基于重构算法和码距反馈的电力线通信网络可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力线宽带接入网、局域网和基于电力线通信的大规模监控系统的发展,对电力线通信网络的可靠性提出了更高的要求。在电力线通信节点组网时,可靠性问题的关键是在变化的信道条件下,节点间通信链路是否能够可靠连接。在以往的文献和研究成果中,针对电力线通信网络可靠性的研究较少;本文从理论和工程应用两个方面对提高电力线通信网络连通性及有效性的方法进行了较为深入的研究。
     分析前人研究的电力线信道输入阻抗、噪声、反射特性和信道模型,从中归纳出电力线信道的动态特性;分析电力线通信网络可靠性相关的已有成果,结合电力线通信网络应用和研究的现状,提出了电力线通信连通性问题是在大规模节点组网条件下,迫切需要解决的基础问题。应用OSI模型的系统分层方法,研究并指出现有电力线通信网络缺乏可互联的网络层功能,在MAC层上增加网络层的功能是十分必要的,并能以较小的代价和硬件开销实现这一功能。深入研究了电力线通信网络的可重构特性,指出电力线通信网络的逻辑重构问题即初始化问题。通过分步骤的重构初始化,提出了可重构的引理,进一步提出并证明了多级分层策略下的可重构算法。阐明了重构算法与普通中继网络的区别和同步方法;并指出了可重构算法位于受物理层限制较小的MAC层,这一特点对于现有电力线通信网络的硬件平台具有普遍的适应性。
     进一步研究逻辑重构后的网络拓扑,给出一种适用于混合电力线通信网络的低成本的类-TDMA的MAC层协议;应用M/D/1模型,与轮询系统对比,分析了协议的性能。分析了实际应用对重构算法的限制,给出了经过验证的工程算法,以及远程监控系统感兴趣的通用循环周期。
     与重构初始化算法同样地适应硬件平台,进行了基于累加器的FEC信道编码方法研究。针对窄带电力线通信网络,给出了码距最大化的信道编码原则;可使用重复编码累加器来构造最大码距的信道编码,以提高比特能量噪声比;指出即使物理层无累加器,也可在数据链路层实现软累加器。设计信道编码比特累加器,使用大数判决方法进行纠错,并给出了累加器大数判决的信道误码性能及实际工程验证结果。研究了累加器与经典TS-ARQ算法的资源消耗,指出基于累加器的信道编码能够降低资源消耗,并能够获得更好的时间性能。根据信道质量间接估计的基本需求,研究用信道编码码距的反馈信息将信道质量划分为离散的区间,作为信道编码的参考;给出了算法并作了对比性研究,证明在满足可靠性前提下,信道质量反馈编码能够提高通信有效性。
     针对电力线通信网与外部网的接口,提出使用单芯片嵌入式TCP/IP协议栈来构造瘦服务器模式网关,给出网关参考模型和基本结构,研究和阐述CGI的接口方法,给出应用层实现的具体方法。针对重构算法和累加器信道编码的应用,研制实用的电力线扩频通信模块,并指出实际应用对扩频通信的限制。重点研究和开发电力线窄带通信模块,详细阐述了设计步骤,影响物理层性能的因素及相应的解决办法;给出了使用窄带电力线通信模块进行组网的方法以及在远程照明监控系统中应用的工程实例。
     电力线可重构算法以及基于累加器的自适应信道编码,受物理层限制较小,具有优良的通用性。单芯片电力线通信网关和电力线通信模块的设计方法,对研制可靠的电力线通信网络组件,具有较重要的参考价值;通过2年实际试验工程验证重构算法、信道编码、组网方法和电力线通信模块,适于大规模电力线通信网络的开发,并为更多领域应用奠定了基础。
With the development of the broadband power line communication (PLC) access network, LAN and large scale monitoring and control network based on PLC, more and more reliability requirements, especially the connectivity of the network arises. The reliable data link is the key of the reliability problem in variable PLC channel. As previous documents and research achievements focus very little on the reliability of the PLC network, the main reasons that influence PLC network reliability is studied, and this work focus on the systematical methods and techniques that improve the reliability and effectivity of the PLC network theoretically and experimentally in practical engineering.
     Previous achievements including PLC channel input resistance, noise, reflection properties and channel model, are briefly discussed and summarized to extract the dynamic characters of the PLC channel. The existing achievements about the reliability of the PLC network are emphasized, present status of PLC research and applications are analyzed, and the most urgent problem, the reliability of PLC network is proposed for PLC network with a large scale of communication nodes.
     The OSI model and hierarchical classification method are applied in the research and the factor is pointed out that present PLC network is the lack of the interconnection function of Network Layer, which will affect the reliability of PLC network. It is very necessary to add Network Layer fuction in MAC layer, which could be accomplished with low cost and least hardware consumption. The reconfiguration property of PLC network is studied and the problem is pointed out that the reconfiguration in logic layer is the problem of initialization. The reconfiguration lemma is studied by step-by-step initialization strategy, and further the theorem is proposed and proved in x step strategy. Difference with common physical repeator network is distinguished and synchronization method is detailed. The reconfiguration algorithm is located at MAC layer with least physical layer affection, which is universally adaptive to most of the current PLC hardware platform.
     The topology after reconfiguration is studied further and a low cost TDMA- like protocol in MAC layer is also proposed for hybrid PLC network for the reliability of the data link, and M/D/1 model is utilized for the comparison with polling system and for the performance of the proposed protocol. The limitations in practical engineering to proposed algorithm are analized, and engineering algorithms that passed field test are given, as well as the general cycle time of the reconfigured PLC network that will be interested to remote supervisory applications.
     Aim to get universal adaptive to hardware platform as reconfiguration algorithm does, channel coding is utilized for error control to improve the communication reliability, and the basic principle of channel coding for the designing target of reliability is proposed. To increase signal-noise-ratio, the method that uses repeat-coding accumulator to construct channel coding is proposed. The soft accumulator can be realized in data link layer when no accumulators exist on physical layer.
     The channel coding bit accumulator is designed, majority judgment algorithm is proposed for error correction, and the performances of channel error rate with the majority judgment and accumulator together with the practical engineering field test results are detailed. The processor resource consumption for accumulator channel coding is studied comparing with classical TS-ARQ algorithm. This work points out that the channel coding with accumulator can reduce the processing resource consumption, and classical TS-ARQ algorithm is difficult to reach its theoretical performance due to the error rate of the preamble, and better performance of PLC network will be reached by channel coding with accumulator.
     The basic requirement of indirect channel evaluation is studied further, the method of utilizing channel code distance for discrete interval division of channel quality is proposed for channel coding reference, and the algorithm is given comparislly. The channel coding with feedback of channel quality can improve communication effectivity with satisfying the top aim of increasing reliability.
     Aim to interface PLC network with external network, this work proposed that embedded TCP/IP stack is suitable for the establishment of the gateway, and the reference model and basic structure of TCP/IP stack are addressed. The interface method with CGI is studied and discussed, and the details for the implementation of application layer are given.
     For the applications of reconfiguration algorithm and channel coding with accumulator, the spread spectrum based PLC module is designed with pointing out the limitation of PLC network applications. The research and development of narrow band PLC module is focused, designing strategies, the factors that affect physical layer performance and corresponding solutions are detailed. The networking methods and engineering example applied in lighting monitoring and control system based on narrow band PLC network is introduced.
     The proposed PLC network reconfigurable algorithm and channel coding based on accumulator with little limitation from physical layer, have excellent universal applicabilities. The design strategies of single-chip embedded PLC gateway and communication modules have important reference value for develop reliable PLC network components. The proposed reconfiguration algorithm, channel coding, networking strategy and designed PLC module, which are proofed by long-term engineering field test, can establish favorable foundation for the progress of PLC network with a large scale of nodes applied in more and more application fields.
引文
1 Hansen, Diethard. Update on Power Line Telecommunication (PLT) Activities in Europe. IEEE International Symposium on Electromagnetic Compatibility, 2002, (1):17~22
    2 Liu Weilin, Widmer Hanspeter, Raffin, Philippe. Broadband PLC Access Systems and Field Deployment in European Power Line Networks. IEEE Communications Magazine, 2003, 141(5):114~118
    3 Staschus, Konstantin. German Open Access and Transmission Pricing within the European Framework. IEEE Power Engineering Review, 2000, 20(4):17~18
    4 Galli Stefano, Scaglione Anna, Dostert Klaus. Broadband Is Power: Internet Access through the Power Line Network. IEEE Communications Magazine, 2003, 41(5):82~83
    5 Latchman Haniph A,Yonge Lawrence W. Power Line Local Area Networking. IEEE Communications Magazine, 2003, 41(4):32~33
    6 Newbury, John. Efficient Communication Services Using the Low Voltage Distribution Line. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, (11):579~591
    7 McAdams, Alan K. Potential Future Marketplace Role of Broadband Power Line Carrier. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, (3):1228
    8 Toshihiko, Nakagawa, Masao. Integrated system of white LED visible-light communication and power-line communication. IEEE Transactions on Consumer Electronics, v 49, n 1, February, 2003:71~79
    9 Maryanka, Yair. Wiring Reduction by Battery Power Line Communication. IEE Colloquium (Digest), 2000, (88):27~30
    10 Newbury John E., Morris Kerry J. Power Line Carrier Systems for Industrial Control Applications. IEEE Transactions on Power Delivery, 1999, 14(4):1191~1196
    11 Kan Kayi, Wong Siuhong, Cheng Davidkiwai. Intelligent Switch in 42V DC Ppower Net. IEEE 35th Annual Power Electronics Specialists Conference(PESC04), 2004, (2):1149~1154
    12 Likanasombat, Denchai. Power Line Communication for Power Distribution Network-DCS3000. Proceedings of Sixth International Conference on Advances in Power System Control, Operation and Management, 2003, (2):485~489
    13 Wang Changlong, Ma Aiwen, Li Deliang. A Storage Alarm System Based on Low Voltage Power Lines Carrier Communication Using Spread Spectrum Technology. Proceedings of the International Symposium on Test and Measurement, 2003, (5):4236~4238
    14 Corneliussen S. Communication on Power Lines-Constraints and Experience. Subsea Control and Data Acquisition, 2004:217~229
    15 Bedu J., Morisse Joel, Auvergne, X.. Power Line Carrier Techniques Applied to Spacecraft Data Handling. European Space Agency Publication (ESA SP), 2003, (532): 443~454
    16 Liu C.H, Wade E., Asada H.H. Reduced-cable Smart Mmotors Uusing DC Power Line Communication. Proceedings of IEEE International Conference on Robotics and Automation, 2001, (4):3831~3838
    17 Tang LT., So, P.L, Gunawan E. Characterization and Modeling of In-building Power Lines for High Speed Data Transmission. IEEE Transactions on Power Delivery, 2003, 18(1):69~77
    18 Javier Canete, Francisco, Cortes. Modeling and Evaluation of the Indoor Power Line Transmission Medium. IEEE Communications Magazine, 2003, 41(4):41~47
    19 Canete, Francisco Javier, Diez. Broadband Modelling of Indoor Power Line Channels. IEEE Transactions on Consumer Electronics, 2002, 48(1):75~183
    20 Bostoen Tom, Van de Wiel, Olivier. Modelling the Low Voltage Power Distribution Network in the Frequency Band from 0.5 MHz to 30 MHz for Broadband Powerline Communications (PLC). International Zurich Seminar on Digital Communications, 2000:171~178
    21 Gebhardt Martin, Weinmann Frank, Dostert Klaus. Physical and Regulatory Constraints for Communication over the Power Supply Grid. IEEE Communications Magazine, 2003, 41(5):84~90
    22 Jero Ahola, Application of Power-Line Communication to Data Transfer ofOn-line Condition Monitoring of Electrical Drives. Lappeenranta University of Technology, 2003:13~15
    23 Klaus Dostert 著, 栗宁, 郑富生, 杨洪译. 电力线通信. 中国电力出版社, 2003:27~29 35
    24 Schilling,D.L., Pickholtz R.L., Milstein,L.B.. Spread Spectrum Goes Commercial. IEEE Spectrum, 1990:40~45
    25 Kim Wooseop,Kim Lokwon, Lee Changeun. Control Network Architecture Based on EIA-709.1 Protocol for Power Line Data Communications. IEEE Transactions on Consumer Electronics, 2002, 48(3):650~655
    26 J. Newbury and K. J. Morris. Power Line Carrier Systems for Industrial Control Applications. IEEE Trans. Power Delivery, 1999, 14(4):1191~1196
    27 Grayson Evans. Communication Systems Design. CEBus Communication Standard, Part1. 1996
    28 Grayson Evans. Communication Systems Design. CEBus Communication Standard, Part2. 1996
    29 王赞基, 郭静波. 电力线扩频通信技术及其应用. 电力系统自动化, 2000, 24(21):64~68
    30 Arzberger. Fundamental Properties of the Low Voltage Power Distribution Grid. Proceedings of the 1997 International Symposium on Power Line Communication and Its Applications, Essen, Germany, 1997:45~50
    31 Brown, P.A. Some Key Factors Influencing Data Transmission Rates in The Power Line Environment When Utilizing Carrier Frequencies above 1MHz. Proceedings of the International Symposium on Power Line Communication and Its Applications, Tokyo, Japan, 1998:67~75
    32 Hensen C., Schulz W. Time Dependency of The Channel Characteristics of Low Voltage Power-lines And Its Effects on Hardware Implementation. International Journals of Electronics and Communications, 2000, 54(1):23~32
    33 Dostert,K., and Zimmenermann, M. AnAnalysis of The Broadband Noise Scenario in Powerline Networks. Proceedings of the 4th International Symposium on Power Line Communication and Its Applications, Limerick, Ireland, 2000:131~138
    34 Giebel T. and Rohling H. OFDM and Regularity Aspects of Power LineApplications. Proceedings of the 1st International OFDM-Workshop, Hamburg, Germany, 1999:4.1~4.4
    35 Lampe, L. and Huber J. Bandwidth Efficient Power Line Communications Based on OFDM. International Journals of Electronics and Communications, 2000, 54(1):41~44
    36 姚雪峰, 周嘉农, 宋玉宏等. 正交频分复用前置编码技术在宽带电力线通信中的应用. 电网技术, 2004, 28(18):44~47
    37 Lee M.K., Newman, R.E., Latchman H.A., Katar S., Yonge L. HomePlug 1.0 Powerline Communication LANs-Protocol Description and Performance Results. International Journal of Communication Systems, 2003, 16(5):447~473
    38 HomePlug Power Line Alliance. HomePlug Powerline Alliance Fact Sheet. Oct, 2004:8~10
    39 Nicholson J.R., Malak J.A.R.F. Impedance of Power Lines and Line Impedance Stabilization in Conducted Interference Measurements. IEEE Trans on Electromagnetic Compatibility, 1973, (15):84~86.
    40 Malak J A , EngstormJ R. R. F. Impedance of United State and European Power Lines. IEEE Trans on Electromagnetic Compatibility, 1976, 18(1):36~38
    41 Shekel, Jacob. Analysis of Distribution Power Line Carrier Propagation by Transfer Impedance. IEEE Trans Power Appar Syst, 1982, 101(7):2395~2400
    42 Koklukaya Etem, Tarkan, Nesrin. Analysis of Impedance of Variations of Power Distribution Lines at Communication Frequencies. Proceedings of the Mediterranean Electrotechnical Conference. 1998, (2):1112~1116
    43 Vines R M, Trussel M J, Shuey K. Impedance of Residential Power Distribution Circuit. IEEE Trans on Electromagnetic Compatibility, 1985, EMC27(1):6~12
    44 Hooijen O G. A Channel Model for the Residential Power Circuit Used as a Digital Communications Medium. IEEE Trans on Electromagnetic Compatibility, 1998, 40(4):333~336
    45 Canete, Francisco Javier Diez, Luis, Cortes, Jose Antonio. Broadband Modelling of Indoor Power Line Channels. IEEE Transactions on ConsumerElectronics, 2002, 48(1):175~183
    46 Meng H., Chen S., Guan Y.L., Law C.L., So P.L. Modeling of Transfer Characteristics for the Broadband Power Line Communication Channel. IEEE Transactions on Power Delivery, 2004, 19(3):1057-1064
    47 Chan Morgan H.L., Donaldson Robert. Attenuation of Communication Signals on Residential and Commercial Intrabuilding Power Distribution Circuits. IEEE Transactions on Electromagnetic Compatibility, 1986, 28(4):220~230
    48 ONeal J B. The Residential Power Circuit as a Communication Medium. IEEE Trans on Consumer Electronics, 1986, 32(3):567~ 577
    49 Tanaka M. High Frequency Noise Power Spectrum Impedance and Transmission Loss of Power Line in Japan on Intrabuilding Power Line Communications. IEEE Trans on Consumer Electronics, 1988, 34(2):321~326
    50 何海波, 张有兵, 程时杰. 低压电力线载波通信中信号反射现象的复小波研究. 中国电机工程学报, 2002, 22(6):11~15
    51 姜霞, J.Nguimbis, 程时杰. 低压配电网载波通信噪声特性研究. 中国电机工程学报, 2000, 20(11):30~35
    52 Hensen, Christian, Schulz. Time Dependence of the Channel Characteristics of Low Voltage Power Lines and Its Effects on Hardware Implementation. AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54(1):23~32
    53 Degardin V., Lienard M, Zeddam A. Classification and Characterization of Impulsive Noise on Indoor Power Line Used for Data Communications. IEEE Transactions on Consumer Electronics, 2002, 48(4):913~918
    54 Chan Morgan H.L., Donaldson Robert. Amplitude, Width, and Interarrival Distributions for Noise Impulses on Intrabuilding Power Line Communication Networks. IEEE Transactions on Electromagnetic Compatibility, 1989, 31(3):320~323
    55 Mostafa A., Fikri M., Talaat K. Evaluation of the Communication Channel Capacity for Intrabuildings Distribution Power Lines. Journal of Engineering and Applied Science, 2001, 48(4):745~756
    56 Smith A. Power Line Nnoise Survey. IEEE Trans on Electromagnetic Compatibility, 1972, 14 (1):31~32
    57 Manfred Zimmermann, Klaus Dostert. An Analysis of the Broadband Noise Scenario in Powerline Networks. Proceedings of the 4th International Symposium on Powerline Communications and its Applications, Limerick, Ireland, 2000:131~138
    58 张圣清, 于东海. 低压电力线通信信道噪声特性的测试与分析. 电力系统通信, 2003, (1):35~37
    59 王乔晨, 郭静波, 王赞基. 低压配电网电力线高频噪声的测量与分析. 电力系统自动化, 2002, 26 (1) : 18~21
    60 高峰, 董亚波. 低压电力线载波通信中信号传输特性分析. 电力系统自动化, 2000, 24 (7): 36~40
    61 Zimmermann M, Dostert K. The Low Voltage Power Distribution Network as Last Mile Access Network-Signal Propagation and Noise Scenario in the HF-Range . AEU International Journal on Electronics and Communications , 2000, 54 (1):13~22
    62 Dan Raphaeli, Evgeni Bassin. A Comparison between OFDM, Single Carrier,and Spread Spectrum for High Data Rate PLC. Itran Communications, 2001
    63 J. Barnes. A Physical Multi-Path Model for Power Distribution Network Propagation IEEE International Symposium on Power Line Communications and its Applications(ISPLC’98), Tokyo, 1998:102~106
    64 H. Philipps. Development of a Statistical Model for Power Line Communications Channels. IEEE International Symposium on Power Line Communications and its Applications(ISPLC’00), Limerick, Ireland, 2000:247~252
    65 T.C. Banwell, S. Galli. On the Symmetry of the Power Line Channel. IEEE International Symposium on Power Line Communications and its Applications(ISPLC’01), Malmo, Sweden, 2001:37~45
    66 T.C. Banwell, S. Galli. A New Approach to the Modeling of the Transfer Function of the Power Line Channel. IEEE International Symposium on Power Line Communications and its Applications(ISPLC’01), Malmo, Sweden, 2001:51~56
    67 Gebhardt M., Zimmermann M., Dostert K. Characterisation of the Radiation from PLC by Means of the Coupling Factor. AEü International Journal onElectronics and Communications, 2000, 54(1):41~44
    68 H. Philipps. Mdeling of Power Line Communications Channels. IEEE International Symposium on Power Line Communications and its Applications(ISPLC’99), Lancaster, UK, 1999:76~81
    69 Esmailian Tooraj, Kschischang Frank R, Gulak P. In-building Power Lnes as High-speed Communication Channels-Channel Characterization and A Test Channel Ensemble. International Journal of Communication Systems, 2003, 16(5):381~400
    70 Francisco Javier Canete, Jose Antonio Cortes, Luis Diez. Modeling and Evaluation of the Indoor Power Line Transmission Medium. IEEE Communications Magazine, 2003, 41(4):41~47
    71 Dostert, K. and Zimmermann, M. A Multipath Signal Propagation Model for the Power Line Channel in the High Frequency Range. Proceedings of 3rd International Symposium on Powerline Communications and its Applications(ISPLC’99), Lancaster, UK, 1999:45~51
    72 张有兵, 程时杰. 低压电力线高频载波通信信道的建模研究. 电力系统自动化, 2002, 26(33):62~65
    73 Nicholson J R., Malak J A. RF Impedance of Power Lines and Line Impedance Stabilization in Conducted Interference Measurements. IEEE Trans on Electromagnetic Compatibility, 1973, (15):84~86.
    74 刘海涛, 张保会, 谭伦农. 低压电网通信信道的理论分析. 西安交通大学学报, 2003, 37(10):1048~1051
    75 John O.Onunga, Robert W.Donaldson. A Simple Packet Retransmission Strategy for Throughput And Delay Enhancement on Power Line Communication Channels. IEEE Transactions on Power Delivery, 1993, 8(3):818~826
    76 Dodds David E, Hanson Jack S. Power Line Data Communication Using Timed Transmission. Canadian Conference on Electrical and Computer Engineering, 1994(1):280~283
    77 Chang Taegyu , Ahn Namho, Kim Hoon. A Systematic Evaluation Method for the Operation and Communication Reliabilities of the PLC Networked Home Appliances. IEEE Transactions on Consumer Electronics, 2002, 48(3):765~769
    78 Niwa Hisashi, Oono Osamu, Katayama Masaaki. Spread-spectrum System with Dual Processing Gains Designed for Cyclic Noise in Power Line Communications. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 1997, 80A(12):2526~2533
    79 Qinruo Wang, Shiwei Gong. Communication Reliability Design of Low Voltage Power Line Communication System. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2003, (4):4040~4044
    80 Yute Chen, Jeng Kuanghwang, Wen Liangtseng. A Reliable Power Line Carrier and Wireless Data Concentrator for Broadband Energy Information Network. IEEE Transactions on Consumer Electronics, 2003, 49(4):1054~1060
    81 Zhou Q., Zhang C.X., Yang Y.. Application Research of COFDM Modulation Technology on the Power Line Carrier Communication. Proceedings of The Sixth International Conference on Advances in Power System Control, Operation and Management, 2003, (2):647~652
    82 Katayama, M. Introduction to Robust, Reliable, and High-speed Power-line Communication Systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2001, 84(12):2958~2965
    83 Esmailian T, Gulak P.G., Kschischang, F.R. Discrete Multitone Power Line Communications System. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2000, (5):2953~2956
    84 Sobia Baig, N. D. Gohar. A Discrete Multitone Transceiver at the Heart of the PHY Layer of an In-Home Power Line Communication Local Area Network. IEEE Communication Magazine, 2003:48~53
    85 吴刚, 王伟艺. CEBus 中的电力线载波网技术及改进. 计算机工程, 1999, 25(12):96~98
    86 董亚波, 高锋. 低压电力线载波通信网络结构分析. 电网技术, 2003, 27(2):58~62
    87 John Newbury and William Miller. Multiprotocol Routing for Automatic Remote Meter Reading Using Power Line Carrier Systems. IEEE Transactions on Power Delivery, 2001, 16(1):1~5
    88 张世平, 张绍卿, 李德胜. 基于全通滤波器的 IIR 陷波器在抑制电力线通信中的谐波干扰的研究. 电工技术学报, 2003, 18(3):107~110
    89 赵学增, 吴斌, 张绍卿. 工频电力通信系统基于匹配滤波器的跨变压器台区工频电力通信. 电力系统通信, 2002, (3):41~44
    90 张有兵, 程时杰. 基于正交小波的低压电力线多载波通信新方法. 电力系统自动化, 2002, 27(17):31~34
    91 张旭辉, 张礼勇, 杜中良. 自适应低压电力线载波通信技术. 电测与仪表, 2003, 40(438):45~47
    92 Akyildiz IF, Suw, Sankarasubramaniam Y. Wireless Sensor Networks: A Survey. Computer Networks, 2002, (38):393~422
    93 Li Dan , Wong Kd , Hu Yuhen. Detection Classification and Tracking of Targets. IEEE Signal Processing Magazine, 2002,(3):17~29.
    94 Ghaisi S, Srivastava A, Yang xiaojian. Optimal Energy Aware Clustering in Sensor Networks. Sensors, 2002,(2):258~269.
    95 毛玉明, 杨宁, 段景山. 移动 Ad Hoc 网的一种新的自组织组网和路由算法. 电子学报, 2004, (12):161~164
    96 任智, 郭伟. 移动 Ad Hoc 网单播路由协议研究进展. 电子与信息学报, 2003, (12):43~47
    97 彭艺, 赵东风, 周正中等. 分布式无线令牌接入技术在无线自组网中的应用研究. 电子与信息学报, 2005, (4):629~633
    98 T. Hayashi, K. Nakano, S. Olariu. Randomized Initialization Protocols for Ad Hoc Networks, IEEE Transactions on Parallel and Distributed Systems, 2000, 11(7):749~759
    99 Micicl and I. Stojmenovic. A Hybrid Initialization Protocol for Collision-free TDMA in Single Hop Wireless Networks, IEEE International Parallel and Distributed Processing Symposium, 2002:1375~1381
    100 谢希仁. 计算机网络(第二版). 大连理工大学出版社, 1998:190~195
    101 Jung Sooyoung, Kim, Taehyun Lee, Myungun Kwon. Modeling and simulation of power line channel. 2004 IEEE Power Engineering Society General Meeting, 2004, (1):793~797
    102 S. Olariu. I. Stojmenovic and A. Zomaya. On the Dynamic Initialization of Parallel Computers. Journal of Supercomputing, 1999, (15):5~24,
    103 Bernard Sklar 著, 徐平平等译. 数字通信—基础与应用(第二版). 电子工业出版社, 2002:234~235
    104 Dai Huaiyu, Poor H. Vincent. Advanced Signal Processing for Power Line Communications. IEEE Communications Magazine, 2003, 41(5):100~107
    105 Biglieri, Ezio. Coding and Modulation for A Horrible Channel. IEEE Communications Magazine, 2003, 41(5):92~98
    106 Vinck A.J.H., Haering J., Wadayama T. Coded M-FSK for Power Line Communications. Proceedings of IEEE International Symposium on Information Theory, 2000:137
    107 Umehara, Daisuke, Yamaguchi. Turbo Decoding in Impulsive Noise Environment. IEEE Global Telecommunications Conference, 2004, (1):194~198
    108 Wada Tadahiro. A Study on the Effect of Turbo Codes in Cyclostationary Gaussian Noise Processes. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003, E86A(9):2396~2404
    109 Wada Tadahiro. A Study on Performance of LDPC Codes on Power Line Communications. 2004 IEEE International Conference on Communications, 2004, (1):109~113
    110 S.Lin and Costello Jr. Error Control Coding: Foundamentals and Applications. 1986:49~53 70~72
    111 赵淑琴, 郑薇. 随机信号分析. 哈尔滨工业大学出版社, 2001:33~35 137 143~144 148~150
    112 Nakajima T., Soejima K., Matsuda M. Design and Implementation of Distributed Object-oriented Infrastructures for Networked Home Appliances on Commodity Operating Systems. Proceedings of the Fourth International Symposium on Object-Oriented Real-Time Distributed Computing, 2001:171~178
    113 Peter Bergstrom, Kevin Driscoll, John Kimball. Making Home Automation Communications Secure. IEEE Computer, 2001:50~56
    114 张贤达,保诤. 通信信号处理. 国防工业出版社, 2000:159~160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700