金属修饰硅纳米线的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米结构材料以其独特的物理化学性质引起了众多研究者的关注。越来越多的纳米材料被应用到各类微纳器件中并扮演着重要角色。其中,以硅为底材的硅纳米线(SiNWs)阵列材料以其独特的性质正逐渐成为纳米材料研究的热点。研究发现,对硅纳米线进行适当修饰后,纳米线会表现出独特的性质。据此,人们制备了不同金属修饰纳米材料,并将其作为开发新一代的微纳传感器件研究的重点。
     本文的主要工作围绕着将金属修饰的硅纳米线材料用于电化学葡萄糖传感器以及直接乙醇燃料电池电极展开。首先研究了硅纳米线(SiNWs)材料的制备和修饰方法,制作了基于不同金属修饰的硅纳米线(SiNWs)电极材料,并将其用于电化学葡萄糖传感器以及直接乙醇燃料电池的研究。采用电化学的方法对其敏感性和催化性能进行了探测。初步完成了采用不同金属修饰的硅纳米线作为电极的直接乙醇燃料电池样机的组装。论文的主要研究工作如下:
     第一,本文开展了对SiNWs阵列生长机理的探讨,并采用“自上而下”金属诱导化学腐蚀法制备了长度在50-80μm、线径为数百纳米的SiNWs阵列。采用扫描电子显微镜(Scanning Electron Microsocop, SEM)、X-射线衍射(X-Ray Diffraction, XRD)技术对制备的硅纳米线阵列进行了表征。
     第二,研究了不同金属修饰SiNWs阵列的制备方法。采用化学溶液浸镀法在制备的SiNWs阵列上分别沉积钯-镍和银金属粒子,形成Pd-Ni/SiNWs和Ag/SiNWs阵列电极。采用扫描电子显微镜(SEM)和X-射线衍射(XRD)等手段对制备的硅纳米线和金属修饰的硅纳米线结构进行了表征。
     第三,创新性地提出一种采用钯-镍/硅纳米线(Pd-Ni/SiNWs)阵列结构制作电化学葡萄糖传感器的新方案,较好地克服了当前电化学微纳传感器中普遍存在由于催化剂毒化以及易受温度等外界环境影响等共性问题。采用循环伏安扫描法(Cyclic Voltammetry, CV)、恒电位计时电流法(Fixed Potential Amperometry)等技术实现对Pd-Ni/SiNWs阵列电极材料的催化性能的探测。由于SiNWs阵列结构在纳米量级,具有巨大的比表面积,传感器的灵敏度高达190.7μA·mM-1cm-2,基于三倍信噪比(S/N=3)的探测极限为2.88μM,传感器的响应时间在8s以内,并且可以抵抗抗坏血酸(Ascorbic Acid, AA)、尿酸(Uric Acid, UA)以及四-乙酰氨基酚(4-acetamidophenol,AP)等干扰物的影响。此外,所研制的葡萄糖传感器具有优良的稳定性,耐酸碱腐蚀,随温度变化不敏感,制备工艺简单,同集成电路工艺相兼容,制作成本低等诸多优点。
     第四,开展了液态无贵金属催化剂(Pt, Ru)的直接乙醇燃料电池(Direct Ethanol Fuel Cell, DEFC)的研究工作。采用Pd-Ni/SiNWs阵列电极和AgO/SiN Ws阵列电极分别作为直接乙醇燃料电池的阳极和阴极。乙醇作为燃料,空气中的氧气作为氧化剂,氢氧化钾(KOH)碱性溶液作为电解质,构成直接乙醇燃料电池原型样机。对电极材料的催化性能、电池的开路电压(Open Circuit Voltage, OCV)和短路电流(Short Circuit Current, SCC)等参数进行测试。为降低燃料电池催化剂的成本提供了可能性,为非Pt基催化剂的研究提供了一定的理论和实验基础。
Recently, the nanostructured materials have become the research focus due to their unique physical and chemical properties. Nanostructured materials are playing an important role in a variety of niicro-nano devices. Among them, silicon nanowires (SiNWs) has been studied intensively due to their excellent electrical and optical properties. It is also found that the silicon modified nanowires exhibit the special and novel characteristics. Therefore, researchers prepared different metal modified nano materials as a focus study of new generation of micro-nano devices.
     In this work, the electrochemical glucose sensors and the direct ethanol fuel cell prototypes based on the metal-modified silicon nanowires is present. First, the silicon nanowire arrays are prepared by wet chemical etching, then the SiNWs were modified by some metals like Pd, Ni and Ag with electroless plating. Finally, the electrochemical detection sensitivity and catalytic properties of SiNWs sensors were studied by electrochemical method. The mainly works are listed as following:
     First, the growth and fabrication mechanism of SiNWs arrays is investigated. SiNWs arrays were prepared metal-assisted chemical etching method, which is a also known as a "top-down" technique. The dimension of SiNWs arrays prepared is 80-100μm in length and 200-400nm in diameter. The structural and morphological properties of SiNWs were characterized by SEM (Scanning Electron Microsocop) and XRD (X-Ray Diffraction) technique.
     Second, different metal modified SiNWs arrays structures were studied. Chemical solution method was used to deposit Pd-Ni and Ag on SiNWs arrays. The properties of Pd-Ni/SiNWs and Ag/SiNWs were examined by SEM (Scanning Electron Microsocop) and XRD (X-Ray Diffraction) technique.
     Thirdly, a novel electrochemical glucose sensor based on Pd-Ni/SiNWs electrode had been constructed. The developed sensors can overcome the catalyst's poisoning and unstablity, which is regarded as the common problems in current electrochemical glucose sensors. The catalytic behavior of Pd-Ni/SiNWs glucose sensor is characterized by cyclic voltammetry (CV) and fixed potential amperometry. The Pd-Ni/SiNWs electrode showed an excellent sensitivity of 190.72μAmM-lcm-2 with the detection limit (S/N ratio=3) of 2.88μM. And it also exhibits superior anti-interference properties to the species including ascorbic acid (AA), uric acid (UA) and 4-acetamidophenol (AP). All results demonstrated that this Pd-Ni/SiNWs electrode is a potential candidate for glucose detection. This sensor has superior stability, and it is easily fabricated and compatible with integrated circuits (ICs) and micro-fabrication process.
     At last, a prototype of direct ethanol fuel cell (DEFC) without noble metal catalyst was present in this work. The prototype consisted of Pd-Ni/SiNWs electrode as anode, and AgO/SiNWs electrode as cathode. With ethanol as the fuel, oxygen in the air as the oxidant,1M KOH medium as the electrolyte, the electrodes behaviors are characterized by electrochemical workstation. And the open circuit voltage (OCV) and short circuit current of this prototype were studied. Our work demonstrated that it is possible to develop non-Pt-based catalyst direct ethanol fuel cell.
引文
[1]白春礼,纳米科技及其发展前景[J],安徽科技,3(2002)4-7.
    [2]朱志祥,汪道新,纳米材料的研究现状和发展趋势[J],实用美容整形外科杂志,8(2001)200-202.
    [3]李甲林,唐元洪,李小祥,李晓川,硅纳米线的发光性能研究及其应用前景[J],人工晶体学报,第37卷第4期2008年8月.
    [4]G.F. Zheng,F. Patolsky,Y. Cui, W.U. Wang. C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J], Nat. Biotechnol. 23(2005) 1294-1300.
    [5]B.P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian and C.M. Lieber, Electrical Recording from Hearts with Flexible Nanowire Device Arrays [J], Nano Lett. 9(2009)914-918.
    [6]D. Whang, S. Jin, C.M. Lieber, Nanolithography Using Hierarchically Assembled Nanowire Masks [J], Nano Lett.3(2003) 951-954.
    [7]许海燕,孔桦,,扬子彬,纳米材料及其在生物医学工程中的应用[J],国外医学生物医学工程分册,1998 21(5)262-266.
    [8]W.I. Park, G. Zheng, X. Jiang, B. Tian and C.M. Lieber, Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties [J], Nano Lett.8(2008) 3004-3009.
    [9]陈扬文,唐元洪,裴立宅,硅纳米线制成的纳米传感器[J],传感器技术23(2004)1-3.
    [101赵春梅,纳米科技的发展和应用[J],内蒙古石油化工,30(2004)
    [11]Peng K.Q., Xu Y., Wu Y, Yan Y.T., Lee S.T., Zhu J., Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications[J], Small,2005 (1) 1062-1067.
    [12]Peng K.Q., Huang Z.P., Zhu J., Fabrication of large-Area silicon nanowire p-n junction[J], Adv. Func. Mater.,2004 (16) 73-76.
    [13]纳米技术available on:http://www.hudong.com/wiki/纳米技术
    [14]唐元洪,硅纳米线和硅纳米管[M],化学工业出版社,2006
    [15]白春礼,中国纳米科技研究的现状及思考[J],物理,31(2002)65-70.
    [16]翟华蟑,李建保,黄勇.纳米材料和纳米科技的进展、应用及产业化现状[J],材料工程,11(2001)43-48.
    [17]Peng K.Q.,Yang Y.J, Gao S.P., Zhu J., Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition[J], Adv. Func. Mater.,2003 (13) 127-132.
    [18]Peng K.Q.,Zhu J., Simultaneous gold deposition and formation of silicon nanowire arrays [J], J. Electroanal. Chem.558 (2003)35-39.
    [19]Peng K.Q., Hu J.J., Yan Y.J., Wu Y, Fang H., Xu Y, Lee S.T., Zhu J., Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles [J], Adv. Func. Mater.,2006 (16) 387-94.
    [20]Hofmann S., Ducati C., Neill R. J., Piscanec S., Ferrari A.C., Geng J.. Dunin-Borkowski R.E., Robertson J., Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition[J], J. Appl. Phys., 94(2003)6005-6013.
    [21]Wu Y., Cui Y., Huynh L., Barrelet C.J., Bell D.C., Lieber C.M., Controlled Growth and Structures of Molecular-scale Silicon Nanowires [J], Nano Lett., 4(2004)433-436.
    [22]YH.Tang Y H, Y.F.Zhang, C.S.Lee, et al., Large scale synthesis of silicon nanowires by laser ablation [J], Mater. Res. Soc. Symp. Proc.,526 (1998) 73-77.
    [23]N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires [J], Mater. Sci. Eng. R 60(2008)1-51.
    [24]D.P.Yu, C.S.Lee, I. Bello, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J], Solid State Commun.,105 (1998) 403-407.
    [25]X.Q. Chen, Simple and catalyst-free synthesis of silicon oxide nanowires and nanocoils [J], NANO:Brief Reports and Reviews,2 (2007) 91-95.
    [26]J. Zhang, B.L. Xu, Y. D. Yang, F.H. Jiang, J.P. Li, X.C. Wang, S.M. Wang, Catalyzed-assisted growth of well-aligned silicon oxide nanowires [J], J. NonCryst. Solids 352 (2006) 2859-2862
    [27]Zheng B., Wu Y, Yang P., Liu J., Synthesis of Ultra-Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys [J], Adv. Mater.,14 (2002) 122-124.
    [28]M.Q. He, J.B. Halpern, et al., Growth of GaN nanowires by direct reaction of Ga with NH3 [J], J. Crys. Growth 231 (2001) 357-365.
    [29]Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined [J], Reaction. Science,277(1997) 1287-1289.
    [30]周晓峰,基于纳米氧化锌的湿敏石英谐振传感器的研究,华东师范大学研究生硕士学位论文,2007
    [31]X. Zhang, L.S. Wang, G.Y. Zhou, Synthesis of well-aligend ZnO nanowires with put catalysts [J], Rev.adv.Mater.Sci.10(2005) 69-72.
    [32]X.H. Wang, J. Zhang, Z.Q. Zhu, Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance [J], Appl. Surf. Sci.252(2006) 2404-2411
    [33]X.F. Zhou, J. Zhang, T. Jiang, X.H. Wang, Z.Q. Zhu, Humidity detection by nanostructured ZnO:A wireless quartzcrystal microbalance investigation [J], Sens. Act.A 135 (2007) 209-214
    [34]K.W. Jiang, W.J. Liu, L.J. Wan, J. Zhang, Manipulation of ZnO nanostructures using dielectrophoretic effect [J], Sens. Act. B 134 (2008) 79-88.
    [35]Y.Zhang, K.Suenaga, C.Colliex, et al. Coaxial nanocable:silicon carbide and silicon oxide sheathed with boron nitride and carbon [J], Nature,281 (1998)973-975.
    [36]H.J.Dai, E.W.Wang, Y.Z.Lu, et al. Synthesis and characterization of carbide nanorods [J], Nature,375 (1995) 769-772.
    [37]Zhou X T, Wang N, Lai H L, Peng H Y, et al. β-SiC nanorods synthesized by hot filament chemical vapor deposition [J]. Appl. Phys. Lett.,74(1999) 3942-3944.
    [38]R. S. Wagner. W. C. Ellis, Vapor-Liquid-Solid Mechaninism of Single crystal [J], Appl. Phys. Lett.4(1964)89-91.
    [39]Bogaerts.W., Baets.R., Dumon.P., Wiaux V., Beckx S., Taillaert D., Luyssaert B., Van Campenhout J., Bienstman P., Van Thourhout D., Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J], J. Lightwave Technol.,23 (2005) 401-412.
    [40]Juhasz R., Elfstrom N., Linnros J., Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction [J], Nano lett., 5(2005) 275-280.
    [41]Ciucci S., Angelo F.D., iligentiA.D., Pellegrini B., Pennelli G., Piotto M., Silicon nanowires fabricated by means of underetching technique [J], Microelectron. Eng., 78-79(2005)338-342.
    [42]Moutanabbir O., Senz S., Zhang Z., Gosele U., Synthesis of isotopically controlled metal-catalyzed silicon nanowires [J], Nano Today,4(2009)393-398。
    [43]Hofmann S., Ducati C., Neill R. J., Piscanec S., Ferrari A.C., Geng J., Dunin-Borkowski R.E., Robertson J., Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition [J], J. Appl. Phys.. 94(2003)6005-6013.
    [44]Yasseri A. A., Sharma S., Kamins T. I., Li Z., Williams R.S., Growth and Use of Metal Nanocrystal Assemblies on High-Density Silicon Nanowires Formed by Chemical Vapor Deposition [J], Appl. Phys. A,82 (2006) 659-664.
    [45]Abed H., Charrier A., Dallaporta H., Safarov V., Jamgotchian H., Tonneau D., Directed Growth of Horizontal Silicon Nanowires by Laser Induced Decomposition of Silane [J], J Vac. Sci. Technol. B,24 (2006) 1248-1253.
    [46]冯孙齐,大鹏等,一维硅纳米线的生长机制及其量子限制效应的研究[J],中国科学,A辑,29(1999)921-926.
    [47]Pan Z.W., Dai Z.R., Xu L., Lee S.T., Wang Z.L., Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders [J], J. Phys. Chem. B,105 (2001) 2507-2514.
    [48]Yu D. P., Bai Z.G., Ding Y., Hang Q.L., Zhang H.Z., Wang J.J., Zou Y.H., Qian W., Xiong G.C., Zhou H.T., Feng S.Q., Nanoscale Silicon Wires Synthesized Using Simple Physical Evaporation [J], Appl. Phys. Lett.,72 (1998) 458-460.
    [49]Murakami K.. Makimura T., Fukata N., Laser and properties of nanostructured materials:Si nanostructures synthesized by laser ablation [J], Rev. Laser Eng., 33(2005)5-11.
    [50]Morales A.M., Lieber C.M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires [J], Science,279(1998)208-211.
    [51]Englander O., Christensen D., Lin L.W., Local synthesis of silicon nanowires and carbon nanotubes on microbridges [J], Appl. Phys. Lett.,82(2003)4797-4799.
    [52]Chau M., Englander O., Lin L., Silicon nanowire-based nanoactuator [J], IEEE, 2(2003) 879-880.
    [53]卢晓敏,汪雷,杨青,杨德仁,一维硅纳米材料的研究进展[J],材料导报,18(2004)72-75.
    [54]艾飞,刘岩,周燕飞,潘志雷,一维Si纳米材料的研究进展[J],.材料导报,18(2004)93-97.
    [551裴立宅,唐元洪,郭池,张勇,陈扬文,一维硅纳米材料的光学特性[J],人工晶体学报,35(2006)36-41.
    [56]Y. Huang, et al., Blocks Logic Gates and Computation from Assembled Nanowire Building [J], Science,294(2001)1313-1316.
    [57]C.C. Wu, C.I. Wu, J.C. Strum, A. Kahn, Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices [J], Appl. Phys. Lett.70(1997) 1348-1350.
    [58]Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures [J], Nature 430(2004) 61-65.
    [59]X. H. Sun, et al., Ag Nanostructures on a Silicon Nanowire Template:Preparation and X-ray Absorption Fine Structure Study at the Si K-edge and Ag L3,2-edge [J], Chem. Mater.14(2002) 2519-2526
    [60]S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores [J], Adv. Mater.19(2005) 1595-1598.
    [61]X. H. Sun, et al., Surface reactivity of Si nanowires [J]. Journal of applied physics 89(2001)6396-6399.
    [62]W.W. Wu, et al., Controlled large strain of Ni silicide/Si/Ni silicide nanowire heterostructures and their electron transport properties [J], Appl. Phys. Let. 97(2010)203110(1-3)
    [63]M.W. Shao, Y.Y. Shan, N.B. Wong, S.T. Lee, Silicon Nanowire Sensors for Bioanalytical Applications:Glucose and Hydrogen Peroxide Detection [J], Adv. Funct. Matter.15(2005) 1478-1482.
    [64]W.W. Chen, H. Yao, C.H. Tzang, J.J. Zhu, M.S. Yang, S.T. Lee, Silicon Nanowires for High-Sensitivity Glucose Detection [J], Appl. Phys. Lett.88(2006) 213104(1-3).
    [65]M.G. Zhu, J. Zhang, Z.L. Wang, L.J. Wan, X.J. Chen, Effect of interfacial layer and series resistance on electrical characteristics for the PtSi/p-SiNWs Schottky diode [J],43(2010)515-520.
    [66]Y. Cui, et al., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species [J], science 293 (2001) 1289-1292.
    [67]Hahm J.I., Lieber C.M., Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J], Nano Lett.,4 (2004) 51-54.
    [68]Li Z.,Chen Y., Li X., Kamins T.I., Nauka K., Williams R.S., Sequence specific label free DNA sensors based on silicon nanowires [J], Nano Lett.,2004 (4) 245-247.
    [69]Zhou X.T.,Hu J.Q.,Li C.P., Ma D.D.D, Lee C.S., Lee S.T., Silicon nanowires as chemical sensors [J], Chem. Phys. Lett.,369 (2003) 220-224.
    [70]B.R. Tao, J. Zhang, Capacitive humidity sensors based on Ni/SiNWs nanocomposites [J], Sens. Actuators B 136 (2009) 144-150.
    [71]Elibol O.H., Morisette D.,Akin D., Denton J.P., Bashir R., Integrated nanoscale silicon sensors using top-down fabrication [J], Appl. Phys. Lett.,2003 (83) 4613-4615.
    [72]Tufte, O.N., Chapman, P.W.&Long D, Silicon diffused-element piezoresistive diaphragms [J], J.Appl.Phys.33 (1962)3322-3327.
    [73]Tortonese. M.. Barrett. R.C.& Quate.C.F., Atomic resolution with an atomic force microscope using piezoresistive detection [J], Appl.Phys.Lett.62 (1992) 834-836.
    [74]Wee, K.W. et al., Novel electrical detection of label-free disease marker proteins using Piezoresistive self-sensing micro-cantilevers [J], Biosens.Bioelectron.20 (2005)1932-1938.
    [75]R.R. He, P.D. Yang, Giant piezoresistance effect in silicon nanowires [J], Nature Nanotechnology 1(2006) 42-46.
    [76]P.D. Yang, Chemistry and physics of silicon nanowire [J], Dalton Trans.33(2008) 4387-4391.
    [77]B.R. Tao, J. Zhang, S.C. Hui, L.J. Wan, An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode [J], Sens. Actuators, B 142 (2009) 298-303.
    [78]B.R. Tao, J. Zhang, S.C. Hui, X.J. Chen, L.J. Wan. An electrochemical methanol sensor based on a Pd-Ni/SiNWs catalytic electrode [J], Electrochim. Acta 55 (2010)5019-5023.
    [79]H.L. Li,J. Zhang, B.R. Tao,L.J. Wan, W.L. Gong, Investigation of capacitive humidity sensing behavior of silicon nanowires [J], Physica. E 41 (2009) 600-604.
    [1]Peng K.Q., Zhang M.L., Lu A.J., Wong N.B., Zhang R.Q., Lee S.T., Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching [J]. Appl. Phys. Lett.,2007(90) 163123.
    [2]Peng K.Q., Fang H., Hu J.J., Wu Y, Zhu J., Yan Y.J., Lee S., Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution [J]. Chem. Eur. J.,2006 (12) 7942-7947.
    [3]Peng K.Q., Hu J.J., Yan Y.J., Wu Y. Fang H., Xu Y.,Lee S.T.. Zhu J., Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles [J]. Adv. Funct. Mater.,2005 (16) 387-394.
    [4]Peng K.Q., Xu Y, Wu Y., Yan Y.J., Lee S.T., Zhu J., Aligned single-crystalline Si nanowire arrays for photovoltaic applications [J]. Small,2005 (1) 1062-1067.
    [5]Peng K.Q, Zhu J., Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution [J]. Electrochim. Acta.,2004 (49) 2563-2568.
    [6]Peng K.Q., Huang Z.P., Zhu J., Fabrication of large-area silicon nanowire p-n junction diode arrays [J]. Adv. Mater.,2004 (16) 73-76.
    [7]Peng K.Q., Zhu J., Simultaneous gold deposition and formation of silicon nanowire arrays [J]. J. Electroanal. Chem.,2003 (558) 35-39.
    [8]Peng K.Q., Yan Y.J., Gao S.P., Zhu J., Dendrite-assisted growth of silicon nanowires in electroless metal deposition [J]. Adv. Funct. Mater.,2003 (13) 127-132.
    [9]Peng K.Q., Yan Y.J., Gao S.P.. Zhu J., Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry [J]. Adv. Mater.,2002 (14) 1164-1167.
    [10]Peng K.Q., Wang X., Lee S.T., Silicon nanowire array photoelectrochemical solar cells [J]. Appl. Phys. Lett.,2008 (92) 163103.
    [11]万丽娟,硅纳米线阵列的制备及其在生化传感器中的应用,博士学位论文,2010
    [12]Chyan O.M.R., Chen J.J., Chien H.Y, Sees J.A., Hall L., A new potentiometric sensor for the detection of trace metallic contaminants in hydrofluoric acid [J]. J. Electrochem.Soc.,1996 (143) L235-L237.
    [13]A. Gutes, I. Laboriante, C. Carraro, R. Maboudian, Silver Nanostructures on Silicon Based on Galvanic Displacement Process, J. Phys. Chem. C,2009 (113) 16939-16944.
    [14]Smith R.L., Collins S.D., Porous Silicon Formation Mechanisms [J]. J. Appl. Phys.,1992(71) 1-22.
    [15]Schade M., Geyer N., Fuhrmann B., et al. High-resolution analytical electron microscopy of catalytically etched silicon Nanowires[J]. Appl. Phys. A.,2009 (95) 325-327.
    [16]Souha H.. Viale D., Weber G.. Gillot B., Effects of a silicon oxide layer on reactivity of silicon with copper(Ⅰ) chloride [J]. J. Mater. Sci.1989 (24) 1767-1771.
    [17]李兴,超大规模集成电路技术基础[M],电子工业出版社,1999.
    [18]L.J. Wan, W.L. Gong, K.W. Jiang, H.L. Li, B.R. Tao, J. Zhang, Preparation and surface modification of silicon nanowires under normal conditions [J], Appl. Surf. Sci.254 (2008).
    [19]龚文莉,硅纳米线的制备及其在传感应用方面的研究,硕士学位论文,2009
    [1]唐元洪,硅纳米线及硅纳米管,化学工业出版社,2007
    [2]龚文莉,硅纳米线的制备及其在传感应用方面的研究,硕士学位论文,2009
    [3]万丽娟,硅纳米线阵列的制备及其在生化传感器中的应用,博士学位论文,2010
    [4]S.C. Hui, J. Zhang, X.J. Chen, H.H. Xu, D.F. Ma, Y.L. Liu, B.R. Tao, Study of an amperometric glucose sensor based on Pd-Ni/SiNWs electrode [J], Sens. Actuators, B doi:10.1016/j.snb.2011.01.015
    [5]B.R. Tao. J. Zhang, S.C. Hui. L.J. Wan. An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode [J]. Sens. Actuators, B 142 (2009) 298-303.
    [6]B.R. Tao, J. Zhang, S.C. Hui, X.J. Chen, L.J. Wan, An electrochemical methanol sensor based on a Pd-Ni/SiNWs catalytic electrode [J], Electrochim. Acta 55 (2010)5019-5023.
    [7]B.R. Tao, J. Zhang, F.J. Miao, S.C. Hui, L.J. Wan, Preparation and Electrochemistry of NiO/SiNW Nanocomposite Electrodes for Electrochemical Capacitors [J], Electrochim. Acta 55(2010) 5258-5262.
    [8]B.R. Tao, J. Zhang, F.J. Miao, H.L. Li, L.J. Wan,Y. T. Wang, Capacitive humidity sensors based on Ni/SiNWs nanocomposites [J], Sens. Actuators, B 136(2009)144-150.
    [9]F. Yang, S.C. Kung, M. Cheng, J.C. Hemminger, R.M. Penner, Smaller is Faster and More Sensitive:The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires [J], ACS nano 9(2010) 5233-5244.
    [10]C.K.Kim, J.H.Lee, S.M. Choi, et al., Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature [J], Sens. Actuators, B 77 (2001) 455-462.
    [11]Fan Yang, David K. Taggart, Reginald M. Penner, Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture [J], Nano lett.9 (2009)2177-2182
    [12]M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor [J], Sens. Actuators, B 115 (2006) 128-133.
    [13]K.Q. Peng, Y.J. Yang, S.P. Gao, J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry [J], Adv. Mater.14 (2002) 1164-1167.
    [14]K.Q. Peng, Y.Wu, H. Fang, X.Y. Zhong, Y. Xu, J. Zhu. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays [J], Angew. Chem. Int. Ed.44(2005) 2737-2742.
    [15]K.Q. Peng. H. Fang, J.J. Hu, Y.Wu. J. Zhu. Y.J. Yan. S. Lee. Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution [J]. Chem. A Eur. J.12 (2006) 7942-7947.
    [16]L.J.Wan,W.L.Gong, K.W. Jiang,H.L. Li, B.R. Tao, J. Zhang, Preparation and surface modification of silicon nanowires under normal conditions [J], Appl. Surf. Sci.254 (2008) 4899-4907.
    [17]K.S. Kumar, P. Haridoss, S.K. Seshadri, Synthesis and characterization of elec-trodeposited Ni-Pd alloy electrodes formethanol oxidation [J], Surf. Coat. Technol.202 (2008) 1764-1770.
    [1]焦克芳,袁越,李松,21世纪药物化学展望[J],外医学药学分册,21(6)(1994)321-325
    [2]王克夷,怍为信息分子的糖类[J],化学进展,8(2)(1996)98-108
    [3]焦克芳,陈望忠,曲红,糖类与生命科学研究进展[J],大学化学,14(1999)
    [4](a) S. Ernst, J. Heitbaum, C. H. Hamann, The electrooxidation of glucose in phosphate buffer solutions Part I. Reactivity and kinetics below 350 mV/RHE [J]. J. Electroanal. Chem.100 (1979) 173-176 (b) S. Ernst, J. Heitbaum, C. H. Hamann. B. Bunsenges. The electrooxidation of glucose in phosphate buffer solutions:kinetics and reaction mechanism [J], Phys. Chem.84(1980)50-55
    [5]Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part I. Adsorption and oxidation on platinum [J], J. Electroanal.Chem.196 (1985) 105-125
    [6](a) M.F.L. De Medel, H.A Videla, A. Arvia, Comparative study of the electrochemical behavior of glucose and other compounds of biological interest [J], J. Bioelectrochem. Bioenerg.9 (1982) 469-471 (b) M.F.L. De Medel, H.A. Videla, A. Arvia, The electrooxidation of glucose on platinum electrodes in buffered media [J], J. Bioelectrochem. Bioenerg.10 (1983) 239-243
    [7]L.H. Essis Yei, B. Beden, C.Lamy,Electrocatalytic oxidation of glucose at platinum in alkaline medium:on the role of temperature [J]. J. Electroanal. Chem. 246(1988)349-362
    [8]L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media [J], J. Electroanal. Chem. 262(1989)167-182
    [9]U. Gebhardt, G. Luft, G.J. Richter, F. Sturm, Development of an implantable electrocatalytic glucose sensor [J], Bioelectrochem. Bioenerg.5(1978) 607-624
    [10]Y. Shimizu, K. Morita, Microhole array electrode:as a glucose Sensor[J], Anal. Chem.62 (1990) 1498-1501.
    [11]M.J. Muehlbauer, E.J. Guilbeau, B.C.Towe, Model for a Thermoelectric Enzyme Glucose Sensor[J], Anal. Chem.61 (1989) 77-83.
    [12]H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song, M. Madou, Carbon post-microarrays for glucose sensors[J], Biosens. Bioelectron.23 (2008) 1637-1644.
    [13]T.G. Satheesh. Babu, T. Ramachandran, Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model [J], Electrochim, Acta 55 (2010) 1612-1618.
    [14]X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, J.Y. Mo, A sensitive non-enzymatic glucose sensor in alkaline medium with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode[J], Anal. Biochem.363 (2007) 143-150.
    [15]J.H. Yuan, K. Wang, X.H Xia, Highly ordered platinum-Nanotubule Array for Amperometric Glucose sensing[J], Adv. Func. Mater.15 (2005) 803-809.
    [16]R. Wilson, A.P.F. Turner, Glucose oxidase:An ideal enzyme [J], Biosens. Bioelectron.7 (1992) 165-185.
    [17]J.P. Wang, D.F. Thomas, A.C. Chen, Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks [J], Anal. Chem.80 (2008) 997-1004.
    [18]R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y. Kim, Y.S. Kang, CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor [J], Chem. Mater.19(2007)4174-4180.
    [19]S.B. Aoun, Z. Dursun, T. Koga, G.S. Bang, T. Sotomura, I. Taniguchi,Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution[J], J. Electroanal. Chem.567 (2004) 175-183.
    [20]B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of D-glucose:Identification of reactive intermedium tes and reaction products [J], Electrochim. Acta 41 (1996) 701-709.
    [21]H.F. Cui, J.S. Ye, W.D. Zhang, C.M. Li, J.H.T. Luong, F.S. Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites[J], Anal. Chim. Acta 594 (2007) 175-183.
    [22]S. Hrapovic, Y. Lui, K.B. Male, J.H.T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J], Anal. Chem. 76(2004)1083-1088.
    [23]B. Fang. A.X. Gu, G.F. Wang, W. Wang, Y.H. Feng, C.H. Zhang, X.J. Zhang, Silver Oxide Nanowalls Grown on Cu Substrate as an Enzymeless Glucose Sensor[J],ACS Appl.1 (2009)2829-2834.
    [24]L.M. Lu, L. Zhang, F.L. Qu, H.X. Lu, X.B. Zhang, Z.S. Wu, S.Y. Huan, Q.A. Wang, G.L. Shen, R.Q. Yu, A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose:Enhancing sensitivity through a nanowire array strategy [J], Biosens. Bioelectron.25 (2009) 218-223.
    [25]吴国权,李忠彦,刘仲明,镀金和多壁碳纳米管修饰的金电极葡萄糖传感器,中国组织工程研究与临床康复[J],第13卷第25期4849-4852
    [26]M.W. Shao, Y.Y. Shan, N.B. Wong, S.T. Lee, Silicon Nanowire Sensors for Bioanalytical Applications:Glucose and Hydrogen Peroxide Detection [J]. Adv. Funct. Matter.15(2005) 1478-1482.
    [27]W.W. Chen, H. Yao, C.H. Tzang, J.J. Zhu, M.S. Yang, S.T. Lee, Silicon Nanowires for High-Sensitivity Glucose Detection [J]. Appl. Phys. Lett.88(2006) 213104:1-3
    [28]M.A.I. Molla, M. Sarker, R. Islam, A.K.M. Fazlekibria, Oxidation-reduction behaviors, electrolysis characteristics and efficiency of Pd-50at.%Ni electrode in alkaline electrolyte [J], J. Bangladesh Acad. Sci.33 (2009) 1-13.
    [29]M. Sarker, M.A.I. Molia. R. Islam. S. Ahmed, A.K.M.F. Kibriac Investigations on the Redox Behavior and the Electrolysis Characteristics of Pd-20at.%Ni Electrode in 30wt.% KOH Electrolyte [J], Bangladesh J. Sci. Ind. Res.43 (2008) 13-28.
    [30]F.J. Miao, B.R. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, P.K. Chu, Amperometric glucose sensor based on 3D ordered nickel-palladium nanomaterial supported by silicon MCP array [J], Sens. Actuators, B 141 (2009) 338-342.
    [31]M.G. Krzysztof, K.A. Czerwinski, Study of hydrogen electrosorption in Pd-Ni alloys by the quartz crystal microbalance [J], J. Solid State Electrochem.7 (2002) 43-48.
    [32]M.H. Martin, A. Lasia, Study of the hydrogen absorption in Pd in alkaline solution [J], Electrochim. Acta 53 (2008) 6317-6322.
    [33]P.H. Hindle, S. Nigro, M. Asmussen, A.C. Chen, Amperometric glucose sensor based on platinum-iridium nanomaterials[J], Electrochem. Commun.10 (2008) 1438-1441.
    [34]C.J. Tsai, P.L. Chung, K.H. Yu, Stress evolution of Ni/Pd/Si reaction system under isochronal annealing [J], Thin Solid Films 365 (2000) 72-76.
    [35]葡萄糖available on:http://www.hudong.com/wiki/葡萄糖.
    [36]D. Feng, F. Wang, Z.L. Chen, Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film [J], Sens. Actuators B 138(2009)539-544.
    [1]Amphlett JC, Peppley BA, Halliop E, Sadiq A. The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell [J]. J Power Sources 96 (2001) 204-213.
    [2]Barragan VM, Heinzel A. Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell [J]. J Power Sources 104 (2002)66-72.
    [3]Rice C, Ha S, Masel RI, et al. Direct formic acid fuel cells[J]. J. Power Sources, 111(2002)83-89.
    [4]T. Kobayashi, J. Otomo, C.J. Wen, et al., Direct alcohol fuel cell-relation between the cell performance and the adsorption of intermediate originating in the catalyst-fuel combinations[J], J. Power Sources,124(2003)34-39.
    [5]邵玉艳,尹鸽平,高云智,史鹏飞.直接二甲醚燃料电池[J],化学通报67(2004)w78
    [6]Y.C. Zhao, X.L. Yang, J.N. Tian, F.Y. Wang, L. Zhan, Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media[J], Int. J. Hydrogen Energy 35 (2010) 3249-3257.
    [7]R.N. Singh, A. Singh, Anindita, Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part Ⅱ:Methanol electrooxidation in 1 M KOH [J],Int. J. Hydrogen Energy 34 (2009) 2052-2057.
    [8]S. C. Kelley, G. A. Deluga, and W. H. Smyrl, A Miniature Methanol/Air Polymer Electrolyte Fuel Cell [J], Electrochem. Solid-State Lett.,9(2000)407-409.
    [9]S. C. Kelley, G. A. Deluga, W. H. Smyrl, Miniature Fuel Cells Fabricated on Substrates [J], AlChE J.48(2002)1071-1082.
    [10]H. Chang, J.R. Kim, J.H. Cho, H.K. Kim, K.H. Choi, Materials and processes for small fuel cells [J], Solid State Ionics 148 (2002) 601-606.
    [11]C.G. Xie, J. Bostaph, J. Pavio, Development of a 2W direct methanol fuel cell power source [J], J. Power Sources 136 (2004) 55-65
    [12]T. J. Yen, N. Fang, and X. Zhang, A micro methanol fuel cell operating at near room temperature [J], Appl. Phys.lett.83(2003) 4056-4058.
    [13]G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zhang, Development and characterization of a silicon-based micro direct methanol fuel cell [J], Electrochim. Acta 49 (2004) 821-828.
    [14]S. Aravamudhan, A.R.A. Rahman, S. Bhansali, Porous Silicon Based Orientation Independent, Self-Priming Micro Direct Ethanol Fuel Cell [J],Sens. Actuators. A 123-124(2005)497-504
    [15]X. Ren, M. S. Wilson, S. Gottesfeld, High Performance Direct Methanol Polymer Electrolyte Fuel Cells [J], J. Electrochem. Soc.,143(1996) L12-L15.
    [16]D.H. Jung, C.H. Lee, C.S. Kim, D. R. Shin, Performance of A Direct Methanol Polymer Electrolyte Fuel Cell [J], J. Power Sources,71(1998)169-173.
    [17]S. Slade. S. A. Campbell, T. R. Ralph, F. C. Walsh. Ionic Conductivity of An Extruded Nation 1100 EW Series of Membranes [J], J. Electrochem. Soc.149 (2002)A 1556-A1564.
    [18]J. Ling, O. Savadogo, Comparison of Methanol Crossover Among Four Types of Nafion Membranes [J], J. Electrochem. Soc.,151(2004) A1604-A1610.
    [19]J. G. Liu, T. S. Zhao, Z. X. Liang, R. Chen, Effect of Membrane Thickness on The Performance and Efficiency of Passive Direct Methanol Fuel Cells [J], J.Power Sources,153(2006)61-67.
    [20]J. W. Choi, W. Sung, A Planar and Membraneless Microscale Fuel Cell Using Nickel and Silver as Catalysts [C], The 13th International Conference on Solid-State Sensors, Actuators, and Microsystems, (2005)1852-1855.
    [21]S. M. Haile. Fuel Cell Materials and Components [J]. Acta Mater., 51(2003),5981-6000.
    [22]G.Q. Lu, C.Y. Wang, Electrochemical and Flow Characterization of A Direct Methanol Fuel Cell [J], J. Power Sources,134(2004)33-40.
    [23]P. Argyropoulos, K. Scott, W. M. Taama, Carbon Dioxide Evolution Patterns In Direct Methanol Fuel Cells [J], Electrochim. Acta,44(1999)3575-3584.
    [24]D.S. Meng, T. Cubaud, C.M. Ho, C.J. Kim, A Membrane Breather for Micro Fuel Cell with High Concentration Methanol [C], in Technical Digest of Solid-State Sensor, Actuator and Microsystems Workshop, (2004) 141-144.
    [25]K. Tuber, D. Pocza, C. Hebling, Visualization of Water Buildup in the Cathode of A Transparent PEM Fuel Cell [J], J. Power Sources,124(2003)403-414.
    [26]Camara GA, de Lima RB, Iwasita T. Catalysis of ethanol electrooxidation by PtRu:the influence of catalyst composition [J], Electrochem. Commun.6 (2004) 812-815.
    [27]Liu J, Ye J, Xu C, Jiang SP, Tong Y. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti [J], Electrochem. Commun.9(2007)2334-2339.
    [28]Xu C, Shen PK, Liu Y. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J. Power Sources,164(2007) 527-531.
    [29]Camara GA, Iwasita T. Parallel pathways of ethanol oxidation:the effect of ethanol concentration [J], J. Electroanal. Chem.578 (2005)315-321.
    [30]Lamy C. Rousseau S. Belgsir EM. Coutanceau C, Leger J-M.Recent progress in the direct ethanol fuel cell:development of new platinum-tin electrocatalysts [J], Electrochim. Acta,49 (2004) 3901-3908.
    [31]Gupta SS, Datta J. A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits [J], J. Electroanal. Chem.,594 (2006) 65-72.
    [32]Tarasevich MR, Karichev ZR, Bogdanovskaya VA, Lubnin EN,Kapustin AV. Kinetics of ethanol electrooxidation at RuNi catalysts [J], Electrochem. Commun.7(2005)141-146.
    [33]Wang Z-B, Yin G-P, Lin Y-G, Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell [J], J. Power Sources 170 (2007)242-250.
    [34]F. Vigier, C. Coutanceau, F.Hahn, E.M. Belgsir, C. Lamy, On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts:electrochemical and in situ IR reflectance spectroscopy studies [J], J. Electroanal. Chem.563(2004) 81-89.
    [35]J. Mann, N. Yao, A.B. Bocarsly, Characterization and Analysis of New Catalysts for a Direct Ethanol Fuel Cell [J], Langmuir 22 (2006) 10432-10436.
    [36]Y. Paik, S.S. Kim, O.H. Han, Spatial distribution of reaction products in direct ethanol fuel cell [J], Electrochem. Commun.11 (2009) 302-304.
    [37]S.Q. Song, W.J. Zhou, Z.H. Zhou, L.H. Jiang, G.Q. Sun, Q.Xin, V. Leontidis, S.Kontou, P. Tsiakaras, Direct ethanol PEM fuel cells:The case of platinum based anodes [J], Int. J. Hydrogen Energy 30 (2005) 995-1001.
    [38]H.Q. Li, G.Q. Sun, L. Cao, L.H. Jiang, Q. Xin, Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation [J], Electrochim. Acta 52 (2007)6622-6629.
    [39]E.H. Yu, K. Scott, Development of direct methanol alkaline fuel cells using anion exchange membranes [J], J. Power Sources 137 (2004) 248-256.
    [40]K. Matsuoka, Y. Iriyama, T. Abe. M. Matsuoka, Z. Ogumi, Alkaline direct alcohol fuel cells using an anion exchange membrane [J], J. Power Sources 150(2005)27-31.
    [41]P.K. Shen. C.W. Xu, Alcohol oxidation on nanocrystalline oxide Pd/C promoted Electrocatalysts [J], Electrochem. Commun.8 (2006) 184-188.
    [42]C.W. Xu,Z.Q. Tian, P.K. Shen, S.P. Jiang, Oxide (CeO2. NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media [J], Electrochim. Acta 53 (2008) 2610-2618.
    [43]V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp,M. Zhiani, Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol)[J], J. Power Sources 190 (2009) 241-251.
    [44]Z.X. Liang, T.S. Zhao, J.B. Xu, Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide[J], Electrochim. Acta 54 (2009) 2203-2208.
    [45]F.P. Hu, C.L. Chen, Z.Y. Wang, G.Y. Wei, Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst [J], Electrochim. Acta 52 (2006) 1087-1091.
    [46]B.R. Tao, J. Zhang, S.C. Hui, L.J. Wan, An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode [J]. Sens. Actuators, B 142 (2009) 298-303.
    [47]S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells [J], J. Power Sources 195 (2010)1001-1006.
    [48]W. Sung, A methanol and hydrogen peroxide fuel cell using non-noble catalysts in alkaline solution [D], B.S. Sungkyunkwan University, (2003) 31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700