西藏班公湖—怒江成矿带西段富铁与铜(金)矿床模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
班公湖-怒江成矿带位于西藏境内,是我国19个重要成矿区(带)之一,也是研究程度最低的一个。在成矿带西段分布的典型矿床有材玛中型矽卡岩型富铁矿床、尕尔穷中型矽卡岩型铜金矿床、嘎拉勒小型矽卡岩型金(铜)矿床和多不杂大超大型斑岩型铜金矿床。在系统的收集前人资料及野外地质调查的基础上,研究这该4个典型矿床的岩矿相学特征、岩石地球化学特征和同位素地球化学等,建立矿床模型,进一步建立区域成矿模型,研究成矿带西段构造演化,为进一步找矿提供理论依据。论文取得的成果主要有:
     (1)材玛矽卡岩型富铁矿区至少存在三期的岩浆活动,第一期介于早侏罗世-晚期-中侏罗世早期,第二期为中侏罗世晚期-晚侏罗世早期,第三期发生在早白垩世。其中第二期岩浆活动与成矿关系最为密切。成矿流体盐度主要介于4%-4.5%,成矿温度分为120-180℃、200-300℃、360-380℃、400-750℃四个阶段。
     (2)尕尔穷矿区成矿期次分为内生期(矽卡岩形成阶段-硫化物形成阶段-金形成阶段)和表生期(孔雀石、蓝铜矿、褐铁矿)。成矿与成岩几乎同时进行,介于85.9-95.3Ma之间。矿区岩石样品的气液包裹体的完全均一温度介于87-356℃,出现两个峰次,反应了成矿作用的两个阶段,盐度介于7%-7.5%区间的最多,属于中温中盐度成矿流体。
     (3)嘎拉勒矽卡岩型铜金矿床形成在晚白垩世,不存在岩矿时差。矿区存在两期的岩浆活动:第一期是东侧早白垩世早期岩浆的侵入作用,此阶段不具有成矿的地质条件,形成非成矿岩体;第二期是西侧晚白垩世成矿岩体的形成。嘎拉勒矿床与尕尔穷矿床成矿岩体在更深处存在同一岩基。
     (4)多不杂矿集区成矿与成岩几乎同时进行,成岩成矿时代介于115.54-122.45Ma。在波龙矿区钻孔采取的侏罗纪围岩地层中发现了大量的电气石,有的是存在于后期的石英脉中,有的为细小颗粒,聚集于斑点板岩的斑点中,为镁电气石-铁电气石系列,并且随深度增加,电气石中的铁减少,直到变为镁电气石。因此波龙矿区的成矿作用可能受到富硼气成热液蚀变作用的影响,在其他矿区是否存在气成热液的影响待进一步研究。
     (5)4个典型矿床的成矿作用发生在成熟的元古宙基底之上,并且材玛、尕尔穷和嘎拉勒为俯冲带岛弧环境成矿,尕尔穷和嘎拉勒矿区成矿岩体形成时幔源物质贡献较大,材玛和多不杂矿区岩体为壳源。缝合带向东多不杂矿区洋盆在早白垩世晚期已经闭合,进入陆-陆碰撞造山过程。由各矿床的成矿作用及成矿背景得知班公湖-怒江洋盆西段在晚侏罗世向北部的羌塘地块俯冲,晚白垩世早期向南部的拉萨地块俯冲,晚于晚白垩世早期闭合。
Bangong Co-Nujiang suture in Tibet, is one of China's19major metallogenic areas (or belts). But it also has the lowest grade of research. Multiple skarn-type and porphyry-type iron-copper metal deposits are distributed in the western part of the suture zone. And the typical deposits in the area are Caima medium skarn-type iron deposit, Gaerqiong medium skarn-type copper-gold deposit, Galale small skarn-type gold (copper) deposit and Duobuza super-large porphyry-type copper-gold deposit. On the basis collecting previous data systematically and field geological investigation, this thesis has studied the petrography and mineralography feature, geochemical characteristics and isotope geochemistry of the four typical deposits, established four mineralization model, further established a regional metallogenic model of the western section of the Bangong Co-Nujiang suture zone. Then we research the tectonic evolution in the western part of the suture zone, and provide a theoretical basis for further prospecting.
     (1) In Caima skarn-type iron ore district, there are at least three stages of magmatic activity. The first stage is between the early period of Early Jurassic and the early period of Middle Jurassic. The second stage is between the late period of Middle Jurassic and the early period of Late Jurassic. The third stage occurred in the early Cretaceous. And the second stage of magmatic activity is most affinitive to the mineralization. Ore-forming fluid salinity ranged from4%to4.5%,and the ore-forming temperature is divided into120~180℃,200~300℃,360~380℃,400~750℃in four phases.
     (2) In Gaerqiong skarn-type copper-gold ore district, the mineralization epochs conclude endogenesis(skarn-sulfide-gold)and surface(malachite, azurite, limonite)stages. The mineralization and diagenesis almost occured simultaneously, between85.9Ma and95.3Ma. The homogenization temperature of V-L inclusions is between in87~356℃,and it suggested that the deposit may have experienced two stages of mineralization. The salinity is mostly between in7%-7.5%,and it belong to mesothermal and medium-salinity ore fluid.
     (3) Galale skarn-type copper-gold deposit formed in Late Cretaceous, and there is no rock and mineral jet lag. There are two stages of magmatic activity in ore district. The first stage is the magmatic intrusion of the east side in the early period of Early Cretaceous, in which there was not ore-forming geological conditions, resulting in formation of non-ore-forming rock. The second stage is intrusion of ore rock in late Cretaceous in west side. In deeper place in Galale and Gaerqiong deposits, it maybe the same batholith.
     (4)In Duobuza ore concentrated area, the mineralization and diagenesis almost occured simultaneously, between115.54Ma and122.45Ma. A large number of tourmaline was found in the surrounding rock(the Jurassic)sampled in the drilling of Bolong ore district. Some exist in the late quartz veins, and some exist in the spots of spot slate in the form of fine particles. They belong to dravite-iron tourmaline series, and tourmaline iron reduction increase with depth until it turn to dravite. Therefore it is speculated that the mineralization in Bolong ore district may be subject to the impact of the boron-rich gaseous hydrothermal alteration, and the existence of the impact of of gaseous hydrothermal fluids in other ore districts is to be further studied.
     (5) The mineralization of four typical deposits occurred above the mature Proterozoic basement. And the mineralization of Caima, Gaerqiong and Galale occurred in subduction zone island arc setting. In Gaerqiong and Galale ore districts, mantle source material made greater contribution to the formation of ore-forming rock. The rock mass in Caima and Duobuza ore districts belong to crustal source type. In Duobuza ore district to the east of Suture zone, ocean basin have been closed in the late period of Early Cretaceous, and turn to the continent-continent collision orogenic process. On the basis of mineralization and metallogenic background of deposits, it can be concluded that the western part of Bangong Co Nujiang oceanic basin subduced to Qiangtang block in northern in Late Jurassic, subducted to Lhasa block in southern in the early period of Late Cretaceous, and closed later than the early period of Late Cretaceous closure.
引文
Arenas C, Casanova J.,Pardo G.1997. Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain):palaeogeographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology,128(1-4):133-155.
    Carl E.H.1974. Strontium isotopes in economic geology. Economic Geology,69:823-825.
    Chappell B.W., White A.J.R.1974. Two contrasting granite types:Pacific Geology,8:173-174.
    Chu M.F., Chung S.L., Song B., et al.2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,34:745-748.
    Coulon C, Maluski H., Bollinger C, et al..1986. Mesozonic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters,79(3-4):281-302.
    Depaolo D.J., Wasserburg G.J.1977. The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophysical Research Letters,4(10):465-468.
    Ding L., Kapp P., Zhong D.L., et al.2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology,44(10):1833-1865.
    Finger E, Roberts M.P., Haunschmind B., et al.1997. Variscan granitoids of central Europe:Their typology, potential sources and tectonothermal relations. Mineralogy and Petrology,61(1-4):67-96.
    Fritz P., Smith D.G.W.1970. The isotopic composition of secondary dolomites. Geochimica et Cosmochimica Acta,34(11):1161-1173.
    Hoefs J.1997. Stable Isotope Geochemistry. Berlin:Springer-Verlag,93-219.
    Jahn B.M., Condie K.C.1995. Evolution of the Kaapvaal craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta,59(11):2239-2258.
    Kapp P., Murphy M.A., Yin A., et al.2003. Mesozoic and Cenozoic tectonic evolut ion of the Shiquanhe area of western Tibet. Tectonics,22 (4):1029; doi:10.1029/2001T C001332.
    Kapp P., Yin A., Harrison T.M., et al.2005. Cretaceous-Tertiary shortening, basin development, and volcanismin central Tibet. Geological Society of America Bulletin,117(7/8),865-878.
    Kapp P., DeCelles P.G., Gehrels G.G.E., et al.2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin 119, 917-932.
    Liew T.C., Hofmann A.W.1988. Precambrian crust components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe:Indication from Nd and Sr study. Contributions to Minerallogy and Petrollogy,98(2):129-138.
    Matte P.P., Tapponnier P.,Arnand N., et al.1996. Tectonics of western Tibet, between Tarim and the Indus. Earth Planet. Sci. Lett.,142:311-330.
    McDonough W.F., Sun S.S.1995. The composition of the Earth. Chemical Geology,120(1995):223-253.
    McKenzie J.A.1985. Stable-isotope mapping in Messinian evaporative carbonates of central Sicily. Geology,13:851-854.
    O'Nions R.K., Hamilton P.J., Evensen N.M. et al.1977. Variations in 143Nd/144Nd and87Sr/86Sr ratios in oceanic basalts. Earth and Planetary Science Letters,34(1977):13-22.
    Pan GT., Chen Z.L., Li X.C.1997. Formation and evolution of geological structure in east Tethyan. Geosciences Press,53-58.
    Pitcher W.S.1983. Granite type and tectonic environment. In:Hsu, K., ed., Mountain building processes. Acadenric Press, London,19-40.
    Pitcher W.S., Chapman H.1997. The nature and origin of granite,2nd edition. Blackie Acad. And prof. ed,London,320-321.
    Rollinson H.1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longman, London. 352.
    Searle M.P., Parrish R.R., Hodges K.A., et al.1997. Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, Geochemistry age, origin, and emplacement. Geology,105(3):295-317.
    Sengor A.M.C., Natal'in B.A.1996. Paleotectonics of Asia:fragments of synthesis. In:Yin, A., Harrison, T.M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge,486-640.
    Srimal N.1986. Asia coll ision:Implicat ions from the geology of the eas tern Karakoram. Geology,14: 523-527.
    Veizer J., Holser W.T., Wilgus C.K.1980. Correlation of 13C/12C and 34S/32S secular variations. Geochimica et Cosmochimica,44(4):579-587.
    Wang W.L., Aitchison J.C., Lo C.H., et al.2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melange along Bangong-Nujing Suture, Central Tibet. Asian Earth Science, 33:122-138.
    Zhang K.J., Xia B.D., Wang G.M., et al.2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin 116(9/10),1202-1222.
    Zhang Y.X., Zhang K.J, Li B., et al.2007. Zircon SHRIMP U-Pb geochrohology and petrogenesis of the plagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet, China. Chinese Science Bulletin,52(5): 651-659.
    Zhu D.C., Mo X.X., Niu Y.L., et al.2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemicai Geology, 268:298-312.
    Zhu B.Q., Zhang J.L., Tu X.L., et al.2001.Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration. Geochimica et Cosmochimica Acta, 65(15):2555-2570.
    Zhu D.C., Zhao Z.D., Niu Y.L., et al.2011.The Lahsa Terrane:Recored of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters,301:241-255.
    鲍佩声,肖序常,苏犁等.2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约.中国科学(D辑),37(3):298-307.
    曹圣华,罗小川,唐峰林等.2004.班公湖-怒江结合带南侧弧-盆系时空结构与演化特征.中国地质,31(1):51-56.
    曹圣华,邓世权,肖志坚等.2006.班公湖-怒江结合带西段中特提斯多岛弧构造演化[J].沉积与特提斯地质,26(4):25-32.
    曹圣华,廖六根,邓世权等.2005.西藏班公湖蛇绿岩组合层序、地球化学及其成因研究,沉积与特提斯地质,25(3):101-110.
    陈玉禄,张宽忠,李关清等.2005.班公湖-怒江结合带中段上三叠统哈拉群与下伏岩系角度不整合关系的发现及意义.地质通报,24(7):621-624.
    陈玉禄,张宽忠,杨志民等.2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面.地质通报,25(6):694-699.
    陈毓川,王登红,付小芳等.2010.中国西部重要成矿带矿产资源潜力评估[M].地质出版社(北京):312-314.
    邓万明,王方国.1987.藏北班公湖—怒江蛇绿岩带.北京:地质出版社,138-214.
    冯国胜,廖六根,陈振华等.2006.西藏西部日土县材玛铁多金属矿地质特征及找矿意义.地质通报,25(1-2):267-272.
    高顺宝,郑有业,王进寿等.2011.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化 时限的制约.岩石学报,27(7):1973-1982.
    弓秋丽,朱立新,马生明等.2009.斑岩型铜矿床地球化学勘查中岩石化学指标.物探与化探.33(1):31-34.
    侯增谦,莫宣学,高永丰等.2006.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质,26(4):25-32.
    侯增谦,王二七,莫宣学等.2008.青藏高原碰撞造山与成矿作用.北京:地质出版社,1-437.
    江军华.2010.西藏班公湖地区含硫化镍超基性岩成因与地壳伸展过程研究,中国地质科学院硕士学位论文,指导教师王瑞江研究员、曲晓明研究员,1-59.
    李光明,李金祥,秦克章等.2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报,23(5):935-952.
    李金祥,李光明,秦克章等.2008a.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报,24(3):531-543.
    李金祥,秦克章,李光明等.2010.西藏班公湖带多龙大型富金斑岩型铜矿床的岩浆-热液演化:U-Pb和Ar-Ar年代学的证据.见:第十届全国矿床会议论文集.北京:地质出版社.矿床地质:460-461.
    李胜荣,肖润,周肃等.2005.西藏改则地区金成矿作用.矿床地质,24(1):1-24.
    廖六根,曹圣华,肖业斌等.2005.班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义[J].沉积与特堤斯地质,25(1-2):163-170.
    廖忠礼,莫宣学,潘桂棠等.2006.初论西藏过铝花岗岩.地质通报,25(7):812-821.
    林广春,马昌前.2003.过铝花岗岩的成因类型与构造环境研究综述.华南地质与矿产,(1):65-70.
    凌其聪,刘丛强.2001.银山多金属矿床成矿流体稀土元素地球化学.地质地球化学.29(4):14-17.
    刘鸿飞,魏玉帅,黄炜等.2007.西藏班公湖岛弧带西段铜、金、富铁资源评价与方法示范研究阶段汇报.西藏地质调查院。
    刘庆宏,肖志坚,曹圣华等.2004.班公湖-怒江结合带西段多岛弧盆系时空结构初步分析.沉积与特提斯地质,24(3):15-21
    刘增乾,徐宪,潘桂棠等.1990.青藏高原大地构造与形成演化.北京:地质出版社,12-74.
    路彦明,张玉杰,赵新峰等.2003.藏北中-新生代花岗岩与金矿成矿.黄金地质,9(3):15-20.
    马生明,刘崇民,胡树起等.2009.矿产勘查中地球化学异常评价新指标及其应用效果.中国地质科技进展和地质找矿新成果.中国地质学会.10-13.
    毛景文,赫英,丁悌平.2002.胶东金矿形成期间地幔流体与成矿过程的碳氧氢同位素证据[J].矿床地质,21(2):121-128.
    莫宣学,董国臣,赵志丹等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290.
    莫宣学,潘桂棠.2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘,13(6):043-051.
    莫宣学,赵志丹,Don J DEPAOLO等.2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,22(4):795-803.
    潘桂棠,朱弟成,王立全等.2004.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘,11(4):371-382.
    邱瑞照,周肃,邓晋福等.2004.西藏班公湖—怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖—怒江蛇绿岩带形成时代.中国地质,31(3):262-268.
    曲晓明,王瑞江,辛洪波等.2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学,38(6):523-535.
    曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报,25(7):792-799.
    芮宗瑶,侯增谦,曲晓明等.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,22(3):217-224.
    芮宗瑶,李光明,张立生等.2006.青藏高原的金属矿产.中国地质,33(2):363-373.
    佘宏全,李进文,丰成友等.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义.地质学报,80(9):1435-1447.
    佘宏全,李进文,马东方等.2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义.矿床地质,28(6):737-746.
    史仁灯.2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约.科学通报,52(2):222-227.
    宋彪,张玉海,万渝生等.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(Supp.):26-30.
    唐菊兴等.2009.西藏自治区革吉县尕尔穷矿区铜矿详查报告,西藏卓朗基矿业投资有限公司.1-145.
    王希斌,鲍佩声,邓万明等.1987.喜马拉雅岩石圈构造演化—西藏蛇绿岩(3)岩石矿物地球化学.北京:地质出版社,1-299.
    王忠恒,王永胜,谢元等.2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义.沉积与特提斯地质,25(1/2):155-162.
    卫万顺,张宇辉,路彦明等.2003.西藏班公湖-怒江成矿带中段岩浆演化及其金矿成岩成矿动力学模式.黄金地质,11(3):1-10.
    吴德新,赵元艺,刘朝强等.2012.西藏多不杂矿集区斑岩铜矿地球化学指标研究.地球学 报,33(2):185-196.
    吴旭铃,陈振华.2005.西藏尼雄岩体岩石地球化学特征及成因探讨.中国地质,32(1):122-127.
    谢冰晶,程捷,黄传冠.2010.班公湖-怒江结合带西段沙木罗组的发现及意义.东华理工大学学报(自然科学版),33(2):159-164.
    谢国刚,谢琳,曹圣华等.2009.西藏西部班公湖铁铜多金属矿带的成矿特征与远景评估.地质通报,28(4):538-545.
    徐强,赵俊猛,崔仲雄等.2010.青藏高原班公湖-怒江缝合带中部的Moho错断.科学通报,55(1):80-86.
    姚晓峰,叶天竺,唐菊兴等.2010.藏西尕尔穷矽卡岩型铜金矿床成矿岩浆岩含矿性研究.见:第十届全国矿床会议论文集.北京:地质山版社.矿床地质:1015-1016.
    张建兵,李建荣,杨月生等.2008.《西藏自治区革吉县尕尔穷铜金矿区及外围普查成果报告》.编写单位:山西省地质调查院.
    张俊成,王雄武,胡志莲等.2010.西藏冈底斯带多巴-班戈地区燕山晚期花岗岩类的成因与成矿远景.见:第十届全国矿床会议论文集.北京:地质出版社.矿床地质:1055-1056.
    张旗.2010.大陆花岗岩在判别图中为什么总是投在岛弧区域?—花岗岩讨论(5)张旗(2010-3-12),载岩石学报网站:http://www.ysxb.ac.cn/ysxb/ch/index.aspx.
    张天平,陈红旗,李光荣等.2007.西藏自治区改则县多龙区域地质图(比例尺1:50000).西藏地质矿产勘查开发局第五地质大队.
    赵文津,刘葵,蒋忠惕等.2004.西藏班公湖-怒江缝合带——深部地球物理结构给出的启示.地质通报.23(7):623-635.
    赵元艺,刘妍,王瑞江等.2010a.西藏班公湖-怒江成矿带及邻区铋矿化带的发现与意义.地球学报,31(2):183-193.
    赵元艺,刘妍,王瑞江等.2010b.西藏班公湖-怒江成矿带与邻区铟矿化带的发现及意义.地质评论,56(4):568-578.
    赵元艺,马志红,冯本智等.1997.多宝山铜矿床系统地球化学及找矿研究.长春:吉林人民出版社,121-125.
    朱弟成,潘桂棠,莫宣学等.2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报,22(3):534-546.
    邹光富.1998.藏东怒江板块结合带郭庆复式花岗岩体特征及其成因.四川地质学报,18(1):7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700