飞机大迎角非线性动力学特性分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合分支分析方法与非线性控制律设计方法各自的优点,将二者融为一体,提出了一种非线性动力学特性分析与控制律设计的一体化设计思想,研究、建立了几种一体化设计方法,并将其应用到飞机大迎角飞行时机翼摇晃、惯性耦合、深失速和尾旋等非线性运动现象的分析、控制及过失速机动控制律设计研究中,具体工作包括:
     结合分支分析方法和模糊控制方法的优点,提出了一种非线性动力学特性分析与控制律设计一体化方法,即BACTM-FLC方法,并应用到机翼摇晃的预测与抑制中,揭示了机翼摇晃的全局运动特性并成功抑制了机翼摇晃现象;
     将常规分支分析方法的推广应用,即扩展分支分析方法应用到无侧滑滚转机动飞行,提出了一种可用于约束飞行的一体化设计方法,即EBA-FLC方法。研究了某机动飞机在惯性耦合作用下的滚转动力学特性,计算了在不同副翼偏角下的平衡面和分支面,揭示了在急滚过程中的跳跃现象,用扩展分支分析方法设计了开环分支控制律,在一定范围内实现了无侧滑滚转,在此基础上设计了模糊控制器,改善了无侧滑滚转的动力学特性,扩大了无侧滑滚转机动的范围,提高了最大滚转角速度;
     应用分支分析方法对几种不同构型的T尾翼飞机的深失速特性进行了分析,直观地反映了深失速的改出特性,利用李雅普诺夫函数正定性和滑模面的稳定性与系统稳定性之间的关系,分别应用李雅普诺夫方法和滑模控制方法设计了深失速改出控制律,并对二者的工作机理进行了分析讨论;
     推导了推力矢量飞机的数学模型,给出了某先进战斗机的气动力模型,用奇异摄动理论和动态逆方法设计了非线性飞行控制律,用加权最小二乘法对常规气动舵面和推力矢量舵面的分配进行了设计;
     根据非线性动态逆方法可以通过反馈实现全局线性化,将系统转换为简单的线性系统的特点,在用分支分析方法对某先进战斗机进行分支分析,揭示其尾旋特性的基础上,应用非线性动态逆方法实现了振荡稳定的平尾旋的改出;
     最后,应用非线性动态逆方法对几种典型的过失速机动进行了仿真,以综合反映大迎角下的非线性特性和控制律的作用效果。
In conjunction with the strongpoint of both bifurcation analysis methodology and nonlinear control law design methods, an integrative design idea of nonlinear dynamic characteristic analysis and control law design is put forward, several integrative design techniques are established. And these techniques are applied to both the analysis and control of the nonlinear motion phenomena of aircraft at high angle of attack, such as wing rock, inertia coupling, deep stall and spin, and the investigation of the post-stall control law design. The main research work is listed as follows:
     An integrative method of nonlinear dynamic characteristic analysis and control law design, i.e. BACTM-FLC method, is development by integrating bidurcation analysis with fuzzy logical control. The wing rock of a delta wing is investigated by employed BACTM-FLC method, the global dynamic behavior of the wing rock is shown after the bifurcation analysis, and the wing rock phenomena is suppressed by the fuzzy logical controller successfully.
     The extended bifurcation analysis(EBA), which is the extension of standard bifurcation analysis, is used to the zero side slip maneuver flight. And then a new integrative design technique, which is called EBA-FLC method and effective to constrained flight analysis, is developed. As an example, the rolling dynamic behavior of a light maneuverable aircraft is investigated. The equilibrium surface and the bifurcation surface at different aileron deflection are caculated and the jump phenomena during the fast rolling is shown. With the open-loop bifurcation control law, which is devised by EBA, the stable zero side slip flight in a range of aileron delfection came true. Based on this, a fuzzy controller is designed, and the dynamic behavior of the zero side slip rolling is improved, the range of stable zero side slip rolling is enlarged, and the maximum roll rate is enhanced.
     The deep stall characteristic of several“T”tail configuration aircrafts are analyzed using bifurcation analysis, and the deep stall recovery characteristic is reflected clearly. According to the relationship between the system’s stability and the positive definiteness of Liapunov function & the stability of the slide mode surface, deep stall recovery control laws are designed with Liapunov method and slide mode control respectively, and their principle of work is discussed.
     The mathematical modal of aircraft with vectoring thrust is established and the aerodynamic modal of an advanced fighter is given. A nonlinear flight control law is designed with singular perturbation theory and dynamic inversion method, and the general aerodynamic deflection and the thrust deflection is alloted by weighted least squre method.
     The spin characteristic of an advanced fighter aircraft is shown clearly after the bifurcation analysis, and according to that the nonlinear dynamic inversion(NDI) method can make a simple linear system out of a nonlinear system by states feedback global linearization, the NDI method is employed to design the spin recovery control law, and the oscillatory stable flat spin recovery is achieved successfully.
     In order to reflect the nonlinear dynamic behavor of aircraft at high-angle-of-attack and the effectiveness of the control law, the numerical simulation of four typical post-stall maneuvers is done with the NDI method at the end of this paper.
引文
[1] Herbst W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566.
    [2] Alcorn C W, Croom M A, Francis M S, et al. The X-31 aircraft:advances in aircraft agility and performance[J]. Progress in Aerosapce Sciences, 1996, 32: 377-413.
    [3] Phillips W H. Effect of rolling on longitudinal and directional stability[R]. NASA TN-1627, 1948:
    [4] Mehra R K, Kessel W C, Carroll J V. Global Stability and Control Analysis of Aircraft at High Angle of Aattack[R]. AD A051-850, 1977:
    [5] Liefer R K. Fighter Agility Metrics[R]. AD A224 477, 1990:
    [6] Jahnke C C. On the roll-coupling instabilities of high-performance aircraft[J]. Phil. Trans. R. Soc. Lond. A, 1998, : 2223-2239.
    [7] Goman M G, Zagainov G I, Khramtsovsky A V. Application of Bifurcation Method to Nonlinear Flight Dynamics Problem[J]. Progress in Aerospace Sciences, 1997, : 539-586.
    [8] 刘昶, 赵波. 应用分支和突变理论对飞机空间机动稳定性的研究[J]. 航空学报, 1988, (09):
    [9] 刘昶, 丁纪平, 蒋明. 飞机急滚机动全局动稳定性研究[J]. 航空学报, 1993, (02):
    [10] 陈廷楠, 张登成. 某型飞机同时存在两种惯性耦合问题的探讨[J]. 飞行力学, 1995, (03): 54-60.
    [11] Modi A, Ananthkrishnan N. Multiple attractors in inertia-coupled velocity-vector roll maneuvers of airplanes[J]. Journal of aircraft, 1998, 35(4): 659-661.
    [12] Elzebda J M, Nayfeh A H, Mook D T. Development of an analytical model of wing rock for slender delta wings[J]. 1989, 26(8): 737-743.
    [13] Liebst B S. The dynamics, prediction, and control of wing rock in high-performance aircraft[J]. Phil. Trans. R. Soc. Lond. A, 1998, : 2257-2276.
    [14] Liebst B S, Nolan R C. A simplified wing rock prediction method[R]. AIAA-93-3662, 1993: 406-418.
    [15] Tiauw G H, Ramnath R V. An analytical approach to the aircraft wing rock dynamics[R].AIAA-2001-4426, 2001: 1-13.
    [16] Tiauw G H, Ramnath R V. An analytical theory of three degree-of-freedom aircraft wing rock[R]. AIAA-2002-4699, 2002: 1-10.
    [17] Shah P, Unnikrishnan S, Ananthkrishnan N, et al. Analytical prediction of wing rock onset for aircraft with lightly damped lateral dynamics[R]. AIAA-2003-5304, 2003: 1-6.
    [18] Liebst B S, DeWitt B R. Wing rock suppression in the F-15 aircraft[R]. AIAA-97-3719, 1997: 640-652.
    [19] Yoshinaga T, Nakaji T, Horikawa T, et al. Effect of vertical strake on the wing rock of 80 deg delta wing[R]. AIAA-2004-5367, 2004: 1-10.
    [20] Calise A J, Shin Y, Johnson M D. A Comparison Study of Classical and Neural Network Based Adaptive Control of Wing Rock[R]. AIAA-2004-5320, 2004: 1-17.
    [21] Xin M, Balakrishnan S N. Control of wing rock motion using a new suboptimal control method[R]. AIAA-2003-5313, 2003:
    [22] 高浩, 王忠俊. 机翼摇晃运动研究[J]. 飞行力学, 1989, (3): 1-10.
    [23] 梁世平. 大迎角下机翼摇晃的主动抑制[硕士]. 南京: 南京航空航天大学, 1997.
    [24] 孙海生, 姜裕标. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, (04):
    [25] 孙海生, 姜裕标. 战斗机机翼摇滚特性研究[J]. 流体力学实验与测量, 2002, (03):
    [26] 唐敏中, 张伟, 何宏丽. 俯仰-滚摆耦合复杂流场试验研究[J]. 空气动力学学报, 2001, (01):
    [27] 唐敏中, 王铁, 张伟, et al. 低速三角翼滚摆试验研究[J]. 空气动力学学报, 1997, (04):
    [28] 姜裕标, 孙海生, 张钧, et al. 不同部件对机翼摇滚特性影响的风洞试验研究[J]. 飞行力学, 2002, (04):
    [29] 杨晓锋, 赵小虎, 刘日之, et al. 细长三角翼的摇滚特性[J]. 空气动力学学报, 2000, (01):
    [30] Carlos J S, Smith B C, Kramer B R, et al. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3 Wing rock experiments[R]. NASA-CR-177626, 1993:
    [31] Hong J. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings[R]. NASA-CR-193130, 1993:
    [32] Matsuno T. Data-based modeling of non-slender wing rock[R]. AIAA-2003-0738, 2002: 1-9.
    [33] Lina L J, Moul M T. A simulator study of T-tail aircraft in deep stall conditions[R]. NASA-TM-56806, 1965:
    [34] Nguyen L T, Ogburn M E, Gilbert W P, et al. Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relaxed Longitudinal Static Stability[R]. NASA-TP-1538, 1979:
    [35] Gousman K G, Juang, J. C, Loschke R C, et al. Aircraft deep stall analysis and recovery[R]. AIAA-91-2888, 1991: 385-394.
    [36] 辛建华, 刘昶, 凌茂芙. 飞机深失速改出特性[J]. 飞行力学, 1993, 11(2): 44-49.
    [37] 余勇军, 尹江辉, 刘昶. RSS飞机深失速走廊特性分析[J]. 飞行力学, 1998, 16(02): 1-6.
    [38] 郑贤芬, 刘昶, 史志伟. “T”型尾翼飞机的深失速特性研究[J]. 飞行力学, 1996, 14(03): 39-43.
    [39] 周欲晓, 刘昶, 尹江辉. RSS飞机深失速仿真研究[J]. 飞行力学, 1996, 14(04): 19-24.
    [40] 胡传晔. 民航飞机深失速的机理分析[J]. 中国民航学院学报, 1994, 12(1): 23-34.
    [41] Fremaux C M. Spin-Tunnel Investigation of a 1/28-Scale Model of the NASA F-18 High Alpha Research Vehicle (HARV) With and Without Vertical Tails[R]. NASA CR-201687, 1997:
    [42] Lee D, Nagati M G. Optimal control strategy for spin recovery[R]. AIAA-97-3698, 1997: 1260-1269.
    [43] Lee S, Shin Y, Byun J, et al. On the prediction of spin characteristics and flight test results of KTX-1 aircraft[R]. AIAA-97-3720, 1997: 653-661.
    [44] Lee J, Lee S, Lee K. The development of the Korean indigenous trainer KT - 1 (flying quality and spin)[R]. AIAA-2000-3916, 2000: 154-161.
    [45] Squires K D. A New Approach to Prediction of Aircraft Spin[R]. ADA410100, 2002:
    [46] Ananthkrishnan N, Kumar P, Raghavendra P, et al. Spin recovery of an aircraft using nonlinear dynamic inversion techniques[R]. AIAA-2004-0378, 2004: 1-10.
    [47] Forsythe J R. Computation of prescribed spin for a rectangular wing and for the F-15E using detached-eddy simulation[R]. AIAA-2003-0839, 2003: 1-13.
    [48] Forsythe J R, Strang W Z, Squires K D. Six Degree of Freedom Computation of the F-15E Entering a Spin[R]. AIAA-2006-0858, 2006: 1-9.
    [49] Yongseung C, Nagati M G. Flight simulator modeling using neural networks with spin flight test data[R]. AIAA-95-0560, 1995: 1-11.
    [50] Nguyen L T, Gilbert W P, Ogburn M E. Control-system techniques for improved departure/spin resistance for fighter aircraft[R]. NASA-TP-1689, 1989:
    [51] 蒋明. 应用BACTM方法对飞机尾旋特性的研究[硕士]. 南京: 南京航空学院, 1988.
    [52] 刘昶, 蒋明. 飞机改出尾旋控制规律研究[J]. 航空学报, 1990, 11(02): 1-9.
    [53] 方振平, 封信坤, 董朝阳. JJ—6飞机进入和改出尾旋的操纵规律的研究(一)[J]. 飞行力学, 1989, (4): 15-27.
    [54] 方振平, 曹源, 董朝阳. JJ—6飞机进入和改出尾旋的操纵规律的研究(二)[J]. 飞行力学, 1990, (2): 24-34.
    [55] 李中华. Миг─21型飞机失速/尾旋飞行试验[J]. 飞行力学, 1996, 14(04): 65-72.
    [56] 徐勇凌. Mиг-23飞机尾旋试飞体会[J]. 飞行力学, 1995, 13(03): 90-96.
    [57] 黎先平. 使用综合数据分析飞机的失速尾旋特性[J]. 洪都科技, 1999, (02): 1-6.
    [58] 李树有, 王启, 张培田. 飞机失速/尾旋特性的预测和试验研究[J]. 飞行力学, 2000, 18(03): 42-45.
    [59] 徐邦年. J—7飞机失速/过失速/尾旋动态特性研究[J]. 飞行力学, 1994, 16(03): 36-44.
    [60] Anglin E L, Scher S H. Analytical study of aircraft-developed spins and determination of moments required for satisfactory spin recovery[R]. NASA TN D-2181, 1964:
    [61] Bowman J S. Spin-entry characteristics of a delta-wing airplane as determined by a dynamic model[R]. NASA TN D-2656, 1965:
    [62] Chambers J R, James S. Bowman J, Anglin E L. Analysis of the flat-spin characteristics of a twin-jet swept-wing fighter airplane[R]. NASA TN D-5409, 1969:
    [63] William Bihrle J, Barnhart B. Effects of several factors on theoretical predictions of airplane spin characteristics dynamic models[R]. NASA CR-132521, 1974:
    [64] Yozlng J W. Optimal and suboptimal control technique for aircraft spin recovery[R]. NASA TN D-7714, 1974:
    [65] James S. Bowman J, White W L. Spin-Tunnel Investigation of A 1/40-Scale Model of theF-111A Airplane with Store Loadings and with Supplementary Spin-Recovery Devices[R]. NASA TM SX-2970, 1974:
    [66] Stough H P, James M. Patton J, Sliwa S M. Flight investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane[R]. NASA TP-2644, 1987:
    [67] Thomas G T, Eyth, J. J, Crosbie R J. NAVAIRDEVCEN Dynamic Flight Simulator F-14 Spin Simulation Program System Description and Specification Report[R]. ADA327438, 1987:
    [68] Veillette P R. Rudder and elevator effects on the incipient spin characteristics of a typical general aviation training aircraft[R]. AIAA-93-0016, 1993:
    [69] CRAIG A, ROMANI, DONALD C. J. Unsteady aerodynamics in airplane stall-spin departure[R]. AIAA-93-0622, 1993: 1-7.
    [70] Lowenberg M H. Development of control schedules to modify spin behaviour[R]. AIAA-98-4267, 1998: 286-296.
    [71] Doedel E J, Champn A R, Fairgrieve T F, et al, AUTO 97 :Continuation and bifurcation software for ordinary differential equations (with HomCont). In ; California Institute of Technology Pasadena,CA: 1998; .
    [72] Hawkins C A. Application of bifurcation and catastrophe theories to near stall flight mechanics[R]. AD A167697, 1985:
    [73] Lowenberg M H. Bifurcation analysis as a tool for post-departure stability enhancement[R]. AIAA-97-3716, 1997: 615-628.
    [74] Culick F E C, Jahnke C C. Application of dynamical systems theory to nonlinear aircraft dynamics[R]. AIAA-88-4372, 1988:
    [75] Iqbal S. Bifurcation analysis methods used in a multi-disciplinary optimisation framework[R]. AIAA-2001-4076, 2001:
    [76] Jahnke C C, Culick F E C. Application of bifurcation theory to the high-angle-of-attack dynamics of the F-14[J]. Journal of Aircraft, 1994, 31(1): 26-34.
    [77] Mehra R K, Prasanth R K. Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations[R]. AIAA-98-4249, 1998: 144-153.
    [78] Baumann D D. F-15B high angle-of-attack phenomena and spin prediction usingbifurcation analysis[R]. AD A217366, 1989:
    [79] Wang Z J, He Z A, Lan C E. Nonlinear analysis of stability and control for an F-16 configuration[R]. AIAA-97-3722, 1997: 673-683.
    [80] Sibilski K. Problems of manoeuvring at post-critical angles of attack - Continuation and bifurcation methods approach[R]. AIAA-2003-0395, 2003:
    [81] 沈宏良 , 刘昶 . 应用扩展连续算法研究推力矢量飞机动力学特性 ( 英文 )[J]. Transactions of Nanjing University of Aeronautics & Astronau, 2002, (02):
    [82] 高浩, 周志强. 高机动性飞机大迎角全局稳定性研究[J]. 航空学报, 1987, (11):
    [83] 黎康, 方振平. 某型飞机非线性动力学特性的分叉分析[J]. 飞行力学, 2002, (02):
    [84] 黎康, 方振平. 分叉分析方法在大迎角控制律设计中的应用[J]. 航空学报, 2003, 24(4): 289-292.
    [85] Avanzini G, de Matteis G. Bifurcation analysis of a highly augmented aircraft model[R]. AIAA-96-3367, 1996: 60-68.
    [86] Goman M G, Fedulova E V, Khramtsovsky A V. Maximum stability region design for unstable aircraft with control constraints[R]. AIAA-96-3910, 1-15.
    [87] Gibson L P, Nichols N K, Littleboy D M. Bifurcation Analysis of Eigenstructure Assignment Control in a Simple Nonlinear Aircraft Model[J]. Journal of Guidance,Control,and Dynamics, 1998, 21(05): 792-798.
    [88] Gibson L P, Nichols N K, Littleboy D M. Closed loop design for a simple nonlinear aircraft model using eigenstructure assignment[R]. AIAA-97-3779, 1997: 746-754.
    [89] Littleboy D M, Smith P R. Closed loop analysis of a simple aircraft model using bifurcation methods[R]. AIAA-96-3366, 1996: 53-59.
    [90] Littleboy D M, Patel Y. High angle of attack control law design and analysis using non-linear bifurcation methods[R]. AIAA-98-4205, 1998: 482-492.
    [91] Littleboy D M, Smith P R. Using bifurcation methods to aid nonlinear dynamic inversion control law design[J]. Journal of Guidance,Control,and dynamics, 1998, 21(4): 632-638.
    [92] 黎康, 方振平. 分叉分析在飞机非线性动力学中的应用[J]. 飞行力学, 2003, (04):
    [93] Sinha N K, Ananthkrishnan N. Level flight trim and stability analysis using continuation methods[R]. AIAA-2000-4112, 2000: 485-495.
    [94] Paranjape A A, Ananthkrishnan N. Airplane Level Turn Performance, Including StabilityConstraints, using Extended Bifurcation and Continuation Method[R]. AIAA-2005-5898, 2005: 1-7.
    [95] Sinha N K, Jangid M, Ananthkrishnan N. Automated gain scheduling for level flight stability augmentation using continuation techniques[R]. AIAA-2003-5315, 2003:
    [96] Sinha N K, Ananthkrishnan N. Bifurcation analysis of inertia coupled roll manoeuvres of airplanes[J]. Journal of Aerospace Engineering, 2003, 217(2): 75-85.
    [97] Sinha N K. Use of the extended bifurcation analysis method for flight control law design[R]. AIAA-2002-0249, 2002:
    [98] 沈宏良. 分支突变理论方法及计算飞行力学研究[D]. 南京: 南京航空航天大学, 2003.
    [99] Charles G A, di Bernardo M. Aircraft flight dynamics controller design using tailoring analysis and bifurcation[R]. AIAA-2002-4751, 2002:
    [100] Snell S A. Nonlinear dynamic-inversion flight control of supermaneuverable aircraft[D].University of Minnesota, 1991.
    [101] Snell S A, Enns D F. Nonlinear inversion flight control for a supermaneuverable aircraft[R]. AIAA-90-3406, 1990: 808-825.
    [102] Bugajski D J, Enns D F, Elgersma M R. A dynamic inversion based control law with application to the high angle-of-attack research vehicle[R]. AIAA-90-3407, 1990: 826-839.
    [103] 高彦玺. 推力矢量控制与过失速机动研究[D]. 北京: 北京航空航天大学, 1997.
    [104] 高彦玺, 王衍洋, 金长江. 推力矢量控制与飞机过失速机动仿真研究[J]. 飞行力学, 1997, 15(01): 23-29.
    [105] 胡孟权. 推力矢量飞机非线性飞行控制律设计研究[D]. 西安: 西北工业大学, 2002.
    [106] 申功璋, 郝健康, 彭可茂, et al. 综合飞行/推力矢量控制系统设计与仿真[J]. 北京航空航天大学学报, 1998, (03):
    [107] 苏浩秦, 宋述杰, 于红艳, et al. 过失速大迎角条件下推力矢量飞机机动仿真[J]. 机械科学与技术, 2006, (03):
    [108] 胡孟权. 超机动飞行非线性动态逆-模糊自适应控制[J]. 飞行力学, 2001, 19(01): 22-25.
    [109] 李爱军. 基于神经网络的动态逆方法及其在飞行控制系统设计中的应用研究[硕士].西安: 西北工业大学, 2000.
    [110] 刘国刚, 沈春林, 陆宇平, et al. 飞行航迹动态逆跟踪控制的神经网络方法[J]. 南京航空航天大学学报, 2002, (02):
    [111] 刘燕斌, 陆宇平. 非线性动态逆控制在高超飞控系统中的应用[J]. 应用科学学报, 2006, (06):
    [112] 朱家强. 基于神经网络和动态逆的超机动飞行控制技术研究[D]. 南京: 南京航空航天大学, 2004.
    [113] 朱荣刚, 姜长生, 邹庆元, et al. 新一代歼击机超机动飞行的动态逆控制[J]. 航空学报, 2003, (03):
    [114] 尹江辉, 周娜, 刘昶. 模糊逻辑控制在过失速机动飞行中的应用[J]. 航空学报, 2000, (03):
    [115] 尹江辉, 刘昶, 王立新. 模糊神经网络在过失速机动飞行中的应用[J]. 飞行力学, 2001, (01):
    [116] Vercesi P, Degli Antoni L F. Fuzzy thrust controller[R]. AIAA-2000-3643, 2000:
    [117] Bossert D E. PID and fuzzy logic pitch attitude hold systems for a fighter jet[R]. AIAA-2002-4646, 2002:
    [118] Sasiadek J Z, Mazzawi A N. Fuzzy and adaptive control of an aircraft[R]. AIAA-94-3586, 1994: 391-400.
    [119] Jiang T Y, Prasad J V R, Calise A J. Adaptive fuzzy logic flight controller for rotorcraft[R]. AIAA-96-3850, 1996:
    [120] 杨京, 杨一栋, 范彦铭. 基于模糊逻辑的飞行/推力综合控制系统研究[J]. 南京航空航天大学学报, 2000, (01):
    [121] 唐超颖, 吴文海, 沈春林, et al. 滑模变结构飞行控制系统的设计[J]. 飞机设计, 2002, (04):
    [122] 连葆华, 崔平远, 崔祜涛. 高速再入飞行器的变结构控制及其六自由度仿真研究[J]. 航天控制, 2002, (04):
    [123] 胡海岩. 应用非线性动力学[M]. 北京: 航空工业出版社, 2002.
    [124] 黄润生. 混沌及其应用[M]. 武汉: 武汉大学出版社, 2000.
    [125] Chen Y S, Andrew Y T L. Bifurcation and chaos in engineering[M]. London: Springer, 1998.
    [126] Roose D, de Dier B, Spence A. Continuation and Bifurcations: Numerical Techniques and Applications[M]. Dordrecht,The Netherlands: Kluwer Academic Publishers, 1989.
    [127] 章卫国, 卢京潮, 吴方向. 先进控制理论与方法导论[M]. 西安: 西北工业大学出版社, 2000.
    [128] 姚琼荟, 黄继起, 吴汉双. 变结构控制系统[M]. 重庆: 重庆大学出版社, 1997.
    [129] “7210”办公室, 飞机运动方程. In 飞行力学应用手册, ; “7210”办公室飞行力学专业组: 2000; .
    [130] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005.
    [131] 熊海泉, 刘昶, 郑本武. 飞机飞行动力学[M]. 北京: 航空工业出版社, 1990.
    [132] 郭锁凤, 申功璋, 吴成富. 先进飞行控制系统[M]. 北京: 国防工业出版社, 2003.
    [133] 左军毅. 推力矢量飞机非线性控制律设计研究[硕士]. 西安: 西北工业大学, 2003.
    [134] 张曙光, 孙金标. 最佳过失速机动研究[J]. 航空学报, 2001, (04):
    [135] 胡孟权, 李晓勇, 张美忠. 过失速机动的优化[J]. 空军工程大学学报(自然科学版), 2001, 2(04): 1-3.
    [136] 沈宏良, 陶矩, 魏立新, et al. 航天飞机自动着陆轨迹优化设计[J]. 飞行力学, 2004, (01):
    [137] 叶庆凯, 王肇明编著. 优化与最优控制中的计算方法[M]. 北京: 科学出版社, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700