自然水体多相介质中重金属的分布及迁移转化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物、悬浮颗粒物、生物膜和水相组成了决定重金属行为的复杂天然水环境的多相体系。本论文对比研究自然水体中沉积物、悬浮颗粒物和生物膜的主要组成特征,了解重金属在天然水体的各相中的含量,分析各相中金属含量差异的主要原因,并且探索重金属在三种固相物质的铁、锰氧化物和有机质中的分布规律,确定天然水体中对重金属起作用的主要组分。此外,探讨了连续萃取法以及样品前处理过程对还原性沉积物重金属形态产生的影响,考察了沉积物中重金属在曝气条件下的释放过程以及多种影响因素共存时对重金属释放影响程度和产生的协同效应。这些结果对于了解天然水环境多相体系中有毒重金属的形态、迁移转化、生物可利用性以及修复治理等提供了坚实的理论基础。
The solid phases, such as deposited sediments (DS), suspended particulatematters (SPM) and surface coatings (SC), and water phase constitute thecomplex multi-phase system controlling the behavior of heavy metals in naturalwaters. The great differences of three solid phases on chemical compositions,characteristics and functions were caused by their state of having existence andforming conditions. Moreover, due to the different research backgrounds andmethods on the adsorption capacity and contribution of chemical components ofSC, SPM and DS in controlling the behavior of heavy metals in natural waters,the results gained are difficult to be compared. Anoxic sediments could beoxidized by extraction reagent and by air in dryness pre-treatment procedure,which resulted in different impact on speciation patterns of heavy metals duringthe sequential extraction procedure. The heavy metals in sediments could bereleased, transported and combined again which changed their bioavailabilityand toxicity when the environmental conditions have been altered. Hence, theobjective of this study is to contrast the chemical components and mineralcompositions of SC, SPM and DS in the same water body, investigate thecontents and distributions of heavy metals in solid phases and in theircomponents in nature water by extracting the Cu, Pb and Zn in Fe, Mn oxidesand organic matters in three solid phases, determine the main adsorption sites ofheavy metals on the solid phases, realize the adsorption difference of heavymetals on the three solid phases and their chemical components. Furthermore,
    the spatial distribution of sediments in Yitong River was investigated, the impactof extraction reagent and dryness procedure on anoxic sediments during thesequential extraction procedure was discussed, and the releasing process and theimpact degree on the release of heavy metals in sediments under the aeration aswell as cooperation effect produced when several effect factors coexisted innatural waters were analyzed too. These results could help to further understandthe behavior, bioavailability of heavy metals and the self-purification mechanismof natural waters.Firstly, the main chemical components, mineral composition andconcentration of heavy metals in DS, SPM and SC of different natural waterswere studied. The results indicated that no significant difference about thecontents of Fe-oxides in DS, SPM and SC was found, but the order of contents isfollowed as SC > SPM >DS for the Mn-oxides and organic matters. Thesignificant crystal characters were observed among DS, SPM and SC, thecomplex of mineral and crystal degree decreased in the order DS > SC > SPM, inaddition, Quartz is the single most important determinant of mineralcompositions in the selected waters. The enrichment capacity increased in theorder of SPM > SC >DS for Pb, Cu and Zn, which suggesting that SPM and SCplay more important roles in controlling transport and fate of heavy metals thanDS disregarding the quantity of the solid phases in aquatic environment.Secondly, the results gained by different extraction methods to compare tothe adsorption capacity and contribution of components of DS, SPM and SC toheavy metals were difficult to ensure the components extracted to be comparable.Accordingly, the extraction conditions to remove the main components in SPMwere optimized on the basis of earlier researches, in which the methods of0.006mol/L NH2OH·HCl+0.01mol/LHNO3 shaking30 min for Mn oxide and0.8mol/L Na2S2O4(pH=6.0)shaking 40min for Fe, Mn oxides meet therequirement of less extraction to no-aim component and more aim components.
    And then, the methods of 0.008 mol/L NH2OH·HCl+ 0.01 mol/L HNO3oscillating 30 min to extract manganese oxides;0.8 mol/L Na2S2O4, pH 6.5,oscillating 40 min to remove amorphous iron oxides and part of manganeseoxides;0.1MHNO3,30%H2O2,85℃ in water bath for suspended particulatematers and sediments and 0.02M HNO3,30%H2O2 , 24h for surface coatings toremove organic matters can receive better effect. By comparing with Tessiersequential extraction scheme, the conclusion can be drawn that iron andmanganese oxides extracted by C6H806+ (NH4)2C2O4 can represent nearly all theiron and manganese oxides which play an important role in heavy metalsadsorption. Consequently the method could be employed to extract themanganese oxides, iron oxides and organic matters in DS, SPM and SC, and theextracted components were proved to be comparable.According to the methods described above, the adsorption sites of heavymetals in DS, SPM and SC of natural waters were determined. The analysissuggested organic matters was very significant sorbents for Cu adsorption, Pbwas controlled mainly by Fe oxides, but Mn oxides and organic matters playedan important role for Zn in three solid phases. In addition, the extraordinarypredominance of Mn oxides on adsorption capacity was found in DS, SPM andSC for Cu, Pb and Zn compared with Fe oxides and organic matters, and theconcentration difference of heavy metals in three solid phases mostly came fromthe contents difference of Fe, Mn oxides and organic matters.Furthermore, the study on the spatial distribution of sediments in YitongRiver indicated that the concentration varied dramatically from upstream todownstream for Zn and Pb, but others like Cu, Ni, Co, As kept constant, whichcontributed to the different sources of heavy metals. Heavy metals in ZiyouBridge and Weixing Bridge showed identical trends with sediment depth, but thehigher loadings of Cu, Pb, Zn in the layer 25cm and 50cm below the surfacesediment in Dong Bridge have been revealed, Cu, Pb, Zn and Co, As displayed
    the similar depositing characteristics respectively. According to the conclusion ofspeciation patterns analysis, the major binging forms of Cu were bound toorganic/sulfides, and the remaining Cu was mostly present as Fe oxides fraction;Pb, Zn, Ni mainly existed in Fe oxides and organic/sulfides fraction, but thepercentage in Mn oxides and carbonates forms for Zn and Ni was greater than Pb.On the basis of PCA, the binging behavior of Cu in association with carbonateswas not similar to Pb, Zn, Ni, Fe, Mn, and the correlation between carbonatesand the six heavy metals was insignificant, but the binging behavior of Cu, Pb,Zn, Mn in association with Mn oxides was similar, and Fe, Mn, Pb, Zn insediments were dominated by Fe oxides. The entractants employed in sequentialextraction procedure and the pre-process of dryness could alter the distributionpatterns of heavy metals in anoxic sediments. Cu was mainly associated withorganic materials other than sulfides, indicating the less effect by the extractionprocedure, but Pb, Zn, Ni, Fe, Mn are predominantly associated with sulfidesmeaning an under-representation of organic/sulfide fraction in the metalsspeciation patterns of anoxic sediment samples, and the amount of Fe, Mn inorganic/sulfide fraction was significantly less than in SEM induced by higheroxidation rate of FeS and MnS.In the end, heavy metals would release to waters and cause pollution againwhen the environmental conditions has been changed. In this study, the influenceon the release of heavy metals in sediments by the factors such as aeration, pH,salinity and complexant was simulated in Lab. The results suggested that Znrelease was more slowly than Pb, and the concentration of Cu in solutionchanges slightly, the re-adsorption or Co-precipitation process of Pb and Znoccurred after a period of aeration, the concentration peaks of the heavy metalsin the solutions appeared more rapidly, which meant that the sediment had moreecological risks, the heavy metals in the sediment changed from more stableforms to those easily assimilated by microorganisms, which increased the heavy
    metals toxicity to them. When three factors, pH, salinity and complexant,coexisted in one water system, the proportion of release decreased in the order ofCu>Zn>Pb, which was mainly relative to the stability of EDTA complex ofmetals. The correlation between pH and the release amount of Cu and Zn wassignificant atρ<0.01, but it was significant atρ<0.05 for Pb;no obviouscorrelation has been found between salinity and heavy metals release;moreover,significant correlation (ρ<0.01) between complexant and release of Cu, Pb andZn was detected in this study. The cooperation effect of pH, salinity andcomplexant showed that the present of pH and complexant in waters promotedthe release of Cu, other than Pb and Zn.
引文
Ana Fuentes, Mercedes Lioréns, José Sáez, et al., Simple and sequential extractions of heavymetals from different sewage sludges, Chemosphere, 2004, 54, 1039-1047.
    Andreas C. Scheinost, Ruben Kretzschmar., Sabina Pfister. Combining selective sequentialextractions, X-ray absorption spectroscopy and principal component analysis forquantitative Zinc speciation in soil, Environ. Sci. Technol., 2002, 36, 5021-5028.
    Andrew B. Cundy, Ian W. Croudace, Alejandro Cearreta, María J. Irabien. Reconstructinghistoryical trends in metal input in heavily-disturbed, contaminated estuaries: studiesfrom Bilbao, Southampton Water and Sicily, Applied Geochemistry, 2003, 18, 311-325.
    Ankley G.T., Phipps G.L., Leonard E.N., Benoit D.A., Mattson V.R., Kosian P.A., CotterA.M., Dierkes J.R., Hansen D.J. and Mahony J.D.. Acid-volatile sulfide as a factormediating cadmium and nickel bioavailability in contaminated sediments, Environ.Toxicol. Chem., 1991, 10, 1299-1307.
    Ankley G.T., Di Toro D. M., Hansen D. J. and Berry W. J., Technical basis and proposal forderiving sediment quality criteria for metals, Environ. Toxicol. Chem., 1996, 15,2056-2066.
    Balkis N, Cagatay M N.. Factors controlling metal distributions in the surface sediments ofthe Erdek Bay, Sea of Marnara, Turkey, Environment International, 2001, 27, 1-13.
    Bauer C. F. and Kheboian C.. Metal speciation in aquatic sediments accuracy of selectiveextraction procedures. Abstr. Pap. Am. Chem. Soc., 1986, 191-195.
    Belzile N, Lecomte P, Tessier A.. Testing readsorption of trace elements during partialchemical extractions of bottom sediments, Environ. Sci. Technol., 1989, 23, 1015-1020.
    Belzunce-Segarra M.J., Bacon J.R., Prego R. and Wilson M.J.. Chemical forms of heavymetals in surface sediments of the San Simon inlet, Ria de Vigo, Galicia. J. Environ.Sci. Health, Part A: Environ. Sci. Eng, Toxic Hazardous Substance Control, 1997, 32,1271-1292.
    Bendell-Young, L.I., Harvey, H.H.. The relative importance of manganese and iron oxidesand organic matter in the sorption of trace metals by surficial lake sediments, Geochim. Cosmochim. Acta, 1992, 56, 1175-1186.
    Bendell-Young, L.I., Chouinard, J., Pick, F.R.. Metal concentrations in chironomids in relation to peatland geochemistry, Arch. Environm. Contam. Toxicol., 1994, 27, 186-194.
    Bilali L.E., Rasmussen P.E., Hall G.E.M., Fortin D.. Role of sediment composition in trace metal distribution in lake sediments, Applied Geochemistry, 2002, 17, 1171-1181.
    Bo Shi, Herbert E. Allen, Marco T. Grassi and Hui zhong Ma. Modelling copper partitioning in surface waters, Water Research, 1998, 32, 3756-3764.
    Brown D. A., Kamineni D. C., Sawicki J. A., Beveridge T. J.. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory, Appl. Environ. Microbiol., 1994, 60, 3182-3191.
    Brumbaugh W. G., Ingersoll C. G., Kemble N. E., May T. W. and Zajicek J. L.. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown reservoir, Montana, Environ. Toxicol. Chem., 1994, 13, 1971-1983.
    Calmano W., Ahlf W. and Forstner U.. Exchange of heavy metals between sediment components and water. In Metal Speciation in the Environment, eds J. A. C. Broekart, S. Gucer and F. Adams, 1990, pp. 503-522. Springer, Berlin, Germany.
    Calmano W., Hong J.F., F?rstner U.. Binding and mobilization of heavy metal in contaminated sediment affected by the pH and redox potential, Water Science and Technology, 1993, 28 (8-9), 223-235.
    Campbell P. G. C. and Tessier A.. Biological availability of metals in sediments: analytical approaches, In Heavy Metals in the Environment. Elsevier, Amsterdam, 1991, pp. 161-173.
    Carlson, G., Silverstein, J.. Effect of molecular size and charge on biofilm sorption of organic matter, Water Res., 1998, 32(5), 1580-1592.
    Chang, J., Law, R., Chang, C.. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21, Wat. Res., 1997, 31(7), 1651-1658.
    Chang Jing-Song, Yu Kuang-Chung, Tasi Li-Jyur and Ho Shien-Tsong. Spatial distributionof heavy metals in bottom sediment of Yenshui River, Taiwan. Wat. Sci., 1998, 38 (11),159-167.
    Chao T. T., Zhou L.. Extraction techniques for selective dissolution of amorphous ironoxides from soils and sediments, J. Soil Sci. Soc. Am. Proc., 1983, 47, 225-232.
    Chao T.T.. Use of partial dissolution techniques in geochemical exploration, J. Geochem.Explor., 1984 20, 101-135.
    Chapman, D.. Water Quantity Assessment . London : Chapman & Hall Ltd., 1992, 121-134.
    Chester R., Kudoja W.M., Thomas A., Towner J.. Pollution reconnaissance in streamsediments using non-residual trace metals, Environ. Pollut. Ser. B., 1985, 10, 213-238.
    Cheung, H.Y., Sun, S.Q., Sreedhar, B., Ching, W.M., Tanner, P.A.. Alterations inextracellular substances during the biofilm development of Pseudomonas aeruginosaon aluminium plates, J. Appl. Microbiol., 2000, 89, 100-106.
    Coffin, D.E.. A method for the determination of free-iron in soils and clays, Can. J. Soil Sci,1963, 103, 191-195.
    Connaughton, D.F., J.R. Stedinger, L.W. Lion and M.L. Shuler. Description of time-varyingdesorption kinetics: release of naphthalene from contaminated soils, Environ. Sci.Technol., 1993, 27, 2397-2403.
    Cornell, R.M., Schwertmann, U.. The Iron Oxides. Structure, Properties, Reactions,Occurrence and Uses, VCH, New York, 1996.
    Davidson C.M., Thomas R.P., McVey S.E., Perala R., Littlejohn D., Ure A.M.. Evaluation ofa sequential extraction procedure for the speciation of heavy metals in sediments, AnalChim Acta., 1994, 291, 277–286.
    Ditoro D.M., Mahony J.D., Hansen D.J., Scott K.J., Hicks M.B., Mayr S.M. and RedmondM.S.. Toxicity of cadmium in sediments: the role of acid volatile sulfide, Environ.Toxicol. Chem., 1990, 9, 1487-1502.
    Ditoro D.M., Mahony J.D., Hansen D.J.. Acid volatile sulfide predicts the acute toxicity ofcadmium and nickel in sediments, Environ Sci Technol., 1992, 26, 96-101.
    Dong D., Nelson Y.M., Lion L.W., Shuler M.L., Ghiorse W.C.. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by
    selective extractions: new evidence for the importance of Mn and Fe oxides, Water Res.,
    2000, 34(2), 427–436.
    Dong Deming, Yu Li, Baiyu Zhang, Xiuyi Hua, Baohua Yue. Selective chemical extraction and separation of Mn, Fe-oxides and organic material in natural surface coatings: application to the study of trace metal adsorption mechanism in aquatic environments, Microchemical Journal, 2001a, 69, 89-94.
    Dong, D., Li, Y., Hua, X.. Investigation of Fe, Mn oxides and organic material in natural surface coatings and Pb, Cd adsorption to surface coatings developed in different natural waters, Microchem. J., 2001b, 70(1), 25-33.
    Dong, D., Li, Y., Hua, X., Zhang, J.. Relationship between chemical components of surface coatings and the maximum adsorption of Cd and Pb by surface coatings developed in natural waters, Chem. J. Chin. Univ., 2001c, 22, 1379–1381.
    Dong, D., Hua, X., Li, Y., Li, Z.. Lead adsorption to metal oxides and organic material of freshwater surface coatings determined using a novel selective extraction method, Environ. Pollut., 2002, 119(3), 317-321.
    Dong, D., Derry, L.A., Lion, L.W.. Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials, Water Res., 2003a, 37, 1662-1666.
    Dong, D., Hua, X., Li, Y., Zhang, J., Yan, D.. Cd adsorption properties of components in different freshwater surface coatings: the important role of ferromanganese oxides, Environ. Sci. Technol., 2003b, 37, 4106-4112.
    Farag, A.M., Woodward, D.F., Goldstein, J.M., Brumbaugh, W., Meyer, J.S.. Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates and fish from the Coeur d'Alene River Basin, Idaho. Arch, Environ. Contam. Toxicol., 1998, 34, 119-127.
    Ferris F. G., Schultze S., Witten T.C., Fyfe W. S., Beveridge T. J.. Metal interactions with microbial biofilms in acidic and neutral pH environments, Appl. Environ. Microbiol., 1989, 55, 1249-1257.
    Forster U.. Metal pollution in the aquatic environment, Berlin: Springer-verleg, 1978, 110-192.
    Forster, U.. Biogeodynamics of Pollutants in Soils and Sediments, Berlin: Springer, 1995,247-307.
    Gambrell R.P.. Trace and toxic metals in wetlands-A review, J. Environ. Qual., 1994, 23, 883-891.
    Gatehouse S., Russell D.W. and Van Moort J.C.. Sequential soil analysis in exploration geochemistry, J. Geochem. Explor., 1977, 8, 483-494.
    Gibbs, R. J.. Mechanisms of trace metal transport in rivers, Science, 1973, 180, 71-73.
    Gibbs, R.J.. Metals in the sediments along the Hudson River Estuary, Environ. Int., 1994, 20, 507-516.
    Gold C., Feurtet-Mazel A., Coste M., Boudou A.. Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers Wat. Res., 2002, 36, 3654-3664.
    Grabowski, Lawra A.;Houpis, James L.J.;Woods, William I.;Johnson, Kevin A.. Seasonal bioavailability of sediment-associated heavy metals along the Mississippi river floodplain, Chemosphere, 2002, 45, 643-651.
    Gray, B.R., Hill, W.R., Stewart A.J.. Effects of development time, biomass and ferromanganese oxides on nickel sorption by stream periphyton, Environ. Pollut., 2001, 112, 61-71.
    Griethuysen van, C.;Gillissen, F.;Koelmans, A.A.. Measuring acid volatile sulphide in floodplain lake sediments: effect of reaction time, sample size and aeration, Chemosphere, 2001, 47, 395-400.
    Gueguen C. and Dominik, J.. Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river: the Upper Vistula River (Poland), Appl. Geochem., 2003, 18, 457-470.
    Guo Ting-zong, Delaune R.D., Patrick J.W.. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium and zinc in estuarine sediment, Environment International, 1997, 23(3), 305-316.
    Hart, B.T.. Water quality management—the role of particulate matter in the transport and fate of pollutants, Water studies centre, Chisholm institute of technology Melbourne,
    1986.
    Headley, J.V., Gandrass, J., Kuballa, J., Peru, K.M., Gong, Y.. Rates of sorption and partitioning of contaminants in river biofilm, Environ. Sci. Technol., 1998, 32, 3968-3973.
    Heron G., Crouzet C., Bourg A.C., Christensen T.H.. Speciation of Fe(Ⅱ) and Fe(Ⅲ) in contaminated aquifer sediments using chemical extraction technique, Environ. Sci. Tech., 1994, 28, 1698-1705.
    Hinrichs J., Dellwing O., Brumsack H. J.. Lead in sediments and suspended particulate matter of the German Bight: natural versus anthropogenic origin. Applied Geochemistry., 2002, 17, 621-632.
    Howarth R. W., Stewart J. W. B. and Ivanov M.V.. Sulfur cycling on the continents: wetlands, terrestrial ecosystems and associated water bodies, Wiley, Chichester, 1992, 350.
    Hsieh, K.M., Lion, L.W., Shuler, M.L.. Bioreactor for the study of defined interactions of toxic metals and biofilms, Appl. Environ. Microbiol., 1985, 5(5), 155-161.
    Hudson R.J.M. and Morel F.M.M.. Distinguishing between extra-and intracellular iron in marine phytoplankton, Limnol. Oceanogr., 1989, 34 (6), 1113-1120.
    Huerta-Diaz M. A. and Morse J. W.. Pyritization of trace metals in anoxic marine sediments, Geochim. Cosmochim.Acta, 1992, 56, 2681-2702.
    Hussain A. et al.. Heavy metals in water, suspended particles, sediments and aquatic plants of Habbaniya Lake, IRAQ, Internl. J. Environ. Studies, 2002, 59 (5), 589-598.
    Isaure M.P., Laboudigue A., Manceau A., et al.. Quantitative Zn speciation in a contaminated dredged sediment by μPIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis, Geochim Cosmochim Acta, 2002, 66, 1549-1567.
    James, B.R., Petura J.C., Vitale R.J. and Mussoline G.R.. Hexavalent chromium extraction from soils: a comparison of five methods, Environ. Sci. Technol., 1995, 29, 2377-2381.
    Jean G. E. and Bancroft G. M., Heavy metal adsorption by sulphide mineral surfaces, Geochim. Cosmochim.Acta, 1986, 50, 1455-1463.
    Jeffrey R. Bacon, Irene J. Hewitt, Patricia Cooper. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil
    components in an upland catchment in Scotland, Science of the Total Environment,
    2005, 337, 191-205.
    Jenne E. A.. Controls on Mn, Co, Ni, Cu and Zn concentrations in soil and water: the significant role of hydrous Mn and Fe oxides, In Trace Inorganics in Water, American Chemical Society, Washington, DC, , 1968, pp. 337-387.
    Juan G.M. and Sosa A.M.. Trace metals in Valencia lake (Venezuela) sediments, Water Air Soil Pollut., 1994, 67, 141-150.
    Kalmokoff, M.L., Austin, J.W., Wan, X., Sanders, G., Baberjee, S., Farber, J.M.. Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions, J. Appl. Microbiol., 2001, 91, 725-734.
    Kersten M.and Forstner U.. Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments, Water Sci. Technol., 1986, 18, 121-130.
    Klimmek, S., Stan, H.J., Wilke, A., Bunke, G., Buchholz, R.. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae, Environ. Sci. Technol., 2001, 35, 4283-4288.
    Konhauser K. O., Schlutze-Lam S., Ferries F. G., Fyfe W. S., Longstaffe F. J., Beveridge T. J.. Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada, Appl. Environ. Microbiol., 1994, 60, 549-553.
    Konstantinos Zabetoglou, Demetra Voutsa, Constantini Samara.. Toxicity and heavy metal contamination of surficial sediments from the Bay of Thessaloniki (Northwestern Aegean Sea) Greece, Chemosphere, 2002, 49, 17-26.
    Krauskopf K. B.. Factors controlling the concentration of thirteen rare metals in seawater, Geochim. Cosmochim. Acta , 1956, 91-24.
    Kuo Ming Huang, Saulwood Lin. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan, Chemosphere, 2003, 53, 1113-1121.
    Langley, S., Beveridge, T.J.. Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm, Can. J. Microbiol., 1999, 45, 616-622.
    Lawrence, J.R., Kopf, G., Headley, J.V., Neu, T.R.. Sorption and metabolism of selectedherbicides in river biofilm communities, Can. J. Microbiol., 2001, 47, 634-641.
    Lead, J.R., Hamilton-Taylor, J., Davison, W.. The effect of sequential extraction ofsuspended particulate matter on trace metal sorption and microbial cell stability, TheScience of the Total Environment, 1998, 209, 193-199.
    Li X.D., Coles B.J., Ramsey M.H., Thornton I.. Sequential extraction of soils formulti-element analysis by ICP-AES, Chemical Geology, 1995, 124, 109-123.
    Ligero RA, Barrera M, Casas Ruiz M, Sales D, López Aguayo F.. Dating of marinesediments and time evaluation of heavy metal concentrations in the Bay of Cádiz, Spain,Environmental Pollution, 2002, 118, 97–108.
    Lim P.E., Kiu M.Y.. Determination and speciation of heavy metals in sediments of the JuruRiver, Penang, Malaysia, Environ. Monit. Assess., 1995, 35, 85-95.
    Lindsay W.L. and Norvell W.A.. Development of a DTPA soil test for zinc, iron, manganeseand copper, Soil Sci. Soc. Am. J., 1987, 42, 421-428.
    Lion L.W., Altmann R.S. and Leckie J.O.. Trace metal adsorption characteristics ofestuarine particulate matter: evaluation of contributions of Fe/Mn-oxides and organicsurface coatings, Environ. Sci. Technol, 1982, 16, 660-666.
    Li-Siok Ngiam, Poh Eng Lim.. Speciation patterns of heavy metals in tropical estuarineanoxic and oxidized sediments by different sequential extraction schemes, The Scienceof Total Environment, 2001, 275, 53–61.
    Liu W. X, Li X. D, Shen Z. G, Wang D. C, Wai O.W.H, Li Y.S.. Multivariate statisticalstudy of heavy metal enrichment in sediments of the Pearl River Estuary,Environmental Pollution, 2003, 121, 377-388.
    Lopez-Sanchez J. F., Rubio R., Samitier C., Rauret G.. Trace mental partitioning in marinesediments and sludges deposited off the coast of Barcelona (Spain), Water Res., 1996,30, 153-159.
    Lu Yuefeng and Herbert E. Allen. Partitioning of copper onto suspended particulate matterin river waters, The Science of the Total Environment, 2001, 277, 119-132.
    Luoma S. N. and Bryan W.. A statistical assessment of the form of trace metals in oxidized sediments employing chemical extractants. Sci. Total Environ.,1981, 17,165-196.
    Masaa B., Miehlich G.. Die Wirkung Des Redoxpotentials Auf Die Zusammensetzung Der Porenl?sung in Hafenschlick-spülfeldern, Mitteilgn Dtsch Bodenkundl Gesellsch, 1998, 56, 289-294.
    Mat I., Maah M.J., Johari A.. Trace metal geochemical associations in sediments from the culture-bed of Anadara granosa, Mar. Pollut. Bull., 1994, 28, 319-323.
    Mazouni, N., Gaertner, J.C., Deslous–Paoli, J.M.. Composition of biofouling communities on suspended oyster cultures: an in situ study of their interactions with the water column, Mar. Ecol-Prog. Ser., 2001, 214, 93-102.
    Meyers P.A., Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem Geol., 1994, 114, 289-302.
    McKenzie R.M.. The adsorption of lead and other heavy metals on oxides of manganese and iron, Aust. J. Soil Res., 1980, 18, 61-73.
    M?nica Aparecida Leite Silva, Carlos Eduardo Rezende.. Behavior of selected micro and trace elements and organic matter in sediments of a freshwater system in south-east Brazil, The Science of Total Environment., 2002, 292, 121-128.
    Monna F, Clauer N, Toulkeridis T, Lancelot JR.. Influence of anthropogenic activity on the lead isotope signature of Thau Lake sediments (Southern France): origin and temporal evolution, Applied Geochemistry, 2000, 15, 1291-1305.
    Morrison, D.. Multivariate statistical methods, McGraw-Hill, New York, 1967.
    Müller B. and Duffek A.. Similar adsorption parameters for trace metals with different aquatic particles, Aquat. Geochem., 2001, 7, 107-126.
    Murray K. S., Cauvent D., Lybeer M. and Thomas J. C.. Particle size and chemical control of heavy metals in bed sediment from the Rouge river, southeast Michigan, Environ. Sci. Technol., 1999, 33, 987-992.
    Nathalie Caille, Christophe Tiffreau, Ciorinne Leyval, et al.. Solubility of metals in an anoxic sediment during prolonged aeration, The Science of the Total Environment, 2003, 301, 239-250.
    Nelson D.W. and Sommer L.E.. Total carbon, organic carbon and organic matter. In methods of soil analysis, part 2, chemical and microbiological properties, American Society of
    Agronomy, Madison, Wisconsin, 1982, 538-550.
    Nelson, Y.W., Lion, L.W., Shuler, M.L., Ghiorse, W.C.. Lead binding to metal oxide and organic phases of natural aquatic biofilms, Limnol. Oceanogr, 1999, 44(7), 1715-1729.
    Peach C.E., Hansen D.J., Boothman W.S., Berry W.J. and Mahony J.D.. The role of acid-volatile sulfide and interstitial water metal concentration in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata, Environ. Toxicol. Chem., 1995, 14, 129-141.
    Peltier E.F.. Trace metal speciation and availability in a contaminated wetland located in Chicago, Northwestern University, Evanston , 2002.
    Peng Shu-Heng, Wang Wen-Xiong, Li Xiangdong, Yen Yu-Fong. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches, Chemosphere, 2004, 57, 839-851.
    Peterson G.S., Ankley G.T. and Hoke R.A.. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments, Environ. Toxicol. Chem., 1996, 15, 2147-2155.
    Pierre Stecko J. R., Leah I., Bendell-Young. Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estuary, Applied Geochemistry, 2000, 15, 753-775.
    Presley, B.J., Trefry, J.H.. Heavy metal inputs to Mississippi delta sediments, Anal.Chem, 1980, 233-266.
    Ramanathan A.L., Subramanian V. and Das B.K.. Sediment and heavy metal accumulation in the Cauvery basin, Environ. Geol., 1996, 27, 155-163.
    Ramelow, G.J., Biven, S.L., Zhang, Y., Beck, J.N., Young, J.C., Callahan, J.D., Marcon, M.F.. Identification of point sources of heavy metals in an industrially impacted waterway by periphyton and surface sediment monitoring, Water, Air, Soil Pollut., 1992, 65(1-2), 175-190.
    Ramos L, Hermamdez LM, Gonzalez J.. Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana national park, Environ Qual, 1994, 23, 50-57.
    Rapin F., Tessier A., Campbell P.G.C., Carignan R.. Potential artifacts in sediments by a sequential extraction procedure, Environ. Sci. Technol., 1986, 20, 836-840.
    Ravanelli M., Tubertini O., Valcher S. and Martunittu W.. Heavy metal distribution in sediment cores from Western Ross sea (Antarctica), Water Air Soil Pollut., 1997, 99, 697-704.
    Reichert, P., Wanner, O.. Movement of solids in biofilms: significance of liquid phase transport, Wat. Sci. Tech., 1997, 36(1), 321-328.
    Rendell PS, Batley GE, Cameron AJ.. Adsorption as a control of metal concentration in sediment extracts, Environ Sci Technol, 1980, 14, 314-318.
    Saeki K, Okazaki M, Matsumoto S.. The chemical phase change in heavy metals with drying and oxidation of the lake sediments, Water Res., 1993, 27, 1243-1251.
    Salim R.. Adsorption of lead on the suspended particles of river water, Water Res., 1983, 17, 423-429.
    Schorer, M., Eicele, M.. Accumulation of inorganic and organic pollutants by biofilm in the aquatic environment, Water, Air, Soil Pollut., 1997, 99, 651-659.
    Sigg L.. Metal transfer mechanisms in lakes: the role of settling particles. In Chemical Processes in Lakes, John Wiley, New York, 1985, 283-310.
    Simpson S.L., Apte S.C., Batley G.E.. Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments, Environ. Sci. Technol., 1998, 32 (5), 620-625.
    Singer P. C.. Influence of dissolved organics on the distribution, transportation and fate of heavy metals in aquatic system in: Fate of pollutants in the air and water Environment, Part 1, New York,1977, 155-182.
    Singh S.P., Tack F.M. and Verloo M.G.. Heavy metal fractionation and extractability in dredged sediment derived surface soils, Water Air Soil Pollut., 1998, 102, 313-328.
    Siregar A., Kleber M., Mikutta R. and Jahn R.. Sodium hypochlotite oxidation reduces soil organic matter concentration without affecting inorganic soil constituents, European Journal of Soil Science, 2004, 1-10.
    Sondi, I., Juracic, M., Prohic, E., Pravdic, V.. Particulates and the environmental capacity for trace metals. A small river as a model for a land±sea transfer system: the Rasa River estuary, Sci. Tot. Env., 1994, 155, 173-185.
    Stephen Lofts and Edward Tipping. An assemblage model for cation binding by natural particulate matte, Geochim. Cosmochim.Acta, 1998, 62, 2609-2625.
    Stephens S.R., Alloway B.J., Parker A., et al.. Changes in the leachability of metals from dredged canal sediments during dying and oxidation, Environmental Pollution, 2001, 114, 407-413.
    Sunda W.G. and Kieber D.J.. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates, Nature, 1994, 367, 62-64.
    Tack F.M., Callewaert O.W.J.J., Verloo M.G.. Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation, Environmental Pollution, 1996, 91, 199-208.
    Tam N.F.Y., Wong Y.S.. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps, Environmental Pollution, 2000, 110, 195-205.
    Tasi L.J., Yu K.C., Chang J.S. and Ho S.T.. Fractionation of heavy metals in sediment cores from the Ell-Ren river, Taiwan, Water Sci. Technol., 1998, 37, 217-224.
    Tessier A, Campbell P G C, Bisson M.. Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 1979, 51(7), 844-851.
    Tessier, A., Fortin, D., Belzile, N., Devitre, R.R., Leppard, G.G.. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements, Geochim. Cosmochim. Acta, 1996, 60(30), 387-404.
    Tuccillo M.E., Cozzarelli I.M., Herman J.S.. Iron reduction in the sediments of a hydrocarbon-contaminated aquifer, Appl. Geochem., 1999, 14, 655-667.
    Turner A., Millward G. E.. Suspended particles: Their role in estuarine biogeochemical cycles, Estuarine Coastal &Shelf Science, 2002, 55(6) ,857-884.
    Villaescusa JA, Celaya, Gutiérrez Galindo EA, Flores Munoz G.. Heavy metals in the fine fraction of coastal sediments from Baja California (Mexico) and California (USA), Environmental Pollution, 2000, 108, 453-462.
    Vladimir Dauvalter, Sigurd Rognerud.. Heavy metal pollution in sediments of the Pasvik River drainage, Chemosphere, 2001, 42, 9-18.
    Wallman K., Kersten M., Gruber J., Forstner U.. Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction, Int. J. Environ Anal. Chem., 1993, 51, 187-200.
    Warran L.A. and Zimmerman A.P.. Trace metal suspended particulate matter associations in a fluvial system: physical and chemical influences, In Particulate Matter and Aquatic Contaminants, Lewis Publishers, Chelsea, MI, USA, 1993, 127-155.
    Warran, L.A., Zimmerman, A.P.. Suspended particulate oxides and organic matter interactions in trace metal sorption reactions in a small urban river, Biogeochemistry, 1994, 23, 21-34.
    White, D.C. Biofilm Ecology: On–line methods bring new insights into mic and microbial biofouling, Biofouling, 1996, 10(1-3), 3-16.
    Wilson A.R., Lion L.W., Nelson Y.M., Shuler M.L., Ghiorse W.C.. The effects of pH and surface composition on Pb adsorption to natural freshwater biofilms, Environ Sci Technol., 2001, 35 (15), 3182-3189.
    WX Liu, XD Li, ZG Shen, DC Wang, OWH Wai, YS Li.. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl Estuary, Environmental Pollution, 2003, 121, 377–388.
    Yang, J., Volesky, B.. Cadmium biosorption rate in protonated Sargassum biomass, Environ. Sci. Technol., 1999, 33, 751-757.
    Young L. B., Dutton M. and Pick F. R.. Contrasting two methods for determining trace metal partitioning in oxidized lake sediments, Biogeochemistry, 1992a, 17(3), 205-219.
    Young L.B. and Harvey H.H.. The relative importance of manganese and iron oxides and organic matter in the sorption of trace metals by surficial lake sediments, Geochim. Cosmochim. Acta, 1992b, 56, 1175-1186.
    Young R.N., Yaacob W.Z.W., Bentley S.P., Harris C., Tan B.K.. Partitioning of heavy metals on soil samples from column tests, Engineering Geol., 2001, 60, 307-322.
    Yu K.C., Ho S.T., Chang J.K., Lai S.D. and Wang C.H.. Correlation of water quality, sediments and benthic invertebrates in Ell-Ren river, Taiwan, Water Sci. Technol., 1994, 30, 207-212.
    Yu K.C., Ho S.T., Chang J.K., Lai S.D.. Multivariate correlation of water quality, sediment and benthic biocommunity components in Ell-Ren river, Taiwan, Water Air Soil Pollut., 1995, 84, 31-49.
    Yu Kuang-chung, Tsai LiJyur, Chen Shih-hsiung and Ho Shien-tsong. Correlation analyses on binding behavior of heavy metals with sediment matrices, Wat. Res., 2001a, 35(10), 2417-2428.
    Yu Kuang Chung, Tsai Li Jyur, Chen Shuih Hsiung, Ho Shien Tsong.. Chemical binding of heavy metals in anoxic river sediments, Water Research, 2001b, 35(17), 4086-4094.
    Yuan Chun-gang, Shi Jian-bo, He Bin, Liu Jing-fu, Liang Li-na, Jiang Gui-bin. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction, Environment International, 2004, 30, 769-783.
    陈敬安, 万国江, 黄荣贵. 洱海沉积物重金属地球化学相及其污染历史研究, 地质地球化学 1998, 26(2), 1-8.
    陈静生. 水环境化学, 高等教育出版社, 1987, 186-187.
    陈静生, 周家义. 中国水环境重金属研究, 中国环境科学出版社, 1992.
    陈静生, 王飞越, 宋吉杰, 陈江麟. 中国东部河流沉积物中重金属含量与沉积物主要性质的关系, 环境化学, 1996, 15(1), 8-14.
    陈余团. 河口沉积物?水界面重金属生物地球化学研究进展, 地球科学进展, 1997, 12(5), 434-439.
    陈振楼, 许世远, 柳林, 余佳, 俞立中. 上海滨岸潮滩沉积物重金属元素的空间分布与累积,地理学报, 2000, 55(6), 641-651.
    戴树桂. 环境化学, 高等教育出版社, 1996.
    董德明, 张白羽, 岳保华, 李鱼, 花修艺. 自然水体中生物膜组分的化学萃取分离, 吉林大学自然科学学报, 2000, 4, 71-74.
    董德明, 花修艺, 李鱼, 康春丽. 不同水体生物膜中各化学组分对铅的吸附作用研究, 高等学校化学学报, 2002a, 23(2), 294-296.
    董德明, 李鱼, 花修艺, 张菁菁, 刘莉, 娄大伟. 自然水体中生物膜对铜、锌、镉的富集作用, 科学技术与工程, 2002b, 2(3), 61-62.
    董德明, 李鱼, 花修艺, 张菁菁, 康春莉, 姚军. 不同水体中生物膜主要化学组分选择性萃取分离的比较, 吉林大学学报(理学版), 2002c, 40(2), 204-206.
    方涛, 肖邦定, 张晓华, 敖鸿毅, 徐小清. 曝气对两种不同类型沉积物中重金属释放的影响, 中国环境科学, 2002, 22(4), 355-359.
    冯克亮. 判断海洋底质污染状况的表层富集系数法, 海洋环境科学,1987, 6(4),107-108.
    国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法, 中国环境科学出版社, 1989.
    哈特 B.T. 水质管理—水环境中污染物的迁移和归宿, 中国环境科学出版社, 1991.
    韩建波. 海洋地球化学特性对重金属生物可利用性的影响研究. 大连理工大学博士学位论文, 2005.
    何江. 黄河包头段水环境中稀土元素的形态及分布特征, 环境科学, 2004, 25(2), 61-66.
    黄廷林. 渭河沉积物中重金属释放动态试验研究, 水利学报, 1994, 11, 52-58.
    黄廷林. 水体沉积物中重金属释放动力学及试验研究, 环境科学学报, 1995, 15(4),440-445.
    霍文毅, 李全生, 马锡年. 胶州湾养殖海区沉积物中酸可挥发性硫的研究, 地理科学,2001, 21(2), 135-139.
    贾振邦, 梁涛, 林健枝. 酸可挥发硫对香港河流沉积物中重金属的毒性作用, 北京大学学报(自然科学版), 1998, 34(2-3), 379-386.
    金相灿. 沉积物污染化学, 中国环境科学出版社, 1992,26-29.
    李道季, 李军. 长江河口悬浮颗粒物研究, 海洋与湖沼, 2000, 31(3), 295-301.
    李健, 李春江. 环境背景值手册, 中国环境出版社, 1989, 343-348.
    李金城, 宋进喜, 王晓蓉. 太湖五里湖区表层沉积物中酸挥发性硫化物和同步提取金属,湖泊科学, 2004, 16(1), 77-80.
    李鱼. 自然水体生物膜及其对铅、镉吸附的基本特性研究, 吉林大学博士学位论文,2002.
    李鱼, 刘亮, 董德明. 城市河流淤泥中重金属的生物可利用性, 吉林大学学报(理学版),2003, 41(1), 106-110.
    李鱼, 刘亮, 董德明, 花修艺, 杨帆, 徐珑. 城市河流淤泥中重金属释放规律的研究, 水 土保持学报, 2003, 17(1), 125-127.
    林玉环, 郭明新, 庄岩. 底泥中酸性挥发硫及同步浸提金属的测定, 环境科学学报, 1997, 17 (3), 353-358.
    刘芳文, 颜文, 王文质, 古森昌, 陈忠. 珠江口沉积物重金属污染及其潜在生态危害评价, 海洋环境科学, 2002, 21(3), 34-38.
    刘芳文, 颜文, 黄小平, 施平. 珠江口沉积物中重金属及其相态分布特征, 热带海洋学报, 2003, 22(5), 16-24.
    隆茜, 张经. 陆架区沉积物中重金属研究的基本方法及其应用, 海洋湖沼通报, 2002, 3, 25–35.
    吕兴娜. 柴河水库沉积物中重金属释放的静态试验, 辽宁城乡环境科技, 2001, 21(2), 40-41.
    乔庆霞, 黄小凤. 沘江表层底泥中重金属化学形态的研究, 昆明理工大学学报, 1999, 24(2), 195-198.
    裘祖楠. 城乡河流底泥中 Cd 的形态分布及其向水相释放的关系, 中国环境科学, 1989, 9(6), 401-406.
    尚爱安, 党志, 梁重山. 土壤/沉积物中微量重金属的化学萃取方法研究进展, 农业环境保护, 2001, 20(4), 266-269.
    申献辰. 天然水化学, 中国环境科学出版社, 1994.
    汤鸿霄, 薛含斌. 粘土矿物吸附镉污染物的基本特征, 环境科学学报, 1981, 1(2), 140-145.
    汤鸿霄. 用水废水化学原理, 化学工业出版社, 1987.
    汤鸿霄. 水体颗粒物和难降解有机物的特性与控制技术原理, 中国环境科学出版社, 2000.
    田玉红, 余炜, 刘正西. 痕量金属在悬浮颗粒物上的吸附交换机理, 广西工学院学报, 2004, 15(2), 73-77.
    王俊, 张义生. 化学污染物与生态效应, 中国环境科学出版社, 1993, 185-227.
    王水锋, 赵承易, 刘培斌, 张凤君. 高频电感耦合等离子体发射光谱法测定官厅水库底泥中的多种元素, 北京师范大学学报(自然科学版) , 2003, 39(3), 365-370.
    王文军, 张学林, 王文华, 王东红. 天然水体中生物膜及悬浮颗粒物的元素含量研究, 应用生态学报, 2002, 13(8), 1001-1006.
    王晓蓉. 金沙江重金属在颗粒物中的分布及其基本特征, 环境化学, 1982, 1(2), 140-146.
    王晓蓉. 环境化学, 南京大学出版社, 1993.
    文湘华, Herbert E. Allen. 乐安江沉积物酸碱特性及其对重金属释放特性的影响, 环境化学, 1996, 15(6), 510-515.
    文湘华, Herbert E. Allen. 乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响, 环境化学, 1997, 18, 32-34.
    殷效彩, 杨永亮, 乌大年, 李春燕, 牟晓燕, 薛允传, 贾建军. 山东荣成湾月湖沉积底泥重金属研究, 青岛大学学报, 1999, 12(4), 75-79.
    张恩仁, 张经. 长江河口悬浮物对几种金属吸附的pH效应, 海洋与湖沼, 2003, 34(3) ,267 -273.
    赵兴敏, 花修艺, 张菁菁, 董德明, 李鱼. 自然水体采集的生物膜上铁、锰氧化物的萃取分离研究, 吉林大学学报(地球科学版), 2005, 4, 505-509.
    周立祥. 污水污泥中重金属的细菌淋滤效果研究, 环境科学学报, 2001, 21(4), 504-506.
    朱广伟, 陈英旭, 田光明. 运河(杭州段)沉积物中Cu和Zn的释放特征, 环境化学, 2002,21 (5), 436-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700