大庆油田萨南二、三区大孔道识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆油田进入中后期开采阶段后,在长期持续注水条件下,流体(油和水)的性质、动力学特征和储层物性发生了明显变化,导致储层内高渗透低效循环带的形成,严重影响油田的开发效果和注采系统井网布局方案的设计。本论文主要研究如何识别高渗透低效循环带。
     在地质研究方面,开展储层细分沉积相、单砂体识别等储层内部非均质特征研究。在开发分析方面,利用动态分析方法及氧活化等测试手段分析单层压力、产液和含水变化特征,在垂向上确定主要吸水层。在平面上我们运用新的数值模拟分析法--逆演方法,计算出储层内流体运移势空间分布、储层内流体流动系数空间分布等预期成果,并据此综合识别储层大孔道分布规律及特征。
     通过该方法在萨南二、三区的具体应用,我们认为本文所述方法既考虑了含水、累积注水等开发动态因素,又考虑了孔隙度、渗透率等静态因素,因此具有一定科学性和综合性。并且该方法具有一定可操作性,符合率较高,具有很好的推广应用价值。
After Daqing oil field enters into the mid to end exploitation phases, under the condition of persist water injection over a long period of time, the property, the dynamics characteristic of the fluid( oil and water) and the reservoir property take place the obvious variety. It cause the formation of high permeable, low efficient cycle band in the reservoir, seriously influencing the development result of the oil field and the pattern arrangement design of injection-production system. It mainly discusses how to identify the formation of high permeable, low efficient cycle band.
     In the aspect of geology, developping the research of subdivising sedimentary facies, heterogeneity like single sandbody in the reservoir.In the aspect of development, it analyzing the changing characteristic of monolayer pressure, produced fluid and water-cut by dynamic analysis and testing. It fixes on the main water intake interval vertically. It makes use of the new numerical simulation analysis method (backward decutive method) to calculate the spacial distribution of fluid migration and flow parameter. The distributing rule and characteristics of big channel in the reservoir can be synthetically identified according to that.
     Through the concrete applications in 2, 3 blocks of Sanan, It is considered scientific and synthesize because not only the dynamic factors, such as water-cut and the cumulative water injected, but also static factors are all thought over. And it has the certain maneuverability, the higher matching rate and the good application value.
引文
[1]李思田,焦养泉,付清平,鄂尔多斯盆地延安组三角洲砂体内部构成及非均质性研究[C].中国油气储层研究论文集,石油工业出版社(北京),1993,312-325。
    [2]吕晓光,赵淑荣,高宏燕,三角洲平原相低弯度分流河道砂体微相及水淹变化特征[J].新疆石油地质,20(2),130-133。
    [3]隋军,吕晓光,赵翰卿,许运新著.大庆油田河流—三角洲相储层研究[M].石油工业出版社,2000:1~51.
    [4]商志英、万新德等,应用水力探测方法确定储层大孔道及剩余油分布状况的研究[J].大庆石油地质与开发,2004 ,Vol.23,No.2:30-32.
    [5]于兴河,王德法.陆相断陷盆地三角洲相构形要素及其储层地质模型[J].地质论评,1997,43(3):226~231.
    [6]许春娥,赵云明,陈辉等,储层建筑结构精细描述在马厂油田堵水中的应用[J].内蒙古石油化工,26:154-156。
    [7]周中良,杨国安,肖建玲.河成单元构型非均质性研究[J].石油勘探与开发,1995,22(4):58~71.
    [8]周江华等大孔道调剖剂的研制及应用[J].大庆石油地质与开发,2004 ,Vol.23,No.4:63-65.
    [9] Browne,G.H. and Plint,A.G. Alternating braidplain and lacustrine deposition in a strike-slip setting:the Pennsylvanian boss point Formation of the Cumberland Basin[J].Maritime Canada, Journal of Sedimentary Research.AAPG,1994,64(1):40~59.
    [10] Cossey,S.P.J. and Frank,H.J. Uranium mineralization and use of resistance log character in deltaic point bars[J].Franklin Mine,Karnes County,Texas.AAPG Bulletin,1983,67(1):131~151.
    [11] Dibona,P.A. and Von der Boreh,C.C. Sedimentary geology and evolution of an outcropping shelf-margin delta[J].Late Proterozoic Wonoka Formation,South Australia.AAPG,1993,77(6):963~979.
    [12] Dreyer,T., Scheie,A. and Walderhavg,O. Miniper meameter-based study of permeability trends in channel sand bodies[J].AAPG Bulletin,1990,74(4):359~374.
    [13] Flach,P.D. and Mossop,G.D. Depositional environments of Lower Cretaceous McMurray Formation,Athabasca oil sands,Alberta[J].AAPG Bulletion,1985,69(8):1195~1207.
    [14] Grant,C.W., Goggin,D.J. and Harris,P.M. Outcrop analog for cyclicshelf reservoirs[J].San Andres Formation of Permian Basin:Stratigraphic framework,permeability distribution,geostatistics,and fluid-flow modeling[J].AAPG,1994,78(1):23~54.
    [15] Hesp,P. Morphology,dynamics and internal stratification of some established foredunes in Southeast Austrslia[J].Sedimentary Geology,1988,55:17~41.[1]Mall, A.D. Architecture element and bounding surface influvial deposits of Kayenta Formation (Lower Jurassic),South West Colorado.Sedimentary Geology,1998,55, 233~262.
    [16] Mall, A.D. Architecture-element analysis:a new method of facies analysis applied to fluvial deposits[J].Earth Science Review,1985,22(4),261~308.
    [17] Mall, A.D. Reservoir heterogeneities in fluvial sandstones:Lessons from outcrop studies[J].AAPG,1988,72(6):682~696.
    [18] North,C.P. and Taylor,K.S. Ephemeral-fluvial deposits:integrated outcrop and simulation studies reveal complexity[J].AAPG Bulletin,1996,80(6):811~830.
    [19] Morris,W.R. and Busby-spere,C.J. Sedimentologic evolution of a submarine canyon in a forearc basin,Upper Cretaceous Rosario Formation,San Carlos,Mexico[J].AAPG Bulletin,1988,72(6):717~737.
    [20] Nemec,W., Steel,R.J.and Gjelberg,J.,et al. Anatomy of collapsed and re-established delta front in Lower Cretaceous of Eastern Spitsbergen:gravitational sliding and sedimentation processes[J].AAPG Bulletion,1988,72(4):454~476.
    [21] Robinson,J.W. and McCabe,P. Sandstone-body and shale-body dimensions in a braided fluvial system:Salt wash sandstone Member(Morrison Formation),Garfield County,Utah[J].AAPG Bulletin, 1997,81(8):1267~1291.
    [22] Torben olsen, Ron steel et al. Sequential architecture in a fluvial succession:sequence stratigraphy in the Upper Cretaceous Mesaverde Group,Price Canyon,Utah[J].Journal of Sedimentary Research,1995,B65(2):265~280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700