硅纳米线阵列的制备及其在生化传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅纳米线以其进入纳米尺度后所具有的独特的半导体性质与发展为各式纳米元件的极大潜力,受到学术界越来越多的关注。
     在本论文的第一部分中,针对利用“无电电镀”方法制备硅纳米线的形成机制的说法不统一的现状,我们从研究硅纳米线的形成机理入手,通过对无电电镀和伽伐尼置换两个概念的分析,借鉴其他小组的某些观点和经过大量的实验验证,提出一种新的硅纳米线的形成机制。在该机制中,伽伐尼置换过程中形成的金属-绝缘体-半导体(MIS)结构对硅纳米线阵列的形成起到至关重要的作用。MIS结构是一个动态平衡的过程,贵金属离子和HF溶液分别起到增厚和减薄二氧化硅层的作用。
     第二部分,考虑到以往的硅纳米线刻蚀需要在高温、高压等严苛的实验条件下进行,我们通过对实验条件的改进,在室温、常压等常态的实验条件下,成功地制备了线径均匀和垂直排布于硅衬底的硅纳米线阵列;同时,通过研究各实验条件对形成硅纳米线的影响,得到优化的制备硅纳米线阵列的实验条件。结合实验结果,对硅纳米线形成机理做进一步探讨,证实了第一部分中提出的机制的正确性。
     第三部分,为了实现硅纳米线阵列在微纳器件中的应用,我们通过把微电子加工工艺与伽伐尼置换相结合的方法,采用氮化硅做掩膜,成功地获得了图形化的硅纳米线。通过在氮化硅抗蚀能力之内,改变刻蚀时间的影响,得到优化的实验条件。另外,利用流体力学理论解释了图形化对形成硅纳米线长度的影响。
     最后,通过在硅纳米线阵列的表面修饰普鲁士蓝分子,制成了普鲁士蓝/硅纳米线电极,通过在三电极系统中把该电极应用到对过氧化氢的电化学行为方面的研究,发现该电极对过氧化氢有很好的催化响应能力,有制成生化传感器的希望。
Recently, due to the unique semiconductor properties characteristics and the great potentials for developing various nano-devices such as nanoelectronics and nanosensors, silicon nanowires have attracted more and more attention.
     There exists a controversy about the formation mechanism of silicon nanowires (SiNWs) prepared by a chemical etching method assisted by metal ions (such as Ag+) in hydrogen fluoride-contained solution. To begin with, we discussed the difference between eletroless plating with galvanic displacement which is commonly adapted by others researches in the process of the SiNWs array preparation in HF solution containing noble metal ions.
     Firstly, a metal-insulator-semiductor (MIS) like structure had been put forward to explain the SiNWs array formation in the beginning of the thesis. In the galvanic displacement process, on one hand, the metal ions in the solution can extract the electrons from the silicon substrate and be reduced into metal nanoparticles or metal nanoclusters via the galvanic displacement. On the other hand, silicon substrates lose the electrons and are oxidized to silicon dioxide (SiO2). The reduced metal partcles located on the silicon oxide surface form the MIS-like structure. Hydrogen fluoride-contained solution will dissolve the silicon dioxide without metal covered and lead to the etching process to take place.
     Secondly, we succeeded in preparing the vertically aligned large-area SiNWs array in HF solution containing noble metal ions under the normal conditions (room temperature, latm.). Its expremental process is simple and the cost is decreased comparing with the the rigid experimental conditions, such as high temperature, high pressure, etc. in the previous literatures. Moreover, the optimal experimental parameters of prepaing SiNWs array are obtained by discussing the influence of various experimental conditions. These results further confirm that it is correct about the obove mentioned formation mechanism of SiNWs.
     Thirdly, in order to carry out the application in micro-and nano-devices and IC, the patterned SiNWs array is obtained by combining the pholithagraphy technology with chemical etching method. The silicon nitride layer is used as a mask. For silicon nitride layer will be etched away for a long etching time, we discuss the influence of etching time and obtain the optimal parameters during the process of prepaing SiNWs array. In addition, considering of the influence of patterns on the SiNWs etching, we put forward a fluid dynamics theory.
     Finally, the Prussian blue/silicon nanowires (PB/SiNWs) electrode is constructed successfully by modifying Prussian blue molecules on the surface of patterned SiNWs array. The electrochemical characteristic of this electrode was investigated by detecting hydrogen peroxide (H2O2) as a working electrode in a three-electrode electrochemical system. The results demonstrate that the electrode has an excellent catalytic resonse to H2O2 and is potential for electrochemical biosensors.
引文
[1]Wan L.J., Zhang J., Chen X.J., Yan Q., Liu C.R., Hou H.N., Low-temperature solution selective growth of zinc oxide nanorods on different Substrates[J].J. Ceram. Process. Res.,4(2010).
    [2]Walter E.C., Penner R.M., Liu H., Ng K.H., Zach M.P., Favier F., Sensors From Electrodeposited Metal Nanowires[J]. Surf. Interface Anal.,2002 (34) 409-412.
    [3]Wang Z.L., Nanobelts, Nanowires and Nanodiskettes of Semiconducting Oxides-from materials to nanodevices[J]. Adv. Mater.2003(15) 432-436.
    [4]Zhong Z., Qian F., Wang D., Lieber C.M., Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices[J]. Nano Lett.,2003 (3) 343-346.
    [5]张厥宗,硅单晶抛光片的加工技术,化学工业出版社,2005,41-52.
    [6]Zheng B., Wu Y., Yang P., Liu J., Synthesis of Ultra-Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys[J]. Adv. Mater.,2002 (14) 122-124.
    [7]Wagner R.S., Ellis W.C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth[J]. Appl. Phys. Lett.,1964 (4) 89-91.
    [8]Moutanabbir O., Senz S., Zhang Z., Gosele U., Synthesis of isotopically controlled metal-catalyzed silicon nanowires[J]. Nano Today,2009 (4) 393-398
    [9]Hofmann S., Ducati C., Neill R. J., Piscanec S., Ferrari A.C., Geng J., Dunin-Borkowski R.E., Robertson J., Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition[J]. J. Appl. Phys.,2003 (94) 6005-6013.
    [10]Wu Y., Cui Y., Huynh L.,Barrelet C.J., Bell D.C., Lieber C.M., Controlled Growth and Structures of Molecular-scale Silicon Nano wires [J]. Nano Lett.,2004 (4) 433-436.
    [11]Yasseri A. A., Sharma S., Kamins T. I., Li Z., Williams R.S., Growth and Use of Metal Nanocrystal Assemblies on High-Density Silicon Nanowires Formed by Chemical Vapor Deposition[J]. Appl. Phys. A,2006 (82) 659-664.
    [12]Abed H., Charrier A., Dallaporta H., Safarov V, Jamgotchian H., Tonneau D., Directed Growth of Horizontal Silicon Nanowires by Laser Induced Decomposition of Silane[J]. J Vac. Sci. Technol. B,2006 (24) 1248-1253.
    [13]冯孙齐,大鹏,洪洲等,一维硅纳米线的生长机制及其量子限制效应的研究[J]. Science in China, Series A(中国科学,A辑),1999(29)921-926.
    [14]Yu D. P., Bai Z.G., Ding Y., Hang Q.L., Zhang H.Z., Wang J.J., Zou Y.H., Qian W., Xiong G.C., Zhou H.T., Feng S.Q., Nanoscale Silicon Wires Synthesized Using Simple Physical Evaporation [J]. Appl. Phys. Lett.,1998 (72) 458-460.
    [15]Pan Z.W., Dai Z.R., Xu L., Lee S.T., Wang Z.L., Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders [J]. J. Phys. Chem. B,2001(105) 2507-2514.
    [16]Morales A.M., Lieber C.M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires [J]. Science,1998 (279) 208-211.
    [17]Murakami K., Makimura T., Fukata N., Laser and properties of nanostructured materials:Si nanostructures synthesized by laser ablation[J]. Rev. Laser Eng., 2005(33)5-11.
    [18]Bogaerts.W., Baets.R., Dumon.P., Wiaux V., Beckx S., Taillaert D., Luyssaert B., Van Campenhout J., Bienstman P., Van Thourhout D., Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J]. J. Lightwave Technol., 2005(23)401-412.
    [19]Juhasz R., Elfstrom N., Linnros J., Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction, Nano lett.,2005 (5) 275-280.
    [20]Ciucci S., Angelo F.D., iligentiA.D., Pellegrini B., Pennelli G, Piotto M., Silicon nanowires fabricated by means of underetching technique[J]. Microelectron. Eng., 2005(78-79) 338-342.
    [21]Peng K.Q., Yang Y.J., Gao S.P., Zhu J., Synthesis of Large-Area Silicon Nanowire Arrays via Slfe-Assembling Nanoelectrochemistry[J]. Adv. Mater.,2002 (14)1164-1167.
    [22]Peng K.Q.,Yang Y.J, Gao S.P., Zhu J., Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition[J]. Adv. Func. Mater.,2003 (13) 127-132.
    [23]Peng K.Q., Zhu J., Simultaneous gold deposition and formation of silicon nanowire arrays [J]. Journal of Electroanalytical Chemistry[J].2003 (558) 35-39.
    [24]Peng K.Q., Xu Y., Wu Y., Yan Y.J., Lee S.T., Zhu J., Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications [J]. Small,2005 (1) 1062-1067.
    [25]Peng K.Q., Huang Z.P., Zhu J., Fabrication of large-Area silicon nanowire p-n junction[J]. Adv. Func. Mater.,2004 (16) 73-76.
    [26]Peng K.Q., Hu J.J., Yan Y.J., Wu Y., Fang H., Xu Y, Lee S.T., Zhu J., Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles[J]. Adv. Func. Mater.,2006 (16) 387-94.
    [27]Englander O., Christensen D., Lin L.W., Local synthesis of silicon nanowires and carbon nanotubes on microbridges[J]. Appl. Phys. Lett.,2003 (82) 4797-4799.
    [28]Chau M., Englander O., Lin L., Silicon nanowire-based nanoactuator[J]. IEEE, 2003(2)879-880.
    [29]裴立宅,唐元洪,郭池,张勇,陈扬文,一维硅纳米材料的光学特性[J].人工晶体学报,2006(35)36-41.
    [30]裴立宅,唐元洪,张勇,郭池,陈扬文,硅纳米线的电学特性[J].电子器件,2005(28)949-953.
    [31]艾飞,刘岩,周燕飞,潘志雷,一维Si纳米材料的研究进展[J].材料导报,2004,18(专辑Ⅲ):93-97.
    [32]卢晓敏,汪雷,杨青,杨德仁,一维硅纳米材料的研究进展[J].材料导报,2004(18)72-75.
    [33]Zhang Y.F., Tang Y.H., Wang N., Lee C.S., Yu, D.P., Bello, I., Lee, S.T., Silicon nanowire:a new shape of crystalline silicon [J]. Mat. Res. Soc. Symp. Proc.,1998 (507) 993-998.
    [34]Au F.C.K., Wong K.W., Tang Y.H., Zhang Y.F., Bello I., Lee S.T., Electron field emission from silicon nanowires[J]. Appl. Phys. Lett.,1999 (75) 1700-1702.
    [35]Cui Y., Duan X. F., Hu J.T., Lieber C.M., Doping and electrical transport in silicon nanowires[J]. J. Phys. Chem. B,2000 (104) 5213-5216.
    [36]Li D.Y., Wu Y.Y., Shi L., Yang P.D., Majumdar A., Thermal conductivity of individual silicon nanowires [J]. Appl. Phys. Lett.,2003 (83) 2934-2936.
    [37]Tang Y.H., Sun X.H., Au F.C.K., Liao L.S., Peng H.Y., Lee C.S., Lee S.T., Sham T.K., Microstructure and field-emission characteristics of boron-doped Si nanparticle chains [J]. Appl. Phys. Lett.,2001 (79) 1673-1675.
    [38]Zhou X.T.,Hu J.Q.,Li C.P., Ma D.D.D, Lee C.S., Lee S.T., Silicon nanowires as chemical sensors [J]. Chem. Phys. Lett.,2003 (369) 220-224.
    [39]Elibol O.H., Morisette D.,Akin D., Denton J.P., Bashir R., Integrated nanoscale silicon sensors using top-down fabrication [J]. Appl. Phys. Lett.,2003 (83) 4613-4615.
    [40]Cui Y., Wei Q.Q., Park H.K., Lieber C.M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science,2001 (293) 1289-1292.
    [41]Hahm J.I., Lieber C.M., Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Lett.,2004 (4) 51-54.
    [42]Li Z.,Chen Y., Li X., Kamins T.I., Nauka K., Williams R.S., Sequence specific label free DNA sensors based on silicon nanowires[J]. Nano Lett.,2004 (4) 245-247.
    [43]Cui Y., Zhong Z.H., Wang D.L., Wang W.U., Lieber C.M., High performance silicon nanowire field effect transistors [J]. Nano Lett.,2003 (3) 149-152.
    [44]Stone N.J., Ahmed H., Single-electron detector and counter [J]. Appl. Phys. Lett., 2000 (77) 744-746.
    [45]Stone N.J., Ahmed H., Silicon single electron memory cell [J]. Appl. Phys. Lett., 1998(73)2134-2136.
    [46]Tsutsumi T., Suzuki E., Ishii K., Hiroshima H., Yamanaka M., Sakata I., Hazra S., Tomizawa K., Properties of Si nanowire devices fabricated by using an inorganic EB resist process [J]. Superlatt. Microstruc.,2000 (28) 454-460.
    [47]Altebaeumer T., Ahmed H., Silicon nanowires and their application in bi-directional electron pumps [J]. Microelectron. Eng.,2001 (57) 1029-1033.
    [48]Toriyama T., Funai D., Sugiyama S., Piezoresistance measurement on single crystal silicon nanowires [J]. J. Appl. Phys.,2003 (93) 561-565.
    [49]Cui Y., Lieber C.M., Funtional nano-scale electronic devices assembled using silicon nanowire building blocks [J]. Science,2001 (29) 1:8512853.
    [50]Hernandez-Velez M., Nanowires and 1D arrays fabrication:An overview[J]. Thin Solid Films,2006 (495) 51-63
    [51]Viernow J., Petrovykh D.Y., Men F.K., Kirakosian A., Lin J.L., Himpsel F.J., Linear arrays of CaF2 nanostructures on Si[J]. Appl. Phys. Lett.,1999 (74) 2125-2127.
    [52]Greyson E.C., Babayan Y., Odom T.W., Directed Growth of Ordered Arrays of Small-Diameter ZnO Nanowires, Adv. Mater.,2004 (16) 1348-1352.
    [53]Huang M.H., Mao S., Feick H., Yan H., Wu Y, Kind H., Weber E., Russo R., Yang P., Room-Temperature Ultraviolet Nanowire Nanolasers[J]. Science,2001 (292) 1897.
    [54]Fan H.J., Lee W., Scholz R., adgarA.D, Krost A., Nielsch K., Zacharias M., Arrays of vertically-aligned and hexagonally-arranged ZnO nanowires:a new template-directed approach[J]. Nanotechnology,2005 (16) 913-917.
    [55]Greyson E.C., Babayan Y., Odom T.W., Directed Growth of Ordered Arrays of Small Diameter ZnO Nanowires[J]. Adv. Mater.,2004 (16) 1348-1352.
    [56]Fuhrmann B., Leipner H.S., Hoche H.R., Schubert L., Werner P., Gosele U., Ordered arrays of silicon nanowires produced by nanosphere lithogaphy and molecular beam epitaxy[J]. Nano Lett.,2005 (5) 2524-2527.
    [57]Liu J.L., Shi Y., Wang F., Lu Y., Zhang R., Gu S.L., Han P., Hu L.Q., Zheng Y.D. Realization of silicon quantum wires by selective chemical etching and thermal oxidation[J]. Appl. Phys. A:Mater. Sci. Process.,1996 (63) 371-375.
    [58]张万忠,乔学亮,陈建国,王洪水,纳米材料的表面修饰与应用[J].化工进展.2004(23)1069-1070.
    [59]刘莹,何领好,宋锐,纳米氧化锌表面修饰的进展[J].化学通报.2007(11)823-828.
    [60]Chen Z.H., Jie J.S., Luo L.B., Wang H., Lee C.S., Lee S.T., Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors[J]. Nanotechnology,2007 (18) 345502.
    [61]Sun X.H., Wong N.B., Li C.P., Lee ST., Kim P.S., Sham T.K., Reductive self-assembling of Pd and Rh nanoparticles on silicon nanowire templates [J]. Chem. Mater.,2004 (16) 1143-1152.
    [62]Li C.P., Sun X.H., Wang N.B., Lee C.S., Lee S.T, Teo B.K., Silicon Nanowires Wrapped with Au Film[J]. J. Phy. Chem. B,2002 (106) 6980-6984.
    [63]Hahm J. I., Lieber C.M., Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Lett.,2004 (4) 51-54.
    [1]Peng K.Q., Zhang M.L., Lu A.J., Wong N.B., Zhang R.Q., Lee S.T., Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching[J]. Appl. Phys. Lett.,2007(90) 163123.
    [2]Peng K.Q., Fang H., Hu J.J., Wu Y, Zhu J., Yan Y.J., Lee S., Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution[J]. Chem. Eur. J.,2006 (12) 7942-7947.
    [3]Peng K.Q., Hu J.J., Yan Y.J., Wu Y, Fang H., Xu Y, Lee ST., Zhu J., Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles[J]. Adv. Funct. Mater.,2005 (16) 387-394.
    [4]Peng K.Q., Xu Y, Wu Y, Yan Y.J., Lee ST., Zhu J., Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small,2005 (1) 1062-1067.
    [5]Peng K.Q, Zhu J., Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution[J]. Electrochim. Acta.,2004 (49) 2563-2568.
    [6]Peng K.Q., Huang Z.P., Zhu J., Fabrication of large-area silicon nanowire p-n junction diode arrays[J]. Adv. Mater.,2004 (16) 73-76.
    [7]Peng K.Q., Zhu J., Simultaneous gold deposition and formation of silicon nanowire arrays[J].J. Electroanal. Chem.,2003 (558) 35-39.
    [8]Peng K.Q., Yan Y.J., Gao S.P., Zhu J., Dendrite-assisted growth of silicon nanowires in electroless metal deposition[J]. Adv. Funct. Mater.,2003 (13) 127-132.
    [9]Peng K.Q., Yan Y.J., Gao S.P., Zhu J., Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry[J]. Adv. Mater.,2002 (14) 1164-1167.
    [10]Peng K.Q., Wang X., Lee ST., Silicon nanowire array photoelectrochemical solar cells[J]. Appl. Phys. Lett.,2008 (92)163103.
    [11]Bisi O., Ossicini S., Pavesi L., Porous silicon:a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep.,2000 (38) 1-126.
    [12]Lehmann V., Gosele U., Porous silicon formation:A quantum wire effect[J]. Appl. Phys. Lett.,1991 (58) 856-8.
    [13]Zhang, X.G., Mechanism of pore formation on n-type silicon[J]. J. Electrochem. Soc.,1991 (138) 3750-6
    [14]Dubin, V.M., Formation mechanism of porous silicon layers obtained by anodization of monocrystalline n-type silicon in HF solutions[J]. Surf. Sci.,1992 (274) 82-92.
    [15]Smith R.L., Collins S.D., Porous silicon formation mechanisms[J]. J. Appl. Phys., 1992 (71) 1-22.
    [16]Unagami T., Formation mechanism of porous silicon layer by anodization in HF Solution [J]. J. Electrochem. Soc.,1980 (127) 476-83.
    [17]Leif A. A. Pettersson, Fredrik Carlsson, Olle Inganas, Hans Arwin, Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene):an anisotropic metal, Thin Solid Films,1998 (313-314)552-556.
    [18]彭英才,王英龙,马蕾,Si基纳米结构的电子性质[J],微纳电子技术,2004(2)1-8.
    [19]Wagner R. S., Ellis W. C., Vapor-Liquid-Solid Mechaninism of Single crystal[J]. Appl. Phys. Lett.,1964 (4) 89-91.
    [20]Morales A.M., Lieber C.M., A laser ablation method for the synthesis of crystalline semiconductor nano wires [J]. Science,1998 (279) 208-211.
    [21]Kamins T. I., Stanley Williams R., Chang Y.L., Chang Y.A., Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si [J]. Appl. Phys. Lett., 2000 (76) 562-564.
    [22]Nataphan Sakulchaicharoen, Daniel E Resasco, Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst [J]. Chem. Phys. Lett.,2003 (377) 377-383.
    [23]Chyan O.M.R., Chen J.J., Chien H.Y, Sees J.A., Hall L., A new potentiometric sensor for the detection of trace metallic contaminants in hydrofluoric acid [J]. J. Electrochem.Soc.,1996 (143) L235-L237.
    [24]Albert Gutes, Ian Laboriante, Carlo Carraro, Roya Maboudian, Silver Nanostructures on Silicon Based on Galvanic Displacement Process, J. Phys. Chem. C,2009 (113)16939-16944
    [25]Qiu T., Wu X.L., Siu G.G., Chu P.K., Intergrowth mechanism of silicon nanowires and silver dendrites[J]. J. Electron. Mater.,2006 (35) 1879-1884
    [26]Peng K.Q., Hu J. J., Yan Y. J., Wu Y., Fang H., Xu Y., Lee S.T., Zhu J.,Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles[J]. Adv. Funct. Mater.,2005 (16) 387-394.
    [27]Hitoshi Morinaga, Makoto Suyama, Tadahiro Ohmi, Mechanism of Metallic Particle Growth and Metal-Induced Pitting on Si Wafer Surface in Wet Chemical Processing[J]. J. Electrochem. Soc.,1994 (141) 2834-2841.
    [28]Kim J.S., Morita H., Joo J.D., Ohmi T., The Role of Metal Induced Oxidation for Copper Deposition on Silicon Surface[J]. J. Electrochem. Soc.,1997 (144) 3275-3283.
    [29]Fang H., Wu Y, Zhao J.H., Zhu J., Silver catalysis in the fabrication of silicon nanowire arrays[J]. Nanotechnology 2006 (17) 3768-3774.
    [30]Calvin P. daRosa, Roya Maboudian, Enrique Iglesia, Copper Deposition onto Silicon by Galvanic Displacement:Effect of Silicon Dissolution Rate, J. Electrochem. Soc.,2008 (155)70-78.
    [31]Peng K.Q., Zhu J., Simultaneous gold deposition and formation of silicon nanowireArrays, J. Electrochem. Soc.,558 (2003) 35-39.
    [32]Smith R.L., Collins S.D., Porous Silicon Formation Mechanisms [J]. J. Appl. Phys.,1992(71)1-22.
    [33]Schade M., Geyer N., Fuhrmann B., et al. High-resolution analytical electron microscopy of catalytically etched silicon Nanowires[J]. Appl. Phys. A.,2009 (95) 325-327.
    [34]Souha H., Viale D., Weber G., Gillot B., Effects of a silicon oxide layer on reactivity of silicon with copper(Ⅰ) chloride, J. Mater. Sci.1989 (24) 1767-1771.
    [1]Sivakov V.A., Bro'nstrup G., Pecz B., Berger A., Radnoczi G.Z., Krause M., Christiansen S.H., Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures[J]. J. Phys. Chem. C,2010 (114) 3798-3803.
    [2]Chartier C., Bastide S., Levy-Clement C, Metal-assisted chemical etching of silicon in HF-H2O2[J]. Electrochim. Acta,53 (2008) 5509-5516.
    [3]Piret G, Drobecq H., Coffinier Y., Melnyk O., Boukherroub R., Matrix-Free Laser Desorption/Ionization Mass Spectrometry on Silicon Nanowire Arrays Prepared by Chemical Etching of Crystalline Silicon[J]. Langmuir 2010 (26) 1354-1361.
    [4]Cheng Fang, Ajay Agarwal, Effendi Widjaja, Marc V Garland, She Mein Wong, Linn Linn, Nizamudin Mohamed Khalid, Shaik Mohamed Salim, and Narayanan Balasubramanian, Metallization of Silicon Nanowires and SERS Response from a Single Metallized Nanowire[J]. J. Cryst. Growth 2005 (277) 143-148.
    [5]Megouda N., Douani R., Hadjersi T., Boukherroub R., Formation of aligned silicon nanowire on silicon by electroless etching in HF solution[J]. J. Lumin.,2009 (129)1750-1753.
    [6]Douani R., Hadjersi T., Boukherroub R., Adour L., Manseri A., Formation of aligned silicon-nanowire on silicon in aqueous HF/(AgNO3+Na2S2O8) solution[J]. Appl. Surf. Sci.,2008 (254) 7219-7222.
    [7]Sun X.Z., Lin L.H., Li Z.C., Zhang Z.J., Feng J.Y., Fabrication of silver-coated silicon nanowire arrays for surface-enhanced Raman scattering by galvanic displacement processes[J]. Appl. Surf. Sci.,2009 (256) 916-920.
    [8]Peng K.Q., Yang Y.J., Gao S.P., Zhu J., Synthesis of Large-Area Silicon Nanowire Arrays via Slfe-Assembling Nanoelectrochemistry [J]. Adv. Mater.,2002 (14)1164-1167.
    [9]Kim J.S., Morita H., Joo J.D., Ohmi T., The Role of Metal Induced Oxidation for Copper Deposition on Silicon Surface [J]. J. Electrochem. Soc.,1997 (144) 3275-3283.
    [10]Schade M., Geyer N., Fuhrmann B., Heyroth, F., Leipner, H., High-resolution analytical electron microscopy of catalytically etched silicon Nanowires[J]. Appl. Phys. A.,2009,95(2),325-327.
    [11]Peng K.Q., Yang Y.J., Gao S.P., Zhu J., Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition [J]. Adv. Funct. Mater.,2003(13) 127-132.
    [12]Peng K.Q., Zhu J., Simultaneous gold deposition and formation of silicon nanowire arrays[J]. J. Electroanal. Chem.,2003 (558) 35-39.
    [13]Peng K.Q., Xu Y., Wu Y., Yan Y.J., Lee S.T., Zhu J., Aligned single-crystalline Si nanowire arrays for photovoltaic applications [J]. Small,2005 (1) 1062-1067.
    [14]Wan L.J., Gong W.L., K.W. Jiang, Li H.L., Tao B.R., Zhang J., Preparation and surface modification of silicon nanowires under normal conditions [J]. Appl. Surf. Sci. 254 (2008) 4899-4907.
    [1]Tang L.J., Zhu Y.F., Yang J.L., Li Y., Zhou W., Xie J., Liu Y.F., Yang F.H., Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film[J]. J. Semi.,30 (2009).
    [2]徐如人等,无机合成与制备化学,五南图书出版股份有限公司,2004,380-382.
    [3]坎贝尔,S.A. (Campbell, Stephen A.)著,曾莹等译,微电子制造科学原理与工程技术(The science and engineering of microelectronic fabrication),北京电子工业出版社2003.
    [4]L.J. Wan, W.L. Gong, K.W. Jiang, H.L. Li, B.R. Tao, J. Zhang, Selective formation of silicon nanowires on pre-patterned substrates[J]. Appl. Surf. Sci.,255 (2008) 3752-37583.
    [1]Neff V. D., Electrochemical oxidation and reduction of thin films of Prussian blue [J] J.Electro-Chem.Soc.,1978 (125) 886-887.
    [2]Ursula S., Erich W.G., Electrocatalytic oxidation of hydrazine at a Prussian blue modified glassy carbon electrode [J]. Electrochim. Acta,1996 (41) 233-239.
    [3]Hermes M., Scholz F., The electrochemical determination of ammonium based on the selective inhibition of the low-spin iron(Ⅱ)/(Ⅲ) system of Prussian blue[J]. J. Solid State Electrochem.,1997 (1) 215-220.
    [4]Ruedas Rama M.J.,Ruiz Medina A., Molina Diaz A., A Prussian blue-based flow-through renewable surface opt sensor for analysis of ascorbic acid [J]. Microchem. J.,2004 (78)157-162.
    [5]Ricci F., Palleschi G., Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes [J]. J. Biosens. Bioelectron.,2005 (21) 389-407.
    [6]Han S.F., Chen Y.M., Pang R., Wan P.Y., Fabrication of Prussian Blue/Multiwalled Carbon Nanotubes/Glass Carbon Electrode through Sequential Deposition[J]. Ind. Eng. Chem. Res.,2007 (46) 6847-6851.
    [7]Zhao G., Feng J.J., Zhang Q.L., Li S.P., Chen H.Y., Synthesis and characterization of Prussian Blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2, Chem. Mater.,2005 (17) 3154-3159.
    [8]Liu C.Y., Hu J.M., Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanotubes modified electrode [J]. Biosens. Bioelectron.,2009 (24) 2149-2154.
    [9]Chiu J.Y., Yu C.M., Yen M.J., Chen L.C., Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes, Biosens. Bioelectron.,2009 (24) 2015-2020.
    [10]Qiu J.D., Peng H.Z., Liang R.P., Li J., Xia X.H., Langmuir 2007 (23) 2133-2137.
    [11]Lysenko V., Bidault F., Alekseev S., Zaitsev V., Barbier D., Turpin C., Geobaldo F., Rivolo P., Garrone E., Study of porous silicon nanostructures as hydrogen reservoirs, J. Phys. Chem. B,2005 (109) 19711-19718.
    [12]Sheppard D.A., Buckley C.E., Hydrogen adsorption on porous silica, Int. J. Hydrogen Energy,2008 (33) 1688-1692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700