动脉粥样硬化疾病分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依折麦布是一种选择性胆固醇吸收抑制剂,其作用机制主要是阻断胆固醇的外源性吸收途径。依折麦布与辛伐他汀联合应用则可分别从胆固醇的内、外源性途径对血脂水平进行调节以达到最佳调脂效果,大量的基础和临床试验研究的发表证明了医学界对依折麦布药物降脂疗效的关注,本文即对目前已发表的,研究依折麦布联合辛伐他汀降脂疗效和安全性的随机对照试验进行荟萃分析。
     系统检索PubMed.Cochrane Libraty、Embase三个电子数据库,并通过阅读相关综述及文章的参考文献进一步获取信息,两个作者独立阅读所有文献,按入选标准纳入试验,对目前已发表的,研究依折麦布联合辛伐他汀与辛伐他汀单独使用的疗效比较的随机对照试验进行荟萃分析。用随机效应模型计算标准化平均差(standardized mean differences,SMD)及其95%可信区间(CI),用以描述血脂(LDL-C、HDL-C、TC、TG)的净差值。
     最终7个干预试验被纳入荟萃分析,研究对象共计4563人。荟萃分析显示,依折麦布联合辛伐他汀与单独口服辛伐他汀相比,血浆LDL-C水平下降SMD-15.12%,(95%CI:-19.50,-10.73,P<0.0001)具有显著性统计学差异,相似的统计学差异也见于血浆HDL-C(1.89%,95%CI:1.21,2.57,P<0.0001).TC(-13.5%, 95%CI:-17.32,-9.68,P<0.0001)、TG(-3.09%,95%CI:-4.40,.1.78,P<0.0001)。
     经短期随即对照试验荟萃分析,依折麦布联合辛伐他汀相较于辛伐他汀单独应用能更有效的降低血脂水平,但是否能够降低临床终点事件发生率,尚需要更多的长期干预试验提供证据。
     研究背景
     在动脉粥样硬化发病机制中,单核细胞中的胆固醇和脂蛋白的水平要比血浆中的脂蛋白和胆固醇的水平重要,单核细胞中的胆固醇的水平直接影响泡沫细胞的形成,粥样斑块的发生发展。C型1类尼曼-匹克(Niemann-pick type C1, NPC1)是细胞晚期内体(late endosome, LE)中含有一个固醇感受域的跨膜糖蛋白,参与内源性胆固醇转运,主要存在于中枢神经系统、肝脏和单核细胞中,它能监测细胞胆固醇水平的变化,可能通过改变小泡转运方式或直接参与脂质跨膜转运来调节细胞脂质平衡。
     研究目的
     NPC1等位基因与冠心病发生是否有关联,并分析此基因因素在冠心病发生中的作用强度,以及与吸烟相互作用在冠心病发生中的作用。
     对象和方法
     本研究选择冠心病病例和社区对照人群分别873和864人,采用聚合酶链反应—限制性片段长度多态性(PCR-RFLP)法研究NPC1基因的多态性位点与冠心病遗传易感因素的关系。
     研究结果
     结果显示His215Arg位点与冠心病存在易感相关(OR 0.647,95% C10.428 to 0.980,P=0.039),并呈隐性遗传模式,与携带GT+TT基因型相比,GG的患者发生冠心病的危险性明显降低且具有统计学意义。而且在吸烟人群中,携带GG基因型与携带GT+TT基因型相比患冠心病的危险性低(P=0.0001)。
     结论
     以上的研究结果显示,在基因水平上,NPC1基因多态性与单核细胞脂质蓄积有关,且与吸烟相互作用在冠心病发生发展过程中起到一定的作用。
Objectives To study the evidence on the efficacy and safety of ezetimibe co-administrated with simvatatin compared to simvatatin monotherapy.
     Design Meta-analysis of randomized controlled trials (RCTs).
     Methods Three electronic bibliographic databases covering the biomedical, scientific and grey literature were searched from inception and supplemented by contact with experts in the field. Two reviewers independently determined the eligibility of RCTs.
     Results A meta-analysis of seven randomized, double-blind, controlled trials (4563 people) showed that ezetimibe co-administrated with simvatatin was associated with a statistically significant mean reduction in LDL cholesterol (from baseline endpoint) of-15.12%, (95% CI:-19.50 to-10.73, P<0.0001) compared with simvatatin monotherapy. Significant changes were also found in HDL cholesterol (1.89%,95%CI:1.21 to 2.57, P<0.0001), total cholesterol (-13.5%,95%CI:-17.32 to-9.68, P<0.0001) and triglyceride levels (-3.09%,95%CI:-4.40 to-1.78, P<0.0001).
     Conclusions Ezetimibe co-administrated with simvatatin is effective in reducing the lipid and lipoprotein levels relative to simvatatin monotherapy.
     BACKGROUND:The protein of Niemann-pick type C1 gene (NPCl) is known to facilitate the egress of cholesterol and other lipids from late endosomes and lysosomes to other cellular compartments and plays critical roles in vascular injure, which is involved in the progression of coronary heart disease. This study aims to investigate whether the single-nucleotide polymorphisms (SNPs) of NPC1 are associated with risk of coronary heart disease (CHD) and to investigate the interaction between NPCl with smoking on CHD.
     METHODS:We performed a case-control study, including 873 patients with coronary heart disease (CHD) and 864 subjects without CHD as control. Polymorphisms of NPC1 gene were genotyped by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP).
     RESULTS:Patients carrying the Arg215Arg had a decrease risk of CHD as compared with those carrying genotypes His215His and His215Arg in Chinese population (odds ratios 0.647,95%CI 0.428 to 0.980, P=0.039). Moreover in smokers, carriers of NPC1 His215His and His215Arg had significantly increased age-and sex-adjusted CHD.
     CONCLUSIONS:These findings may provide evidence that in gene status NPC1 contributes to lipid accumulation in human macrophages and interacts with smoking environment factor in the pathogenesis of CHD.
引文
[1]Isles, C. G.,Paterson, J. R., Identifying patients at risk for coronary heart disease:implications from trials of lipid-lowering drug therapy, Qjm 2000,93:567-574.
    [2]Wang, J., Chu, B. B., Ge, L., et al., Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption, J Lipid Res 2009,50:1653-1662.
    [3]Temel, R. E., Brown, J. M., Ma, Y, et al., Diosgenin stimulation of fecal cholesterol excretion in mice is not NPC1L1 dependent, J Lipid Res 2009,50:915-923.
    [4]Tang, W., Ma, Y., Jia, L., et al., Genetic inactivation of NPC1L1 protects against sitosterolemia in mice lacking ABCG5/ABCG8, J Lipid Res 2009,50:293-300.
    [5]Pramflak, C., Jiang, Z. Y, Cai, Q., et al., HNFlalpha and SREBP2 are important regulators of NPC1L1 in human liver, J Lipid Res 2009.
    [6]Garcia-Calvo, M., Lisnock, J., Bull, H. G., et al., The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1), Proc Natl Acad Sci U S A 2005,102:8132-8137.
    [7]Weinglass, A. B., Kohler, M., Schulte, U., et al., Extracellular loop C of NPC1L1 is important for binding to ezetimibe, Proc Natl Acad Sci U S A 2008,105:11140-11145.
    [8]Valasek, M. A., Repa, J. J., Quan, G., et al., Inhibiting intestinal NPC1L1 activity prevents diet-induced increase in biliary cholesterol in Golden Syrian hamsters, Am J Physiol Gastrointest Liver Physiol 2008,295:G813-822.
    [9]Davis, H. R., Jr., Hoos, L. M., Tetzloff, G., et al., Deficiency of Niemann-Pick C1 Like 1 prevents atherosclerosis in ApoE-/-mice, Arterioscler Thromb Vasc Biol 2007,27:841-849.
    [10]Taylor, A. J., Villines, T. C., Stanek, E. J., et al., Extended-release niacin or ezetimibe and carotid intima-media thickness, N Engl J Med 2009,361:2113-2122.
    [11]Robinson, J. G., Ballantyne, C. M., Grundy, S. M., et al., Lipid-altering efficacy and safety of ezetimibe/simvastatin versus atorvastatin in patients with hypercholesterolemia and the metabolic syndrome (from the VYMET study), Am J Cardiol 2009,103:1694-1702.
    [12]Polis, A. B., Abate, N., Catapano, A. L., et al., Low-density lipoprotein cholesterol reduction and goal achievement with ezetimibe/simvastatin versus atorvastatin or rosuvastatin in patients with diabetes, metabolic syndrome, or neither disease, stratified by National Cholesterol Education Program risk category, Metab Syndr Relat Disord 2009,7:601-610.
    [13]Pitsavos, C., Skoumas, I., Tousoulis, D., et al., The impact of ezetimibe and high-dose of statin treatment on LDL levels in patients with heterozygous familial hypercholesterolemia, Int J Cardiol 2009,134:280-281.
    [14]Hefnawy, M., Al-Omar, M.,Julkhuf, S., Rapid and sensitive simultaneous determination of ezetimibe and simvastatin from their combination drug products by monolithic silica high-performance liquid chromatographic column, J Pharm Biomed Anal 2009,50:527-534.
    [15]Gounari, P., Tousoulis, D., Antoniades, C., et al., Rosuvastatin but not ezetimibe improves endothelial function in patients with heart failure, by mechanisms independent of lipid lowering, Int J Cardiol 2009.
    [16]Florentin, M., Liberopoulos, E. N., Tellis, C. C., et al., Effects of Rimonabant, as Monotherapy and in Combination With Fenofibrate or Ezetimibe, on Plasma Adipokine Levels:A Pilot Study, Angiology 2009.
    [17]Florentin, M., Kostapanos, M. S., Nakou, E. S., et al., Efficacy and safety of ezetimibe plus orlistat or rimonabant in statin-intolerant nondiabetic overweight/obese patients with dyslipidemia, J Cardiovasc Pharmacol Ther 2009,14:274-282.
    [18]Abel, T., Feher, J., Dinya, E.., et al., [Efficacy and safety of ezetimibe/simvastatin combination therapy in patients with type 2 diabetes and nonalcoholic fatty liver disease], Orv Hetil 2009,150: 989-993.
    [19]Reckless, J. P., Henry, P., Pomykaj, T., et al., Lipid-altering efficacy of ezetimibe/simvastatin 10/40 mg compared with doubling the statin dose in patients admitted to the hospital for a recent coronary event:the INFORCE study, Int J Clin Pract 2008,62:539-554.
    [20]Guyton, J. R., Brown, B. G., Fazio, S., et al., Lipid-altering efficacy and safety of ezetimibe/simvastatin coadministered with extended-release niacin in patients with type Ⅱa or type lib hyperlipidemia, J Am Coll Cardiol 2008,51:1564-1572.
    [21]Fleg, J. L., Mete, M., Howard, B. V., et al., Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes:the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial, J Am Coll Cardiol 2008,52:2198-2205.
    [22]Eichhorn, E. J., Simvastatin with or without ezetimibe in familial hypercholesterolemia, N Engl J Med 2008,359:529-530; author reply 532.
    [23]Conard, S. E., Bays, H. E., Leiter, L. A., et al., Efficacy and safety of ezetimibe added on to atorvastatin (20 mg) versus uptitration of atorvastatin (to 40 mg) in hypercholesterolemic patients at moderately high risk for coronary heart disease, Am J Cardiol 2008,102:1489-1494.
    [24]Assmann, G., Kannenberg, F., Ramey, D. R., et al., Effects of ezetimibe, simvastatin, atorvastatin, and ezetimibe-statin therapies on non-cholesterol sterols in patients with primary hypercholesterolemia, Curr Med Res Opin 2008,24:249-259.
    [25]Ose, L., Reyes, R., Johnson-Levonas, A. O., et al., Effects of ezetimibe/simvastatin on lipoprotein subfractions in patients with primary hypercholesterolemia:an exploratory analysis of archived samples using two commercially available techniques, Clin Ther 2007,29:2419-2432.
    [26]Gil-Extremera, B., Mendez, G., Zakson, M., et al., Efficacy and safety of ezetimibe/simvastatin co-administered with fenofibrate in mixed hyperlipidemic patients with metabolic syndrome, Metab Syndr Relat Disord 2007,5:305-314.
    [27]Farnier, M., Roth, E., Gil-Extremera, B., et al., Efficacy and safety of the coadministration of ezetimibe/simvastatin with fenofibrate in patients with mixed hyperlipidemia, Am Heart J 2007, 153:335 e331-338.
    [28]Constance, C., Westphal, S., Chung, N., et al., Efficacy of ezetimibe/simvastatin 10/20 and 10/40 mg compared with atorvastatin 20 mg in patients with type 2 diabetes mellitus, Diabetes Obes Metab 2007,9:575-584.
    [29]Brudi, P., Reckless, J. P., Henry, D. P., et al., Efficacy of ezetimibe/simvastatin 10/40 mg compared to doubling the dose of low-, medium-and high-potency statin monotherapy in patients with a recent coronary event, Cardiology 2009,113:89-97.
    [30]Gagne, C., Bays, H. E., Weiss, S. R., et al., Efficacy and safety of ezetimibe added to ongoing statin therapy for treatment of patients with primary hypercholesterolemia, Am J Cardiol 2002,90: 1084-1091.
    [31]Feldman, T., Koren, M., Insull, W., Jr., et al., Treatment of high-risk patients with ezetimibe plus simvastatin co-administration versus simvastatin alone to attain National Cholesterol Education Program Adult Treatment Panel III low-density lipoprotein cholesterol goals, Am J Cardiol 2004, 93:1481-1486.
    [32]Miura, S.,Saku, K., Ezetimibe, a selective inhibitor of the transport of cholesterol, Intern Med 2008,47:1165-1170.
    [33]Denke, M., Pearson, T, McBride, P., et al., Ezetimibe added to ongoing statin therapy improves LDL-C goal attainment and lipid profile in patients with diabetes or metabolic syndrome, Diab Vasc Dis Res 2006,3:93-102.
    [34]Pearson, T. A., Denke, M. A., McBride, P. E., et al., A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP Ⅲ goals for LDL cholesterol in hypercholesterolemic patients:the ezetimibe add-on to statin for effectiveness (EASE) trial, Mayo Clin Proc 2005,80:587-595.
    [35]Kastelein, J. J., Akdim, F., Stroes, E. S., et al., Simvastatin with or without ezetimibe in familial hypercholesterolemia, N Engl J Med 2008,358:1431-1443.
    [36]Taylor, A. J., Given the ENHANCE trial results, ezetimibe is still unproven, Cleve Clin J Med 2008, 75:497-498,502,505-496.
    [37]Rossebo, A. B., Pedersen, T. R., Boman, K., et al., Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis, N Engl J Med 2008,359:1343-1356.
    [38]Knopp, R. H., Drug treatment of lipid disorders, N Engl J Med 1999,341:498-511.
    [39]Jacobson, T. A., Armani, A., McKenney, J. M., et al., Safety considerations with gastrointestinally active lipid-lowering drugs, Am J Cardiol 2007,99:47C-55C.
    [40]Davidson, M. H., Pharmacological approaches to modifying HDL:more basic science to understand HDL metabolism is necessary. Editorial to:"NO-1886 up-regulates Niemann-Pick C1 protein (NPC1) expression through liver X receptor alpha signaling pathway in THP-1 macrophage-derived foam cells" by Xin Ma et al, Cardiovasc Drugs Ther 2009,23:187-188.
    [41]Bays, H. E., Neff, D., Tomassini, J. E., et al., Ezetimibe:cholesterol lowering and beyond, Expert Rev Cardiovasc Ther 2008,6:447-470.
    [42]Masana, L., Mata, P., Gagne, C., et al., Long-term safety and, tolerability profiles and lipid-modifying efficacy of ezetimibe coadministered with ongoing simvastatin treatment:a multicenter, randomized, double-blind, placebo-controlled,48-week extension study, Clin Ther 2005,27:174-184.
    [43]Rosen, J.M., Hofmann, D.J., Carpenter, J.R., et al., Balloon borne antarctic frost point measurements and their impact on polar stratospheric cloud theories, Geophysical Research Letters 1998,15:859.
    [44]Gouni-Berthold, I., Berthold, H. K., Gylling, H., et al., Effects of ezetimibe and/or simvastatin on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase gene expression:a randomized trial in healthy men, Atherosclerosis 2008,198:198-207.
    [1]Sudhop, T., Lutjohann, D., Kodal, A., et al., Inhibition of intestinal cholesterol absorption by ezetimibe in humans, Circulation 2002,106:1943-1948.
    [2]Patrick, J. E., Kosoglou, T., Stauber, K. L., et al., Disposition of the selective cholesterol absorption inhibitor ezetimibe in healthy male subjects, Drug Metab Dispos 2002,30:430-437.
    [3]Garcia-Calvo, M., Lisnock, J., Bull, H. G., et al., The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1), Proc Natl Acad Sci U S A 2005,102:8132-8137.
    [4]Wang, J., Chu, B. B., Ge, L., et al., Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption, J Lipid Res 2009,50:1653-1662.
    [5]Tang, W., Ma, Y., Jia, L., et al., Genetic inactivation of NPC1L1 protects against sitosterolemia in mice lacking ABCG5/ABCG8, J Lipid Res 2009,50:293-300.
    [6]Davis, H. R., Jr.,Altmann, S. W., Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter, Biochim Biophys Acta 2009,1791:679-683.
    [7]Sane, A. T., Sinnett, D., Delvin, E., et al., Localization and role of NPC1L1 in cholesterol absorption in human intestine, J Lipid Res 2006,47:2112-2120.
    [8]Weinglass, A. B., Kohler, M., Schulte, U., et al., Extracellular loop C of NPC1L1 is important for binding to ezetimibe, Proc Natl Acad Sci U S A 2008,105:11140-11145.
    [9]Valasek, M. A., Repa, J. J., Quan, G., et al., Inhibiting intestinal NPC1L1 activity prevents diet-induced increase in biliary cholesterol in Golden Syrian hamsters, Am J Physiol Gastrointest Liver Physiol 2008,295:G813-822.
    [10]Turley, S. D., The role of Niemann-Pick C1-Like 1 (NPC1L1) in intestinal sterol absorption, J Clin Lipidol 2008,2:S20-S28.
    [11]Petersen, N. H., Faergeman, N. J., Yu, L., et al., Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells, J Lipid Res 2008,49: 2023-2037.
    [12]Pramflak, C., Jiang, Z. Y., Cai, Q., et al., HNFlalpha and SREBP2 are important regulators of NPC1L1 in human liver, J Lipid Res 2009.
    [13]Davis, H. R., Jr., Hoos, L. M., Tetzloff, G., et al., Deficiency of Niemann-Pick C1 Like 1 prevents atherosclerosis in ApoE-/-mice, Arterioscler Thromb Vasc Biol 2007,27:841-849.
    [14]Chang, T. Y.,Chang, C., Ezetimibe blocks internalization of the NPC1L1/cholesterol complex, Cell Metab 2008,7:469-471.
    [15]Knopp, R. H., Dujovne, C. A., Le Beaut, A., et al., Evaluation of the efficacy, safety, and tolerability of ezetimibe in primary hypercholesterolaemia:a pooled analysis from two controlled phase Ⅲ clinical studies, Int J Clin Pract 2003,57:363-368.
    [16]Pandor, A., Ara, R. M., Tumur, I., et al., Ezetimibe monotherapy for cholesterol lowering in 2,722 people:systematic review and meta-analysis of randomized controlled trials, J Intern Med 2009, 265:568-580.
    [17]Pearson, T. A., Denke, M. A., McBride, P. E., et al., A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients:the ezetimibe add-on to statin for effectiveness (EASE) trial, Mayo Clin Proc 2005,80:587-595.
    [18]Pearson, T. A., Ballantyne, C. M., Veltri, E., et al., Pooled analyses of effects on C-reactive protein and low density lipoprotein cholesterol in placebo-controlled trials of ezetimibe monotherapy or ezetimibe added to baseline statin therapy, Am J Cardiol 2009,103:369-374.
    [19]Kastelein, J. J., Akdim, F., Stroes, E. S., et al., Simvastatin with or without ezetimibe in familial hypercholesterolemia, N Engl J Med 2008,358:1431-1443.
    [20]Pearson, T., Ballantyne, C., Sisk, C., et al., Comparison of effects of ezetimibe/simvastatin versus simvastatin versus atorvastatin in reducing C-reactive protein and low-density lipoprotein cholesterol levels, Am J Cardiol 2007,99:1706-1713.
    [21]Taylor, A. J., Given the ENHANCE trial results, ezetimibe is still unproven, Cleve Clin J Med 2008, 75:497-498,502,505-496.
    [22]Rossebo, A. B., Pedersen, T. R., Boman, K., et al., Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis, N Engl J Med 2008,359:1343-1356.
    [23]Cramariuc, D., Cioffi, G., Rieck, A. E., et al., Low-flow aortic stenosis in asymptomatic patients: valvular-arterial impedance and systolic function from the SEAS Substudy, JACC Cardiovasc Imaging 2009,2:390-399.
    [24]Baigent, C.,Landry, M., Study of Heart and Renal Protection (SHARP), Kidney Int Suppl 2003: S207-210.
    [25]Cannon, C. P., Giugliano, R. P., Blazing, M. A., et al., Rationale and design of IMPROVE-IT (IMProved Reduction of Outcomes:Vytorin Efficacy International Trial):comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes, Am Heart J 2008,156:826-832.
    [1]Scott, C.,Ioannou, Y. A., The NPC1 protein:structure implies function, Biochim Biophys Acta 2004, 1685:8-13.
    [2]Millard, E. E., Srivastava, K, Traub, L. M., et al., Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis, J Biol Chem 2000,275:38445-38451.
    [3]Carstea, E. D., Morris, J. A., Coleman, K. G., et al., Niemann-Pick C1 disease gene:homology to mediators of cholesterol homeostasis, Science 1997,277:228-231.
    [4]Ma, X., Hu, Y. W., Mo, Z. C., et al., NO-1886 up-regulates Niemann-Pick C1 protein (NPC1) expression through liver X receptor alpha signaling pathway in THP-1 macrophage-derived foam cells, Cardiovasc Drugs Ther 2009,23:199-206.
    [5]Kwon, H. J., Abi-Mosleh, L., Wang, M. L., et al., Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol, Cell 2009,137:1213-1224.
    [6]Karten, B., Peake, K. B.,Vance, J. E., Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells, Biochim Biophys Acta 2009,1791:659-670.
    [7]Davis, H. R.,Jr.,Altmann, S. W, Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter, Biochim Biophys Acta 2009,1791:679-683.
    [8]Lloyd-Evans, E., Morgan, A. J., He, X., et al., Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium, Nat Med 2008,14:1247-1255.
    [9]Infante, R. E., Wang, M. L., Radhakrishnan, A., et al., NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes, Proc Natl Acad Sci U S A 2008,105:15287-15292.
    [10]de Vogel-van den Bosch, H. M., de Wit, N. J., Hooiveld, G. J., et al., A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine, Am J Physiol Gastrointest Liver Physiol 2008,294:G1171-1180.
    [11]Welch, C. L., Sun, Y, Arey, B. J., et al., Spontaneous atherothrombosis and medial degradation in Apoe-/-, Npc1-/-mice, Circulation 2007,116:2444-2452.
    [12]Chen, W., Sun, Y, Welch, C., et al., Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes, J Biol Chem 2001,276:43564-43569.
    [13]Choi, H. Y, Karten, B., Chan, T., et al., Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease, J Biol Chem 2003,278: 32569-32577.
    [14]Yanagimoto, C., Harada, M., Kumemura, H., et al., Niemann-Pick C1 protein transports copper to the secretory compartment from late endosomes where ATP7B resides, Exp Cell Res 2009,315: 119-126.
    [15]Steen, M. S., Adams, M. E., Tesch, Y., et al., Amelioration of muscular dystrophy by transgenic expression of Niemann-Pick C1, Mol Biol Cell 2009,20:146-152.
    [16]Sandu, S., Jackowski-Dohrmann, S., Ladner, A., et al., Niemann-Pick disease type C1 presenting with psychosis in an adolescent male, Eur Child Adolesc Psychiatry 2009.
    [17]Meyre, D., Delplanque, J., Chevre, J. C., et al., Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations, Nat Genet 2009,41: 157-159.
    [18]Zhang, J., Dudley-Rucker, N., Crowley, J. R., et al., The steroidal analog GW707 activates the SREBP pathway through disruption of intracellular cholesterol trafficking, J Lipid Res 2004,45:223-231.
    [19]Yao, P. M.,Tabas, I., Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway, J Biol Chem 2001, 276:42468-42476.
    [20]Fazio, S., Major, A. S., Swift, L. L., et al., Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages, J Clin Invest 2001,107:163-171.
    [21]Zhang, J. R., Coleman, T, Langmade, S. J., et al., Niemann-Pick C1 protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking, J Clin Invest 2008,118: 2281-2290.
    [22]Urano, Y., Watanabe, H., Murphy, S. R., et al., Transport of LDL-derived cholesterol from the NPC1 compartment to the ER involves the trans-Golgi network and the SNARE protein complex, Proc Natl Acad Sci U S A 2008,105:16513-16518.
    [23]Ahmad, I., Hunter, R. E., Flax, J. D., et al., Neural stem cell implantation extends life in Niemann-Pick C1 mice, J Appl Genet 2007,48:269-272.
    [24]Guyton, J. R.,Klemp, K. F., Development of the lipid-rich core in human atherosclerosis, Arterioscler Thromb Vase Biol 1996,16:4-11.
    [25]Ou, X., Dai, X., Long, Z., et al., Liver X receptor agonist T0901317 reduces atherosclerotic lesions in apoE-/-mice by up-regulating NPC1 expression, Sci China C Life Sci 2008,51:418-429.
    [26]Narushima, K., Takada, T., Yamanashi, Y, et al., Niemann-pick C1-like 1 mediates alpha-tocopherol transport, Mol Pharmacol 2008,74:42-49.
    [27]Fukao, S., McClure, J.P., Ito, A., et al.,1st VHF radar observation of midlatitude F-region field-aligned irregularities, Geophysical Research Letters 1999,15:768.
    [28]Kaufmann, A. M.,Krise, J. P., Niemann-Pick C1 functions in regulating lysosomal amine content, J Biol Chem 2008,283:24584-24593.
    [29]Ioannou, Y. A., The structure and function of the Niemann-Pick C1 protein, Mol Genet Metab 2000, 71:175-181.
    [30]Garver, W. S., Jelinek, D., Francis, G. A., et al, The Niemann-Pick C1 gene is downregulated by feedback inhibition of the SREBP pathway in human fibroblasts, J Lipid Res 2008,49:1090-1102.
    [31]Erickson, R. P., Larson-Thome, K., Weberg, L., et al., Variation in NPC1, the gene encoding Niemann-Pick C1, a protein involved in intracellular cholesterol transport, is associated with Alzheimer disease and/or aging in the Polish population, Neurosci Lett 2008,447:153-157.
    [32]Sahin, A.,Abokhodair, A., Geostatistical approach in design of sampling patterns for Jabal-Sayid sulfide deposit, Western Saudi-Arabia, Journal of African Earth Sciences and the Middle East 1998,8: 40-42.
    [33]Wang, M. D., Franklin, V, Sundaram, M., et al., Differential regulation of ATP binding cassette protein Al expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages, J Biol Chem 2007,282:22525-22533.
    [34]Turunen, M.,Schedin-Weiss, S., Defect in fatty acid esterification of dolichol in Niemann-Pick type C1 mouse livers in vivo, Biochim Biophys Acta 2007,1771:506-513.
    [35]Pipalia, N. H., Hao, M., Mukherjee, S., et al., Sterol, protein and lipid trafficking in Chinese hamster ovary cells with Niemann-Pick type C1 defect, Traffic 2007,8:130-141.
    [36]Fan, J., Akabane, H., Graham, S. N., et al., Sperm defects in mice lacking a functional Niemann-Pick C1 protein, Mol Reprod Dev 2006,73:1284-1291.
    [37]Dvorakova, L., Sikora, J., Hrebicek, M., et al., Subclinical course of adult visceral Niemann-Pick type C1 disease. A rare or underdiagnosed disorder?, J Inherit Metab Dis 2006,29:591.
    [38]Chang, Kenneth, Oldest Bacteria Fossils? Or Are They Merely Tiny Rock Flaws?, in New York Times. 2002. p. F4.
    [39]Yang, S. R., Kim, S. J., Byun, K. H., et al., NPC1 gene deficiency leads to lack of neural stem cell self-renewal and abnormal differentiation through activation of p38 mitogen-activated protein kinase signaling, Stem Cells 2006,24:292-298.
    [40]Podechard, N., Le Ferrec, E., Rebillard, A., et al., NPC1 repression contributes to lipid accumulation in human macrophages exposed to environmental aryl hydrocarbons, Cardiovasc Res 2009,82: 361-370.
    [41]Yu, W., Ko, M., Yanagisawa, K., et al., Neurodegeneration in heterozygous Niemann-Pick type C1 (NPC1) mouse:implication of heterozygous NPC1 mutations being a risk for tauopathy, J Biol Chem 2005,280:27296-27302.
    [42]Karten, B., Hayashi, H., Francis, G. A., et al., Generation and function of astroglial lipoproteins from Niemann-Pick type C1-deficient mice, Biochem J 2005,387:779-788.
    [1]Ishimoto, K., Tachibana, K., Sumitomo, M., et al., Identification of human low-density lipoprotein receptor as a novel target gene regulated by liver X receptor alpha, FEBS Lett 2006,580: 4929-4933.
    [2]MacDougall, E. D., Kramer, F., Polinsky, P., et al., Aggressive very low-density lipoprotein (VLDL) and LDL lowering by gene transfer of the VLDL receptor combined with a low-fat diet regimen induces regression and reduces macrophage content in advanced atherosclerotic lesions in LDL receptor-deficient mice, Am J Pathol 2006,168:2064-2073.
    [3]Okubo, M., Horinishi, A., Kim, D. H., et al., Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 (LRP5) gene, Hum Mutat 2002,19:186.
    [4]Furuya, T., Urano, T., Ikari, K., et al., A1330V polymorphism of low-density lipoprotein receptor-related protein 5 gene and self-reported incident fractures in Japanese female patients with rheumatoid arthritis, Mod Rheumatol 2009,19:140-146.
    [5]Mozas, P., Galetto, R., Albajar, M., et al., A mutation (-49C>T) in the promoter of the low density lipoprotein receptor gene associated with familial hypercholesterolemia, J Lipid Res 2002,43: 13-18.
    [6]Lambert, G., Charlton, F., Rye, K. A., et al., Molecular basis of PCSK9 function, Atherosclerosis 2009,203:1-7.
    [7]Seidah, N.G., PCSK9 as a therapeutic target of dyslipidemia, Expert Opin Ther Targets 2009,13: 19-28.
    [8]Horton, J. D., Cohen, J. C.,Hobbs, H. H., Molecular biology of PCSK9:its role in LDL metabolism, Trends Biochem Sci 2007,32:71-77.
    [9]Poirier, S., Prat, A., Marcinkiewicz, E., et al., Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system, J Neurochem 2006,98:838-850.
    [10]Dubuc, G., Tremblay, M., Pare, G., et al., A new method for measurement of total plasma PCSK9: clinical applications, J Lipid Res,51:140-149.
    [11]Maxwell, K. N.,Breslow, J. L., Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype, Proc Natl Acad Sci U S A 2004,101: 7100-7105.
    [12]Ranheim, T., Mattingsdal, M., Lindvall, J. M., et al., Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9, J Cell Physiol 2008,217:459-467.
    [13]Timms, K. M., Wagner, S., Samuels, M. E., et al., A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree, Hum Genet 2004,114:349-353.
    [14]Leren, T. P., Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia, Clin Genet 2004,65:419-422.
    [15]Abifadel, M., Varret, M., Rabes, J. P., et al., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nat Genet 2003,34:154-156.
    [16]Scartezini, M., Hubbart, C., Whittall, R. A., et al., The PCSK9 gene R46L variant is associated with lower plasma lipid levels and cardiovascular risk in healthy U.K. men, Clin Sci (Lond) 2007,113: 435-441.
    [17]Berge, K. E., Ose, L.,Leren, T. P., Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy, Arterioscler Thromb Vasc Biol 2006,26:1094-1100.
    [18]Cameron, J., Holla, O. L., Ranheim, T., et al., Effect of mutations in the PCSK9 gene on the cell surface LDL receptors, Hum Mol Genet 2006,15:1551-1558.
    [19]Rashid, S., Curtis, D. E., Garuti, R., et al., Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9, Proc Natl Acad Sci U S A 2005,102:5374-5379.
    [20]Whitfield, A. J., Barrett, P. H., van Bockxmeer, F. M., et al., Lipid disorders and mutations in the APOB gene, Clin Chem 2004,50:1725-1732.
    [21]Sniderman, A. D., Zhang, Z., Genest, J., et al., Effects on apoB-100 secretion and bile acid synthesis by redirecting cholesterol efflux from HepG2 cells, J Lipid Res 2003,44:527-532.
    [22]Benn, M., Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review, Atherosclerosis 2009,206:17-30.
    [23]Di Leo, E., Magnolo, L., Bertolotti, M., et al., Variable phenotypic expression of homozygous familial hypobetalipoproteinaemia due to novel APOB gene mutations, Clin Genet 2008,74: 267-273.
    [24]Chiodini, B. D., Barlera, S., Franzosi, M. G., et al., APO B gene polymorphisms and coronary artery disease:a meta-analysis, Atherosclerosis 2003,167:355-366.
    [25]Hinsdale, M. E., Sullivan, P. M., Mezdour, H., et al., ApoB-48 and apoB-100 differentially influence the expression of type-Ⅲ hyperlipoproteinemia in APOE*2 mice, J Lipid Res 2002,43:1520-1528.
    [26]Kim, H. K., Chang, S. A., Choi, E. K., et al., Association between plasma lipids, and apolipoproteins and coronary artery disease:a cross-sectional study in a low-risk Korean population, Int J Cardiol 2005,101:435-440.
    [27]Joseph, S. B., Bradley, M. N., Castrillo, A., et al., LXR-dependent gene expression is important for macrophage survival and the innate immune response, Cell 2004,119:299-309.
    [28]Quinet, E. M., Savio, D. A., Halpern, A. R., et al., Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice:implications for therapeutic targeting, Mol Pharmacol 2006,70: 1340-1349.
    [29]Ulven, S. M., Dalen, K. T., Gustafsson, J. A., et al., LXR is crucial in lipid metabolism, Prostaglandins Leukot Essent Fatty Acids 2005,73:59-63.
    [30]Lehmann, J. M., Kliewer, S. A., Moore, L. B., et al., Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway, J Biol Chem 1997,272:3137-3140.
    [31]Morello, F., Saglio, E., Noghero, A., et al., LXR-activating oxysterols induce the expression of inflammatory markers in endothelial cells through LXR-independent mechanisms, Atherosclerosis 2009,207:38-44.
    [32]Beyea, M. M., Heslop, C. L., Sawyez, C. G., et al., Selective up-regulation of LXR-regulated genes ABCA1, ABCG1, and APOE in macrophages through increased endogenous synthesis of 24(S),25-epoxycholesterol, J Biol Chem 2007,282:5207-5216.
    [33]de Grooth, G. J., Klerkx, A. H., Stroes, E. S., et al., A review of CETP and its relation to atherosclerosis, J Lipid Res 2004,45:1967-1974.
    [34]Dedecjus, M., Masson, D., Gautier, T., et al., Low cholesteryl ester transfer protein (CETP) concentration but normal CETP activity in serum from patients with short-term hypothyroidism Lack of relationship to lipoprotein abnormalities, Clin Endocrinol (Oxf) 2003,58:581-588.
    [35]Okada, M., [Functions of cholesteryl ester transfer protein (CETP)], Nippon Rinsho 2001,59 Suppl 2:236-239.
    [36]Hirano, K., Yamashita, S., Nakajima, N., et al., Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity, Arterioscler Thromb Vasc Biol 1997,17: 1053-1059.
    [37]Zhong, S., Sharp, D. S., Grove, J. S., et al., Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels, J Clin Invest 1996,97:2917-2923.
    [38]Tall, A. R., CETP inhibitors to increase HDL cholesterol levels, N Engl J Med 2007,356:1364-1366.
    [39]Sundvold, H.,Lien, S., Identification of a novel peroxisome proliferator-activated receptor (PPAR) gamma promoter in man and transactivation by the nuclear receptor RORalphal, Biochem Biophys Res Commun 2001,287:383-390.
    [40]Gervois, P., Torra, I. P., Fruchart, J. C., et al., Regulation of lipid and lipoprotein metabolism by PPAR activators, Clin Chem Lab Med 2000,38:3-11.
    [41]Halabi, C. M., Beyer, A. M., de Lange, W. J., et al., Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension, Cell Metab 2008,7:215-226.
    [42]Seimandi, M., Lemaire, G., Pillon, A., et al., Differential responses of PPARalpha, PPARdelta, and PPARgamma reporter cell lines to selective PPAR synthetic ligands, Anal Biochem 2005,344:8-15.
    [43]Wang, N., PPAR-delta in Vascular Pathophysiology, PPAR Res 2008,2008:164163.
    [44]Mochizuki, K., Suzuki, T.,Goda, T, PPAR alpha and PPAR delta transactivity and p300 binding activity induced by arachidonic acid in colorectal cancer cell line Caco-2, J Nutr Sci Vitaminol (Tokyo) 2008,54:298-302.
    [45]Fan, Y., Wang, Y., Tang, Z., et al., Suppression of pro-inflammatory adhesion molecules by PPAR-delta in human vascular endothelial cells, Arterioscler Thromb Vasc Biol 2008,28:315-321.
    [46]Choi, K. C., Lee, S. Y., Yoo, H. J., et al., Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes, Biochem Biophys Res Commun 2007,357:62-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700