquids on Daphnia magna[J]. Environ.Toxicol.Chem.,2005,24:87-92.
    [22] Chiara, S., Andrea, P., Paola, G., et a1. Acute toxicity of oxygenated and nonoxygenatedimidazolium-based ionic liquids to Daphnia Magna and Vibrio Fischeri [J]. Environ. Toxicol. Chem.,2007,26(11):2379-2382.
    [23] Stepnowski, P., Müller, A., Behrend, P., etal. Reversed-phase liquid chromatographic method for thedetermination of selected room-temperature ionic liquid cations [J]. J. Chromatogr. A,2003,993(1-2):173-178.
    [24] Stepnowski, P., Mrozik, W. Analysis of selected ionic liquid cations by ion exchange chromatographyand reversed-phase high performance liquid chromatography [J]. J. Sep. Sci.,2005,28(2):149-154.
    [25] Zhang, D. L., Deng, Y. F., Li, C. B., et al. Separation of ternary systems of hydrophilic ionic liquid withmiscible organic compounds by RPLC with refractive index detection [J]. J. Sep. Sci.,2008,31(6-7):1060-1066.
    [26]周爽,于泓,艾红晶.直接电导检测-离子色谱法分离测定氟硼酸根及常见无机阴离子[J].分析化学,2008,36(11):1521-1525.
    [27]胡忠阳,潘广文,叶明立.离子色谱法同时测定离子液体中六氟磷酸根和痕量的杂阴离子[J].色谱,2009,27(3):337-340.
    [28] Tang, F., Wu, K. K., Nie, Z., et al. Quantification of amino acid ionic liquids using liquidchromatography-mass spectrometry [J]. J. Chromatogr. A,2008,1208(1-2):175-181.
    [29] Cao, Y. Y., Chen, Y., Sun, X. F., et al. Quantification of ionic liquids concentration in water andqualification of conjugated and inductive effects of ionic liquids by UV spectroscopy [J]. CLEAN-SoilAir Water,2013, DOI:10.1002/clen.201300237.
    [30] Stepnowski, P., Nichthauser, J., Mrozik, W., et al. Usefulness of π... π aromatic interactions in theselective separation and analysis of imidazolium and pyridinium ionic liquid cations [J]. Anal. Bioanal.Chem.,2006,385:1483-1491.
    [31] Ruiz-Angel, M. J., Berthod, A. Reversed phase liquid chromatography of alkyl-imidazolium ionic liquids[J]. J. Chromatogr. A,2006,1113(1-2):101-108.
    [32] Ruiz-Angel, M. J., Berthod, A. Reversed-phase liquid chromatography analysis of alkyl-imidazoliumionic liquids: II. Effects of different added salts and stationary phase influence [J]. J. Chromatogr. A,2008,1189(1-2):476-482.
    [33] Buszewski, B., Kowalska, S., Stepnowski, P. Influence of stationary phase properties on the separation ofionic liquid cations by RP-HPLC [J]. J. Sep.Sci.,2006,29(8):1116-1125.
    [34] Kowalska, S., Buszewski, B. Effect of stationary phase polarity on the retention of ionic liquid cations inreversed phase liquid chromatography [J]. J. Sep. Sci.,2006,29(17):2625-2634.
    [35] Rouzo, G. L., Lamouroux, C., Bresson, C., et al. Hydrophilic interaction liquid chromatography forseparation and quantification of selected room-temperature ionic liquids [J]. J. Chromatogr. A,2007,1164(1-2):139-144.
    [36] Markuszewski, M.J., Stepnowski, P., Marszall, M. P. Capillary electrophoretic separation of cationicconstituents of imidazolium ionic liquids [J]. Electrophoresis,2004,25(20):3450-3454.
    [37] Huang, X., Yu, H., Dong, Y. J. Rapid and simultaneous determination of imidazolium and pyridiniumionic liquid cations by ion-pair chromatography using a monolithic column[J]. Chinese Chem. Lett.,2012,23(7):843-846.
    [38] Studzińska, S., Buszewski, B. Chromatographic determination of hydrophobicity of dialkylimidazoliumionic liquids using selected stationary phase[J]. J. Sep. Sci.,2012,35(9):1123-1131.
    [39] Chen, Q., Yu, H., Wang, J. F. Determination of pyridinium ionic liquid cations by ion chromatographywith direct conductivity detection[J]. J. Liq. Chromatogr. R. T.,2012,35(9):1184-1193.
    [40]李雪辉,段红丽,潘锦添,等.离子交换色谱法检测离子液体中阴离子,分析化学,2006,34(9):S192-S194.
    [41] Villagrn, C., Deetlefs, M., Pitner, W. R. et al. Quantification of halide in ionic liquids using ionchromatography[J]. Anal. Chem.,2004,76(7):2118-2123.
    [42] Hao, F. P., Haddad, P. R., Ruther, T. IC Determination of halide impurities in ionic liquids [J].Chromatographia,2008,67(5-6):495-498.
    [43]安莹,于泓,邹春苗.整体柱离子对色谱-间接紫外检测法快速分析吡咯烷离子液体阳离子[J].分析化学,2013,41(7):1057-1062.
    [44] Zhou, S., Yu, H., Yang, L., et al. Fast determination of tetrafluoroborate by high-performance liquidchromatography using a monolithic column[J]. J. Chromatogr. A,2008,1206(2):200-203.
    [45]赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学研究报告,2001,29(7):836-844.
    [46] Uezu, K., Nakamura, H., Goto, M., et al. Novel metal ion-imprinted resins prepared by surface templatepolymerization with W/O emulsion[J]. J. Chem. Eng. Jap.,1994,27(3):436-438.
    [47] Mayes, A. G., Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using aliquid perfluorocarbon as the dispersing phase[J]. Anal. Chem.,1996,68(21):3769-3774.
    [48] Schweitz, L., Andersson, L. I., Nilsson, S. Capillary electrochromatography with predeterminedselectivity obtained through molecular imprinting[J]. Anal.Chem.,1997,69(6):1179-1183.
    [49] Matsui, J., Kato,T., Takeuchi, T., et al. Molecular recognition in continuous polymer rods prepared by amolecular imprinting technique[J]. Anal.Chem.,1993,65(17):2223-2224.
    [50] Yin, J. F., Yang, G. L., Chen,Y. Rapid and efficient chiral separation of nateglinide and its1-enantiomeron monolithic molecularly imprinted polymers[J]. J. Chromatogr. A,2005,1090:68-75.
    [51] Li, X. X., Bai, L. H., Wang, H., et al. Preparation and characterization of enrofloxacin-imprinted monolithprepared with crowding agents[J]. J. Chromatogr. A,2012,1251:141-147.
    [52] Zhang, W. P., Chen, Z. L. Preparation of micropipette tip-based molecularly imprinted monolith forselective micro-solid phase extraction of berberine in plasma and urine samples[J]. Talanta,2013,103:103-109.
    [53]杜俊玫,高保娇,黄小卫,等.基于离子交换和表面引发接枝聚合制备阴离子表面印迹材料及其识别特性研究[J].化学学报,2012,70:1831-1838.
    [54]房晓琳,高保娇,黄小卫,等.具有高离子识别能力的镉离子表面印迹材料的制备及其离子识别机理的研究[J].化学学报,2013,71:409-416.
    [55]程伟,高保娇,施雪军,等.表面引发接枝聚合法制备抗蚜威分子表面印迹材料及其分子识别与结合特性研究[J].高分子学报,2013,7:934-941.
    [56] Gao, B. J., Wang, X. H., Zhang, Y. Y. Preparation of chromate anion surface-imprinted materialIIP-PVI/SiO2based on polyvinylimidazole-grafted particles PVI/SiO2and its ionic recognitioncharacteristic[J]. Mater. Chem. Phys.,2013,140:478-486.
    [57] Liu, W. F., Zhao, H. J., Yang, Y. Z., et al. Reactive carbon microspheres prepared by surface-grafting4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer[J]. Appl. Surf. Sci.,2013,277:146-154.
    [58]钱春锁,揣成智.无机微粒表面接枝聚合改性进展[J].塑料制造,2007,8:111-115.
    [59]曹健,张可达.“活性”/可控自由基聚合新进展[J].化学研究与应用,2005,17(1):19-26.
    [60] Lu, C. H., Zhou, W. H., Han B., et al. Surface-imprinted core-shell nanoparticles for sorbent assays[J].Anal. Chem.,2007,79:5457-5461.
    [61] Li, Y., Zhou, W. H., Yang, H. H., et al. Grafting of molecularly imprinted polymers from the surface ofsilica gel particles via reversible addition-fragmentation chain transfer polymerization: a selective sorbentfor theophylline[J]. Talanta,2009,79(2):141-145.
    [62] Li, Y., Li, X., Dong, C. K., et al. A graphene oxide-based molecularly imprinted polymer platform fordetecting endocrine disrupting chemicals[J]. Carbon,2010,48(12):3427-3433.
    [63] Shi, H. Q., Tsai, W. B., Garrison, M. D., et al. Template-imprinted nanostructured surfaces for proteinrecognition[J]. Nature,1999,398:593-597.
    [64] Yilmaz, E., Haupt, K., Mosbach, K. The use of immobilized templates-a new approach in molecularimprinting[J]. Angew Chem. Int. Edit.,2000,39(12):2115-2118.
    [65] Panasyuk, T. L., Mirsky, V. M., Wolfbeis, O. S. Electropolymerized molecularly imprinted polymers asreceptor layers in capacitive chemical sensor[J]. Anal. Chem.,1999,71:4609-4613.
    [66] Li, J. P., Jiang, F.Y., Wei, X. P. Molecularly imprinted sensor based on an enzyme amplifier for ultratraceoxytetracycline determination[J]. Anal. Chem.,2010,82:6074-6078.
    [67] Bossi, A., Piletsky, S. A., Piletskya, E.V., et al. Surface-grafted molecularly imprinted polymers forprotein recognition[J]. Anal. Chem.,2001,73:5281-5286.
    [68] Zhou, W. H., Lu, C. H., Gao, X. C., et al. Mussel-inspired molecularly imprinted polymer coatingsuperparamagnetic nanoparticles for protein recognition[J]. J. Mater. Chem.,2010,20:880-883.
    [69] Zhou, W. H., Tang, S. F., Yao, Q. H., et al. A quartz crystal microbalance sensor based onmussel-inspired molecularly imprinted polymer[J]. Biosens. Bioelectron.,2010,26:585-589.
    [70] Wuff, G., Sarhan, A. The use of polymers with enzyme-analogous structures for the resolution ofracemate[J]. Angew Chem. Int. Edit.,1972,(3):341-345.
    [71] Vlatakis, G., Andersson, L. I., Müller, R., et al. Drug assay using antibody mimics made by molecularimprinting[J]. Nature,1993,361(6413):645-647.
    [72] Whitcombe, M. J., Rodriguez, M. E., Villar, P., et al. A new method for the introduction of recognitionsite functionality into polymers prepared by molecular imprinting: synthesis and characterization ofpolymeric receptors for cholesterol[J]. J. Am. Chem. Soc.,1995,117(27):7105-7111.
    [73] Fujii,Y., Matsutani, K., Kikuchi, K. Formation of a specific co-ordination cavity for a chiral amino acidby template synthesis of a polymer Schiff base cobalt (III) complex [J]. J. Chem. Soc.Chem.Commun.,1985,(7):415-417.
    [74] Wang, X. M., Liu, J.Y., Liu, Q., etal. Rapid determination of tetrabromobispheno La and its mainderivatives in aqueous samples by ultrasound-dispersiveliquid-liquid microextraction combined withhigh-performance liquid chromatography[J].Talanta,2013,116:906-911.
    [75] Pan, M. F., Kong, L. J., Liu, B., et al. Production of multi-walled carbon nanotube/poly(aminoamide)dendrimer hybrid and its application to piezoelectric immunosensing for metolcarb[J]. Sensor. Actuat.B-Chem.,2013,188:949-956.
    [76] Kyzas, G. Z., Lazaridis, N. K., Bikiaris, D. N. Optimization of chitosan and cyclodextrin molecularlyimprinted polymer synthesis for dye adsorption[J]. Carbohyd. polym.,2013,91:198-208.
    [77] Okutucu, B., nal, S., Telefoncu, A. Noncovalently galactose imprinted polymer for the recognition ofdifferent saccharides[J].Talanta,2009,78(3):1190-1193.
    [78] Liu, J. M., Cui, M. L., Wang, X. X., et al. A highly selective affinity adsorption imprintingphosphorescence sensor for determination of trace alkaline phosphatase and prediction of humandiseases[J]. Sensor. Actuat. B-Chem.,2013,186:521-527.
    [79] Tan, L., Kang, C. C., Xu, S. Y., et al. Selective room temperature phosphorescence sensing of targetprotein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer[J]. Biosens. Bioelectron.,2013,48:216-223.
    [80] Inoue, Y., Kuwahara, A., Ohmori, K., et al. Fluorescent molecularly imprinted polymer thin films forspecific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloylL-hydroxyproline[J]. Biosens. Bioelectron.,2013,48:113-119.
    [81] Liu, P., Liu, R.Y., Guan, G. J., et al. Surface-enhanced Raman scattering sensor for theophyllinedetermination by molecular imprinting on silver nanoparticles[J]. Analyst,2011,136:4152-4158.
    [82] Recillas Mota, J. J., Bernad Bernad, M. J., Mayoral-Murillo, J. A., et al. Synthesis and characterization ofmolecularly imprinted polymers with metallic zinc center for enrofloxacin recognition[J]. React. Funct.Polym.,2013,73:1078-1085.
    [83] Liu, J. X.,Yang, K. G., Deng, Q. L., et al. Preparation of a new type of affinity materials combining metalcoordination with molecular imprinting[J]. Chem. Commun.,2011,47,3969-3971.
    [84] Yan, H., Row, K. H. Characteristic and synthetic approach of molecularly imprinted polymer[J]. Int. J.Mol. Sci.,2006,7(5):155-178.
    [85] Wang, J. F., Cormack, P. A. G., Sherrington, D. C., et al. Monodisperse molecularly imprinted polymermicrospheres prepared by precipitation polymerization for affinity separation applications[J]. AngewChem. Int. Edit.,2003,42(43):5336-5338.
    [86]江桂斌,郑明辉,刘景富,等.环境样品前处理技术[M].北京:化学工业出版社,2003.
    [87] Meng, Z., Chen,W., Mulchandani, A. Removal of estrogenic pollutants from contaminated water usingmolecularly imprinted polymers[J]. Environ. Sci. Technol.,2005,39(22):8958-8962.
    [88] Le Noir, M., Plieva, F., Hey, T. Macroporous molecularly imprinted polymer/cryogel composite systemsfor the removal of endocrine disrupting trace contaminants[J]. J. Chromatogr. A,2007,1154(1-2):158-164.
    [89] Le Noir, M., Lepeuple, A.S., Guieysse, B., et al. Selective removal of17β-estradiol at trace concentrationusing a molecularly imprinted polymer[J]. Water Res.,2007,41(12):2825-2831.
    [90] Alexiadou, D. K., Maragou, N. C., Thomaidis, N. S., et al. Molecularly imprinted polymers for bisphenolA for HPLC and SPE from water and milk[J]. J. Sep. Sci.,2008,31(12):2272-2282.
    [91] Wang, S., Li Y., Wu X. L., et al. Construction of uniformly sized pseudo template imprinted polymerscoupled with HPLC-UV for the selective extraction and determination of trace estrogens in chicken tissuesamples[J]. J. Hazar. Mater.,2011,186(2-3):1513-1519.
    [92] Lin, Y., Shi, Y., Jiang, M., et al. Removal of phenolic estrogen pollutants from different sources of waterusing molecularly imprinted polymeric microspheres[J]. Environ. Pollut.,2008,153(2):483-491.
    [93] Liu, Y., Zhu, L. H., Luo, Z. H., et al. Fabrication of molecular imprinted polymer sensor forchlortetracycline based on controlled electrochemical reduction of graphene oxide [J]. Sensor. Actuat.B-Chem.,2013,185:438-444.
    [94] Ebrahimzadeh, H., Dehghani, Z., Asgharinezhad, A. A., et al. Determination of haloperidol in biologicalsamples using molecular imprinted polymer nanoparticles followed by HPLC-DAD detection[J]. Int. J.Pharmaceut.,2013,453:601-609.
    [95] Zarejousheghani, M., M der, M., Borsdorf, H. A new strategy for synthesis of an in-tube molecularlyimprinted polymer-solid phase microextraction device: selective off-line extraction of4-nitrophenol as anexample of priority pollutants from environmental water samples [J]. Anal. Chim. Acta,2013,DOI:10.1016/j.aca.,2013.08.038.
    [96] Lian, Z. R., Wang, J. T. Study of molecularly imprinted solid-phase extraction of gonyautoxins in thecultured dinoflagellate Alexandrium tamarense by high-performance liquid chromatography withfluorescence detection [J]. Environ. Pollut.,2013,182:385-391.
    [97] Yang, W. J., Jiao, F. P., Zhou, L., et al. Molecularly imprinted polymers coated on multi-walled carbonnanotubes through a simple indirect method for the determination of2,4-dichlorophenoxyacetic acid inenvironmental water [J]. Appl. Surf. Sci.,2013,284(1):692-699.
    [98]杜碧柏,许杨,黄运红,等.分子印迹固相萃取-高效液相色谱法测定饲料中磺胺类药物[J].分析化学,2012,40(12):1871-1876.
    [99]农舒予,林福华,陈林利,等.邻-硝基酚分子印迹聚合物为涂层固相萃取搅拌棒的制备及其萃取性能研究[J].分析化学,2013,41(4):585-589.
    [100] Pakade, V., Cukrowska, E., Lindahl, S., et al. Molecular imprinted polymer for solid-phase extraction offlavonol aglycones from Moringa oleifera extracts [J]. J. Sep. Sci.,2013,36:548-555.
    [101] Guan, W., Han, C. R., Wang, X., et al. Molecularly imprinted polymer surfaces as solid-phase extractionsorbents for the extraction of2-nitrophenol and isomers from environmental water [J]. J. Sep. Sci.,2012,35:490-497.
    [102] Yang, M. X., Zhang,Y.Y., Lin, S., et al. Preparation of a bifunctional pyrazosulfuron-ethyl imprintedpolymer with hydrophilic external layers by reversible addition-fragmentation chain transferpolymerization and its application in the sulfonylurea residue analysis[J].Talanta,2013,114:143-151.
    [103] Lin, Z. K., He, Q.Y., Wang, X. D., et al. Preparation of magnetic multi-functional molecularly imprintedpolymer beads for determining environmental estrogens in water samples[J]. J. Hazard. Mater.,2013,252-253:57-63.
    [104] Zhu, S. S., Hu, F.T., Yang, T., et al. Synthesis and characterization of a molecularly imprinted polymerfor the determination of trace tributyltin in seawater and seafood by liquid chromatography-tandem massspectroscopy [J]. J. Chromatogr. B,2013,921-922:21-26.
    [105] Hiratsuka, Y., Funaya, N., Matsunaga, H. Preparation of magnetic molecularly imprinted polymers forbisphenol A and its analogues and their application to the assay of bisphenol A in river water [J]. J.Pharamaceut. Biomed.,2013,75:180-185.
    [106] Song, X. L., Li, J. H., Xu, S. F., et al. Determination of16polycyclic aromatic hydrocarbons in seawaterusing molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry[J].Talanta,2012,99:75-82.
    [107] Li, X. X., Pan, J. M., Dai, J. D., et al. Surface molecular imprinting onto magnetic yeast composites viaatom transfer radical polymerization for selective recognition of cefalexin[J]. Chem. Eng. J.,2012,198-199:503-511.
    [108] Shaikh, H., Memon, N., Khan, H., et al. Preparation and characterization of molecularly imprintedpolymer for di (2-ethylhexyl) phthalate: Application to sample clean-up prior to gas chromatographicdetermination [J]. J. Chromatogr. A,2012,1247:125-133.
    [109] Liu, C. B., Song, Z. L., Pan, J. M., et al. Molecular imprinting in fluorescent particle stabilized pickeringemulsion for selective and sensitive optosensing of λ-Cyhalothrin[J]. J. Phys. Chem. C,2013,117:10445-10453.
    [110] Zhang, X. F., Xu, S. X., Lee, Y. I., et al. LED-induced in-column molecular imprinting for solid phaseextraction/capillary electrophoresis [J]. Analyst,2013,138:2821-2824.
    [111] Li, S. S., Du, D., Huang, J., et al. One-step electrodeposition of a molecularly imprintingchitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination ofp-nitrophenol [J]. Analyst,2013,138:2761-2768.
    [112] Zhong, X.W., Deng, F., Wang, Y. H., et al. A molecularly imprinted polymer for solid phase extraction ofallantoin [J]. Microchim. Acta,2013, DOI10.1007/s00604-013-1087-3.
    [113] Yang, W. M., Liu, L. K., Zhou, Z. P., et al. Development of surface imprinting polymer as a selectiveadsorbent for adsorbing and separating dibenzothiophene from fuel oil[J]. Res. Chem. Intermediat.,2013,DOI10.1007/s11164-013-1375-x.
    [114] Cao, H., Xu, F., Li, D. X., et al. Preparation and performance valuation of high selective molecularlyimprinted polymers for malachite [J]. Green Res. Chem. Intermed.,2013,39:2321-2337.
    [115] Zhan, J., Fang, G. Z., Yan, Z., et al. Preparation of a semicovalent, molecularly surface imprintedpolymer for the rapid determination of traces acid orange II in food and environmental samples [J]. Anal.Bioanal. Chem.,2013,405:6353-6363.
    [116] Wen, Y. Y., Li, J. H., Liu, J. S., et al. Dual cloud point extraction coupled withhydrodynamicelectrokinetic two-step injection followed by micellar electrokinetic chromatography forsimultaneous determination of trace phenolic estrogens in water samples [J]. Anal. Bioanal. Chem.,2013,405:5843-5852.
    [117] Zhang, T., Ma, C., Wu, M., et al. Selective microextraction of carbaryl and naproxen usingorganic-inorganic monolithic columns containing a double molecular imprint [J]. Microchim. Acta,2013,180:695-702.
    [118] Madeleine, S. L., Eudes, V., Pichon, V. Identification of the nitroaromatic explosives in post-blastsamples by online solid phase extraction using molecularly imprinted silica Sorbent coupled withreversed-phase chromatography[J]. Anal. Bioanal. Chem.,2013,405:5237-5247.
    [119] Liu, Y., Zhu, L. H., Zhang, Y. Y., et al. Electrochemical sensoring of2,4-dinitrophenol by usingcomposites of graphene oxide with surface molecular imprinted polymer [J]. Sensor. Actuat. B-Chem.,2012,171-172:1151-1158.
    [120] Kou, L. J., Liang, R. N., Wang, X. W. Potentiometric sensor for determination of neutral bisphenol Ausing a molecularly imprinted polymer as a receptor [J]. Anal. Bioanal. Chem.,2013,405:4931-4936.
    [121] Pesavento, M., D’Agostino, G., Alberti, G., et al. Voltammetric platform for detection of2,4,6-trinitrotoluene based on a molecularly imprinted polymer [J]. Anal. Bioanal. Chem.,2013,405:3559-3570.
    [122] Lerma-García, M. J., Zougagh, M., Ríos, A. Magnetic molecular imprint-based extraction of sulfonylureaherbicides and their determination by capillary liquid chromatography [J]. Microchim. Acta,2013,180:363-370.
    [123] Mudiam, M. K. R., Chauhan, A., Singh, K. P., et al. Determination of t,t-muconic acid in urine samplesusing a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization andpre-concentration by dispersive liquid-liquid microextraction[J]. Anal. Bioanal. Chem.,2013,405:341-349.
    [124] Trikka, F. A., Yoshimatsu, K., Ye, L., et al. Molecularly imprinted polymers for histamine recognition inaqueous environment [J]. Amino Acids,2012,43:2113-2124.
    [125] Xu, S., Jiang, C., Lin, Y. X., et al. Magnetic nanoparticles modified with polydimethylsiloxane andmulti-walled carbon nanotubes for solid-phase extraction of fluoroquinolones [J]. Microchim. Acta,2012,179:257-264.
    [126] Robert, W., Alexandra, M., Michael, J., et al. Molecular imprinting and solid phase extraction offlavonoid compounds [J]. Bioseparation,2001,10(6):379-387.
    [127]杨春艳,熊艳,何超,等.分子印迹固相萃取-化学发光测定盐酸金霉素[J].应用化学,2007,24(3):273-277.
    [128] Weiss, R., Freudensch, M., Krska, R., et al. Improving methods of analysis for mycotoxins: molecularlyimprinted polymers for deoxynivalenol and zearalenone [J]. Food Addit. Contam. A,2003,20(4):386-395.
    [129] Cheng, W. J., Liu, Z. J., Wang, J. Y. Preparation and application of surface molecularly imprinted silicagel for selective extraction of melamine from milk samples [J].Talanta,2013,116:396-402.
    [130] He, D., Zhang, X. P., Gao, B., et al. Preparation of magnetic molecularly imprinted polymer for theextraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry [J].Food Control,2014,36:36-41.
    [131] Zhang, Z. H., Luo, L. J., Cai, R., et al. A sensitive and selective molecularly imprinted sensor combinedwith magnetic molecularly imprinted solid phase extraction for determination of dibutyl phthalate [J].Biosens. Bioelectron.,2013,49:367-373.
    [132] Chen, F. F., Xie, X. Y., Shi, Y. P. Preparation of magnetic molecularly imprinted polymer for selectiverecognition of resveratrol in wine [J]. J. Chromatogr. A,2013,1300:112-118.
    [133] Sadeghi, S., Jahani, M. Selective solid-phase extraction using molecular imprinted polymer sorbent forthe analysis of Florfenicol in food samples [J]. Food Chem.,2013,141:1242-1251.
    [134] Basozabal, I., Gomez-Caballero, A., Diaz-Diaz, G., et al. Rational design and chromatographic evaluationof histamine imprinted polymers optimised for solid-phase extraction of wine samples [J]. J. Chromatogr.A,2013,1308:45-51.
    [135] Duan, Z. J., Yi, J. H., Fang, G. Z., et al. A sensitive and selective imprinted solid phase extraction coupledto HPLC for simultaneous detection of trace quinoxaline-2-carboxylic acid andmethyl-3-quinoxaline-2-carboxylic acid in animal muscles [J]. Food Chem.,2013,139:274-280.
    [136] Wang, Y. L., Gao, Y. L., Wang, P. P., et al. Sol-gel molecularly imprinted polymer for selective solidphase microextraction of organophosphorous pesticides [J]. Talanta,2013,115:920-927.
    [137] Yuan, L. H., Ma, J., Ding, M. J., et al. Preparation of estriol-molecularly imprinted silica nanoparticles fordetermining oestrogens in milk tablets [J]. Food Chem.,2012,131(3):1063-1068.
    [138] Zhong, Q. S., Hu, Y. F., Li, G. K. Online desorption of molecularly imprinted stir bar sorptive extractioncoupled to high performance liquid chromatography for the trace analysis of triazines in rice[J].J. Sep.Sci.,2012,35:3396-3402.
    [139] Chen, D. M., Li, X. Q., Tao, Y. F., et al. Development of a liquid chromatography-tandem massspectrometry with ultrasound-assisted extraction method for the simultaneous determination of Sudandyes and their metabolites in the edible tissues and eggs of food-producing animals [J]. J. Chromatogr. B,2013,939(15):45-50.
    [140] Chen, X., Zhang, Z. H., Yang, X., et al. Novel molecularly imprinted polymers based on multiwalledcarbon nanotubes with bifunctional monomers for solid-phase extraction of rhein from the root of kiwifruit [J]. J. Sep. Sci.,2012,35:2414-2421.
    [141] Li, J., Chen, H. X., Chen, H. Selective determination of trace thiamphenicol in milk and honey bymolecularly imprinted polymer monolith microextraction and high-performance liquid Chromatography[J]. J. Sep. Sci.,2012,35:137-144.
    [142] Xin, J. H., Qiao, X. G., Ma, Y., et al. Simultaneous separation and determination of eightorganophosphorous pesticide residues in vegetables through molecularly imprinted solid-phase extractioncoupled to gas chromatography [J]. J. Sep. Sci.,2012,35:3501-3508.
    [143] Sun, N., Wu. S. L., Chen, H. X., et al. Determination of sulfamethoxazole in milk using molecularlyimprinted polymer monolith microextraction coupled to HPLC [J]. Microchim. Acta,2012,179:33-40.
    [144] Yan. H.Y., Wang, F., Wang, H., et al. Miniaturized molecularly imprinted matrix solid-phase dispersioncoupled with high performance liquid chromatography for rapid determination of auxins in orangesamples [J]. J. Chromatogr. A,2012,1256:1-8.
    [145] Baldim, I. M., de Oliveira Souza, M. C., da Cunha SouzaJ. C. J., etal. Application of the molecularlyimprinted solid-phase extraction to the organophosphate residues determination in strawberries [J]. Anal.Bioanal. Chem.,2012,404:1959-1966.
    [146] Ma, G. F., Chen, L. G. Determination of chlorpyrifos in rice based on magnetic molecularly imprintedpolymers coupled with high-performance liquid chromatography [J]. Food Anal. Method,2013, DOI10.1007/s12161-013-9636-2.
    [147] Zhang, H.Y., Wei, Y.W., Zhou, J. H., et al. Preparation and application of a molecular imprinting matrixsolid phase dispersion extraction for the determination of olaquindox in chicken by high performanceliquid chromatography [J]. Food Anal. Method,2013,6(3):915-921.
    [148] Karimi, M., Aboufazeli, F., Zadeh Zhad, H. R. L., et al. Determination of sulfonamides in chicken meatby magnetic molecularly imprinted polymer coupled to HPLC-UV [J].Food Anal. Method,2013, DOI10.1007/s12161-013-9600-1.
    [149] Sun, N., Wu, S. L., Chen, H. X., et al. Determination of sulfamethoxazole in milk using molecularlyimprinted polymer monolith microextraction coupled to HPLC [J]. Microchim. Acta,2012,179:33-40.
    [150] Paíga, P., Morais, S., Oliva-Teles, T., et al. Determination of ochratoxin A in bread: evaluation ofmicrowave-assisted extraction using an orthogonal composite design coupled with response surfacemethodology [J].Food. Bioprocess. Techno.,2013,6:2466-2477.
    [151] He, J., Tang, H. Z., You, L. Q., et al. Fragment-imprinted microspheres for the extraction of sulfonamides[J]. Microchim. Acta,2013,180:903-910.
    [152] Pan, M. F., Kong, L. J., Liu, B., et al. Production of multi-walled carbon nanotube/poly (aminoamide)dendrimer hybrid and its application to piezoelectric immunosensingfor metolcarb [J]. Sensor. Actuat.B-Chem.,2013,188:949-956.
    [153] Santaladchaiyakit, Y., Srijaranai, S. Preconcentration and simultaneous analysis of benzimidazoleanthelmintics in milk samples by ultrasound-assisted surfactant-enhanced emulsification microextractionand high-performance liquid chromatography [J]. Food Anal. Method,2013, DOI10.1007/s12161-013-9569-9.
    [154] Ma, C., Chen, H., Sun. N. et al. Preparation of molecularly imprinted polymer monolith with an analogueof thiamphenicol and application to selective solid-phase microextraction [J]. Food Anal. Method,2012,5:1267-1275.
    [155] Wei, F. D., Liu, X. P., Zhai, M. J., et al. Molecularly imprinted nanosilica solid-phase extraction forbisphenol A in fish samples [J]. Food Anal. Method,2013,6:415-420.
    [156] Arvand, M., Alirezanejad, F. New sensing material of molecularly imprinted polymer for the selectiverecognition of sulfamethoxazole in foods and plasma and employing the Taguchi optimizationmethodology to optimize the carbon paste electrode [J], J. Iran. Chem. Soc.,2013,10:93-105.
    [157] Zoe, C., Beorje, S., Anderssonl, I. Water-compatible molecularly imprinted polymers for efficient directinjection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma [J]. Analyst,2007,132(12):1262-1271.
    [158] Anderssonl, I. Efficient sample pre-concentration of bupivacaine from human plasma by solid-phaseextraction on molecularly imprinted polymers [J]. The Analyst,2000,125(9):1515-1517.
    [159] Shekarchi, M., Pourfarzib, M., Akbari-Adergani, B., et al. Selective extraction of lamivudine in humanserum and urine using molecularly imprinted polymer technique [J]. J. Chromatogr. B,2013,931:50-55.
    [160] Miura, C., Funaya, N., Matsunaga, H., et al. Monodisperse, molecularly imprinted polymers for creatininebymodified precipitation polymerization and their applications tocreatinine assays for human serum andurine[J]. J. Pharmaceut. Biomed. Anal.,2013,85:288-294.
    [161]雷建都,谭天伟.利用分子印迹聚合物对外消旋药物萘普生的手性拆分[J],现代化工,2001,21(8):29-31.
    [162]郭建峰,高保娇.采用分子表面印迹技术构建手性空穴实现对天冬氨酸对映体的识别拆分[J].高分子学报,2012,1:47-55.
    [163]陈迎鑫,高保娇,姜桂明,等.采用新型分子表面印迹技术构建手性空穴实现对氨基酸对映体识别拆分的研究[J].化学学报,2011,14:1705-1704.
    [164]郭建峰,高保娇,张正国.新型表面印迹材料MIP-P4VP/SiO2对谷氨酸对映体的手性拆分[J].化工学报,2011,62(11):3207-3214.
    [165]李丁,高保娇,许文梅.采用新型分子表面印迹技术构建手性空穴实现对手性药物对映体的分子识别与高效拆分[J].化学学报,2011,69(24):3019-3027.
    [166] Puoci, F., Cirillo, G., Curcio, M. Molecularly imprinted solid phase extraction for the selective HPLCdetermination of α-tocopherol in bay leaves[J]. Anal. Chim. Acta,2007,593(2):164-170.
    [167]雷福厚,赵慷,李小燕,等.脱氢枞胺分子印迹聚合物的吸附性能研究[J].精细化工,2010,27(1):11-15.
    [168] Pang, L., Liu, J. F. Development of a solid-phase microextraction fiber by chemical binding of polymericionic liquid on a silica coated stainless steel wire[J]. J. Chromatogr. A,2012,1230:8-14.
    [169] Shu, Y., Cheng, D. H., Chen, X. W., et al. A reverse microemulsion of water/AOT/1-butyl-3-methylimidazolium hexafluorophosphate for selective extraction of hemoglobin[J]. Sep. Purif. Technol.,2008,64(2):154-159.
    [170] Mancini, P. M. E., Ormachea, C. M., Della Rosa, C. D., et al. Ionic liquids and microwave irradiation assynergistic combination for polar Diels-Alder reactions using properly substituted heterocycles asdienophiles A DFT study related[J]. Tetrahedron Lett.,2012,53(48):6508-6511.
    [171]李晶,王俊,张磊霞,等.离子液体中脂肪酶催化酯类合成的新进展[J].有机化学,2012,32:1186-1192.
    [172] Farahani, M. D., Shemirani, F. Supported hydrophobic ionic liquid on magnetic nanoparticles as a newsorbent for separation and preconcentration of lead and cadmium in milk and water samples[J].Microchem. Acta,2012,179:219-226.
    [173] Papaiconomou, N., Vite, G., Goujon, N. Efficient removal of gold complexes from water by precipitationor liquid-liquid extraction using ionic liquids [J]. Green Chem.,2012,14:2050-2056.
    [174] Docherty, K. M., Dixon, J. K., Kulpa Jr, C. F. Biodegradability of imidazolium and pyridinium ionicliquids by an activated sludge microbial community [J]. Biodegradation,2007,18:481-493.
    [175] Ramkumar, A., Ponnusamy,V. K., Jen, J. F. Rapid analysis of chlorinated anilines in environmental watersamples using ultrasound assisted emulsification microextraction with solidification of floating organicdroplet followed by HPLC-UV detection[J]. Talanta,2012,97:279-284.
    [176] Turner, B. L., Cheesman, A. W., Godage, H. Y., et al. Determination of neo-and D-chiro-Inositolhexakisphosphate in soils by solution31P NMR spectroscopy[J]. Environ. Sci. Technol.,2012,46(9):4994-5002.
    [177]李雪辉,段红丽,潘锦添,等.离子交换色谱法检测离子液体中阴离子[J].分析化学,2006,34(S1):192-197.
    [178] Feng, Q. Z., Zhao, L. X., Yan, W., et al. Molecularly imprinted solid-phase extraction combined with highperformance liquid chromatography for analysis of phenolic compounds from environmental watersamples[J]. J. Hazard. Mater.,2009,167(1-3):282-288.
    [179] Fan, J., Wei, Y. F., Wang, J. J., et al. Study of molecularly imprinted solid-phase extraction ofdiphenylguanidine and its structural analogs[J]. Anal. Chim. Acta,2009,639(1-2):42-50.
    [180] Zhu, X. L., Yang, J., Su, Q. D., et al. Selective solid-phase extraction using molecularly imprintedpolymer for the analysis of polar organophosphorus pesticides in water and soil samples[J]. J. Chromatogr.A,2005,1092(2):161-169.
    [181] Whitcombe, M. J., Chianella, I., Larcombe, L., et al. The rational development of molecularly imprintedpolymer-based sensors for protein detection[J]. Chem. Soc. Rev.,2011,40(3):1547-1571.
    [182] Yang, J., Hu, Y., Cai, J. B., et al. A new molecularly imprinted polymer for selective extraction of cotininefrom urine samples by solid-phase extraction[J]. Anal. Bioanal. Chem.,2006,384(3):761-768.
    [183] Correia, D. S. T. B., Souza, V. K., Da Silva, A. P., et al. Determination of the phenolic content andantioxidant potential of crude extracts and isolated compounds from leaves of Cordia multispicata andTournefortia bicolor[J]. Pharmaceut. Biol.,2010,48(1):63-69.
    [184] Courtois, J., Fischer, G., Sellergren, B., et al. Molecularly imprinted polymers grafted to flow throughpoly(trimethylolpropane trimethacrylate) monoliths for capillary-based solid-phase extraction[J]. J.Chromatogr. A,2006,1109(1):92-99.
    [185] Najafi, M., Mehdipour, R. Molecularly imprinted polymer-based potentiometric sensor for2-aminopyridine as a potential impurity in piroxicam[J]. Drug Tes. Anal.,2011,3(2):132-137.
    [186] Hoshina, K., Horiyama, S., Matsunaga, H., et al. Simultaneous determination of non-steroidalanti-inflammatory drugs in river water samples by liquid chromatography-tandem mass spectrometryusing molecularly imprinted polymers as a pretreatment column[J]. J. Pharmaceut. Biomed. Anal.,2011,55(5):916-922.
    [187] Zheng, Y., Wang, Y. B., Ji, X. Monoliths with proteins as chiral selectors for enantiomer separation[J].Talanta,2012,91:7-17.
    [188]朱桂芬,高燕哺,高霞,等.加替沙星印迹聚合物微球的合成及特异吸附性能[J].化学学报,2011,69:973-980.
    [189] Long, Y. Y., Philip, J. Y. N., Schillen, K., et al. Insight into molecular imprinting in precipitationpolymerization systems using solution NMR and dynamic light scattering[J]. J. Mol. Recog.,2011,24(4):619-630.
    [190] Liu, Y., Hoshina, K., Haginaka, J. Monodispersed, molecularly imprinted polymers for cinchonidine byprecipitation polymerization[J]. Talanta,2010,80(5):1713-1718.
    [191] Yeole, N., Hundiwale, D., Jana, T. Synthesis of core-shell polystyrene nanoparticles by surfactant freeemulsion polymerization using macro-RAFT agent[J]. J. Colloid Interf. Sci.,2011,354(2):506-510.
    [192] Makos, M. A., Omiatek, D. M., Ewing, A. G., et al. Development and characterization of a voltammetriccarbon-fiber microelectrode pH sensor[J]. Langmuir,2010,26(12):10386-10391.
    [193] Gao, B. J., Wang, X. H., Zhang, Y. N. Preparation of chromate anion surface-imprintedmaterialIIP-PVI/SiO2based on polyvinylimidazole-grafted particles PVI/SiO2and its ionic recognitioncharacteristic[J]. Mater. Chem. Phys.,2013,140:478-486.
    [194] Titirici, M. M., Sellergren, B. Thin molecularly imprinted polymer films via reversible additionfragmentation chain transfer polymerization[J]. Chem. Mater.,2006,18(3):1773-1779.
    [195]阚显文,尹宇新,耿志荣,等.基于硅材料的分子印迹聚合物的制备及应用[J].化学进展,2010,22(1):107-112.
    [196] Aggarwal, A., Lancaster, N. L., Sethi, A. R., et al. The role of hydrogen bonding in controlling theselectivity of Diels-Alder reactions in room-temperature ionic liquids[J]. Green Chem.,2002,4:517-520.
    [197] Guo, L., Deng, Q. L., Fang, G. Z., et al. Preparation and evaluation of molecularly imprinted ionic liquidspolymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples[J].J. Chromatogr. A,2011,1218(37):6271-6277.
    [198] Liu, H. M., Liu, C. H., Yang, X. J., et al. Uniformly sized β-cyclodextrin molecularly imprintedmicrospheres prepared by a novel surface imprinting technique for ursolic acid[J]. Anal. Chim. Acta,2008,628(1):87-94.
    [199] Cheng, W. J., Liu, Z. J., Wang, Y. Preparation and application of surface molecularly imprinted silica gelfor selective extraction of melamine from milk samples [J].Talanta,2013,116:396-402.
    [200] Nematollahzadeh, A., Shojaei, A., Abdekhodaie, A. J., et al. Molecularly imprinted polydopaminenano-layer on the pore surface of porous particles for protein capture in HPLC column [J]. J. ColloidInterf. Sci.,2013,404:117-126.
    [201] Robert, J., Umpleby, S., Baxter, C. Characterization of molecularly imprinted polymers with theLangmuir-Freundlich isotherm [J]. Anal. Chem.,2001,73(19):4584-4591.
    [202] Rudzinski, W., Plazinski, W. Kinetics of solute adsorption at solid/solution interfaces: A theoreticaldevelopment of the empirical pseudo-first and pseudo-second order kinetic rate equations, based onapplying the statistical rate theory of interfacial transport [J]. J. Phys. Chem. B,2006,110:16514-16525.
    [203] Hishiya, T., Shibata, M., Kakazu, M., et al. Molecularly imprinted cyclodextrins as selective receptors forsteroids1[J]. Macromolecules,1999,32(7):2265-2269.
    [204] Balogh, D., Tel-Vered, R., Freeman, R., et al. Photochemically and electrochemically triggered Aunanoparticles “sponges”[J]. J. Am.Chem. Soc.,2011,133(17):6533-6536.
    [205] Hoshino, Y., Haberaecker III, W. W., Kodama, T., et al. Affinity purification of multifunctional polymernanoparticles [J]. J. Am. Chem. Soc.,2010,132:13648-13650.
    [206] Yin, J. F., Cui, Y., Yang, G. L., et al. Molecularly imprinted nanotubes for enantioselective drug deliveryand controlled release [J]. Chem. Commun.,2010,46:7688-7690.
    [207] Tian, M. L., Li, S. N., Row, K. H. Molecularly imprinted polymer for solid-phase extraction ofecteinascidin743from sea squirt [J]. Chinese J. Chem.,2012,30:43-46.
    [208] Zhu,T., Yoon, C. W., Row, K. H. Solid-phase Extraction of β-sitosterol from oldenlandia diffusa usingmolecular imprinting polymer[J]. Chinese J. Chem.,2011,29:1246-1250.
    [209] Li, S., Ge, Y., Turner, A. P. F. A catalytic and positively thermosensitive molecularly imprinted polymer[J]. Adv. Funct. Mater.,2011,21(6):1194-1200.
    [210]李丁,高保娇,许文梅.采用新型分子表面印迹技术构建手性空穴实现对手性药物对映体的分子识别与高效拆分[J].化学学报,2011,69:3019-3027.
    [211]张丹.纳米材料表面分子印迹技术研究及其对农药的特异性识别[D].上海:华东师范大学,2012.
    [212]杜振霞.表面分子印迹聚合物的制备及表征[D].北京:北京化工大学,2006.
    [213] Huang, J. H., Huang, K. L., Liu, S. Q. Synthesis, characterization,and adsorption behavior of anilinemodifed polystyrene resin for phenol in hexane and in aqueous solution[J]. J. Coll. Interf. Sci.,2008,317:434-441.
    [214] Rückert, B., Hall, A. J., Sellergren, B. Molecularly imprinted composite materials via iniferter-modifiedsupports,[J]. J. Mater. Chem.,2002,12:2275-2280.
    [215]李保利,张敏,姜萍,董襄朝.表面接枝分子印迹聚合物微球的合成及评价[J].化学学报,2007,65:955-961.
    [216] Marabello, D., Bianchi, R., Gervasio, G. On functions and quantities derived from the experimentalelectron density [J]. Acta Crystallogr. Sect. A.,2004,60:418-426.
    [217] Ers z, A., Say, R., Denizli, A. Ni (II) ion-imprinted solid-phase extraction and preconcentration inaqueous solutions by packed-bed columns [J]. Anal. Chim. Acta,2004,502(1):91-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700