北京木城涧矿侏罗系主采煤层顶板工程地质特性及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层顶板稳定性是影响煤矿安全生产、顶板支护管理的重要因素之一。木城涧矿随着煤层开采深度的不断增加,煤层顶板稳定性问题日趋突出,已严重影响回采生产工作,该矿过去对煤层顶板稳定性问题尚未开展系统研究。因而,开展主采煤层顶板工程地质特性和稳定性研究对指导该矿安全高效生产有重要意义。
     本文以木城涧矿侏罗系主采煤层二煤、十煤为研究对象,运用构造地质、岩石力学和工程地质等学科理论和方法,从顶板的沉积相、岩性、岩性组合和构造等方面入手系统研究了主采煤层的工程地质特性,分析了影响煤层顶板稳定性的因素,提出二煤、十煤顶板的工程地质分类,并对其稳定性进行综合评价和分区,在此基础上采用FLAC~(2D)软件模拟探讨了不同煤层顶板岩体结构模型的采动效应。取得以下主要认识:
     (1)该矿侏罗系煤系地层系三角洲相沉积,二煤、十煤顶板伪顶岩性为砂质泥岩,直接顶岩性为粉砂岩、细砂岩,老顶岩性为中细砂岩;岩性组合以粉砂—细砂岩组合为主。
     (2)该矿主体构造为庙安岭—髫髻山向斜的南东翼,受多期构造活动的影响,矿区构造以褶皱为主、断裂为辅,小褶皱表现为一系列次级背向斜,小褶皱的形态在南部及北部比较开阔舒缓,中部比较紧闭,致使煤层顶板产状变化大,顶板破碎,完整性较差。在构造发育地区,煤层顶板稳定性差。
     (3)顶板岩石力学测试结果表明:岩块单轴抗压强度大,粉砂岩达141.6MPa,砂质泥岩达165.4MPa,细砂岩达213.5MPa,均属硬质岩石,顶板稳定性好;但受构造影响,顶板岩体裂隙较发育,顶板破碎,稳定性变差。
     (4)二煤、十煤顶板工程地质分类结果表明:二煤、十煤顶板以二类周期来压和三类周期来压强烈顶板为主。周期来压平均步距在18.5~22.3m,周期来压对煤层顶板稳定性和支架稳定性有重要影响。
     (5)依据顶板岩体岩性—结构分类,二煤、十煤顶板稳定性可分为极不稳定顶板、不稳定顶板、稳定顶板和非常稳定顶板四种类型。以稳定和非常稳定顶板为主,二煤极不稳定和不稳定顶板主要分布在研究区东部,约占整个面积的35%;十煤极不稳定和不稳定顶板主要分布在研究区中部,约占整个面积的20%。整体二煤顶板稳定性比十煤顶板稳定性较差。
     (6)根据煤层顶板沉积和构造特征,建立煤层顶板岩性的完整层状模型(上软下硬、上硬下软、全硬和全软)、断层构造模型和褶曲构造模型,应用FLAC~(2D)软件模拟了在采动影响下不同顶板岩体破坏的基本特征。模拟结果表明:
     ①在采动影响下,煤层顶板的破坏特征与顶板的岩性、厚度、组合、工作面的斜长和煤层倾角等因素有关。
     ②断层模型中,在断层附近应力集中明显,当工作面推过断层带时,顶板冒裂带发育增大,顶板稳定性差。
     ③褶曲模型中,向斜煤层顶板冒裂高度比背斜大,顶板稳定性相对较差。
     ④实际工作面模拟结果表明:顶板冒裂高度分别为16.8m、33.5m,工作面前方10.8~20.75m范围内为采动影响区,最大垂直应力集中系数达到4.2。模拟结果与实际情况较吻合。影响煤层顶板稳定性的因素很多,有待结合地质和工程因素(支架类型、回采速度等)综合评价顶板—支护—底板系统稳定性。
Seam top's stability is one of the most important factors that influence coal mine's production and propping of top.With the increasing of coal seam's depth in Muchengjian coal mine,seam top's stability problem is more and more prominent so that it influences stope seriously.The coal mine has not studied seam top's stability in the past.so the study of seam top's engineering geological condition and its stability were carried out,its significance in the coal mine's production is very important.
     The paper's object is No.2 and No.10 seam of Jurassic system in Muchengjian coal mine,Some discipline's theory such as structural geology and rock mechanics and engineering geology were used.The study of seam top's engineering geological condition and factors influence seam top's stability were systemly carried out in seam top's sedimentary facies and lithology and lithology's combination and structure,the engineering geological styles were obtained,the seam top's stability and stability's distribution were also obtained,besed on all the analysis above,we discuss the mining effect of different rockmass's structure by FLAC~(2D) software.the main conclusions are as follows:
     (1) Jurassic coal measures strata is delta facies,the false roof's lithology is sandy mudstone,the ditect roof's lithology is siltstone and sandstone;the old roof's lithology is fine sandstone,Lithology's assioation mainly is siltstone-fine sandstone,seam roof's stability is well.
     (2) The main tectonic is miaoanling-zhaojishan syncline,as the result of multicycle structure,the main structure is fold and the secondary structure is faults,for these reasons,seam's occurrence is seriously transformed,seam top is very crushing and it is not intact.The seam top's stability is very bad in the situ where structure is well-developed.
     (3) Test result of rock's mechanics shows:the single pressure stronginess of the rock is large,siltstone's stronginess is 141.6MPa,sandy mudstone's stronginess is 165.4MPa,fine sandstone's stronginess is 213.5MPa,all these rock are hard and stable;but as the result of structures,seam top is very crushing,so its stability is become bad.
     (4) The result of seam top's engineering geological styles shows:the seam top's has the periodic weighting.The step distance of the periodic weighting is 15.5~22.3 meters,the periodic weighting has important influence on the stability of seam top and support.
     (5) Based on roof's rockmass lithological character-textural classification,the roof's stability styles can divide into four kind of types that is extremely unstable roof, unstable roof,stable roof and extremely stable roof.Stable and extremely stable roof is primarily,No.2 coal's extremely unstable and unstable roof mainly distributes east of the research area,composed 35%of entire area;No.10 coal's extremely unstable and unstable roof mainly distributes middle of the research area,composed 20%of entire area.No.2 coal's roof is less stable compared to No.10 coal's roof.
     (6) According to the characteristics of seam top's deposition and structure,seam top's lithological integrity layered model and fault model and fold model were establishment,and simulated the basic destroyed characteristics of different roof's rockmass which under mining effect by using the FLAC~(2D) software.The simulated results shows:
     ①Under mining effect,the basic destroyed characteristic of roof's rockmass is related to roof's lithology and thickness and lithological assioation and working face's length and seam's inclination angle.
     ②In the fault model,the stress concentration is obvious nearby the fault,When the working face has pushed the fault zone,the roof caving and crack's growth altitude to be increase,the roof's stability is bad.
     ③In the fold model,the roof caving and crack's altitude of syncline is bigger than anticline's,and its stability is badder.
     ④The simulated results of actual working face shows:the roof caving and crack's altitude respectively is 16.8m,33.5m,front the working surface in the 10.8~20.75m is mining effected scope,the most greatly vertical stress's concentration coefficient achieves 4.2.The simulated result is consistent with the actual situation.The factors influence seam top's stability are very many,it is necessiary to unify both the geologic and the engineering factors to evaluate roof-support-floor system's stability.
引文
[1]谢和平.中国能源发展趋势与跨世纪煤炭科技展望[R].见:谢和平等主编.可持续发展与煤炭工业报告文集.北京:煤炭工业出版社,1998.1-15
    [2]彭苏萍.中国煤矿高产高效矿井的地质保障系统[R].见:谢和平等主编.垮世纪的矿业科学与高新技术:中国科协第14次“青年科学家论坛”报告文集.北京:煤炭工业出版社,1996.52-57
    [3]刘亮,刘毅等.2002~2003年我国煤矿死亡事故统计分析[J].煤炭科学技术,2005.1
    [4]姜福兴著.采场顶板控制设计及其专家系统[M].徐州:中国矿业大学出版社,1995
    [5]蒋金泉,韩继胜.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999
    [6]陈炎光,钱鸣高主编.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994
    [7]宋振骐著.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988
    [8]彭向峰、于双忠.煤层顶板工程地质分类方案初步研究[J].煤田地质与勘探,1997.12
    [9]Zhaoping Meng,Suping Peng.Influence of stratigraphic facies variations on the roof stability by physical modeling study[A].Mining Science and Technology'99[C],Xie&Golosinski(eds),1999Balkema,Rotterdam,ISBN 90 5809 0671,207-209
    [10]孙可明,潘一山等.缓倾斜厚煤层悬移支架放顶煤顶板活动规律模拟试验研究[J].煤矿开采,2001.9
    [11]方新秋、何富连等.直接顶稳定性的相似模拟试验[J].矿山压力与项板管理,1999.3-4
    [12]林崇德.层状岩石顶板破坏机理数值模拟过程分析[J].岩石力学与工程学报,1999.8
    [13]彭苏萍、孟召平.长壁工作面顶底板稳定性数值模拟[J].中国矿业大学学报,1999.1
    [14]黄明利,唐春安,李报等.综放开采上覆岩层破坏过程数值分析[J].吴健(eds.),全国第三届放顶煤开采理论与实践研讨会论文集[C].矿山压力与顶板管理,1998,146-147
    [15]曹胜根,钱鸣高,刘长友.综放支架工作阻力与端面顶板稳定性[J].[A]吴健(eds.),99'厚煤现代化开采技术国际专题研讨会论文集[C].北京:煤炭工业出版社,1999,142-150
    [16]Elliott R E.The mine geologist and risk reduction[J].The Mining Engineer,1974(133):173-184
    [17]Ferm J C.A study of roof falls in underground mines on the Pocahontas 3 seam,southern west Virginia and Southwestern Virgina.United States Department of Interior,Bureau of Mines,Final Report on Contract No.H0230028,1978
    [18]Home J C Ferm J C Carucciio F T and Baganz B P.Depositional models in coal exploration and mine planning in appalachian region.AAPG,1978,62(12):2379-2411
    [19]Hylbert D V.Developing geological structureal criteria for predicting unstable mine roof rocks.Bumines Open File Rept 9-78,United States Department of the Interior,1977
    [20]Barton,N.,Lien,R.and Lunde,L.,Eng,Classification of Rock Masses for the Design of Tunnel Support,Rock Mechanics,Vol.6,1974,189-236
    [21]Bieniawski Z T.工程岩体分类[M].吴立新,王建峰,刘殿书等译.徐州:中国矿业大学出版社,1993:16-58
    [22]葛道凯.平顶山矿区综采面顶板稳定性的沉积模式[J].煤炭学报,1994,(2)
    [23]彭苏萍.复合型三角洲的沉积特征与沉积模式[J].煤炭学报,1994,19(1)
    [24]孟召平.煤层顶板沉积岩体结构及其对顶板稳定性的影响[J].北京:中国矿业大学1999.5
    [25]李增学,马兴祥.实用矿井地质研究一方法与进展[M].北京:地质出版社,1993.1
    [26]丁述理等.钻孔资料研究煤层顶板稳定性[J].河北建筑工程学院学报,1994(3)
    [27]涂敏.运用模糊聚类法分析煤层顶板稳定性[J].矿山压力与顶板管理,1995.3
    [28]王生全、夏玉成等.邢台显德汪井田煤层顶板稳定性评价与预测[J].西北地质,1997(18)
    [29]刘海燕,伍法权等.兖州煤田主采煤层顶板稳定性特征分析[J].岩石力学与工程学报,2006.7
    [30]杨宽.用测井资料评价煤层顶底板稳定性[J].煤田地质与勘探,1998.2
    [31]唐绍辉,熊永安.基于神经网络的采场冒顶预测[J].第六届全国采矿学术会议论文集[C]《中国矿业》杂志社,1999:664-667
    [32]李文平,赵向军,杨海滨.煤矿延深巷道人工神经网络工程地质分类方法[J].中国矿业大学学报,1999,28(1),69-73
    [33]木城涧煤矿.北京矿务局木城涧煤矿侏罗纪矿井地质报告[R].1999
    [34]鲍亦刚,邢光胜,邓辉等.论北京地区燕山运动[J].地质学报,1983.2:23-27
    [35]宋鸿林,杨生彬等.从构造特征论北京西山的印支运动[J].地质论评,1984,12(1):
    [36]杨起,韩德馨等.中国煤田地质学(下)[M].北京:地质出版社,1980
    [37]木城涧煤矿.北京矿务局木城涧煤矿构造规律研究报告[R].2004
    [38]朱志澄.构造地质学[M].北京:中国地质大学出版社,1999
    [39]李东旭等,窦远明,霍金岗.北京西山地质构造系统分析[M].北京:地质出版社,1995
    [40]天丰.中国东部中、新生代板内变形,构造应力场及其应用[M].北京:地质出版社,1993
    [41]徐志斌,纪江海等.京西中生代裂谷的基本特征[J].中国煤田地质,1989(3):72-75
    [42]彭苏萍,孟召平.矿井工程地质理论与实践[M].北京:地质出版社,2002
    [43]木城涧矿区侏罗系井田煤层对比、煤层沉积特征和地质构造研究报告[R].辽宁工程技术 大学,2000年12月
    [44]陶振宇,潘别桐.岩石力学原理与方法「M].武汉:中国地质大学出版社,1991:17-20
    [45]沈明荣.岩体力学[M].上海:同济大学出版社,1999
    [46]邱续发.充分利用已采掘信息正确判断矿井小构造[J].西山科技,1993,(4):19-21
    [47]刘海燕.兖州煤田主采煤层项板稳定评价[D],泰安:山东科技大学,2004
    [48]赵结君,刘召辉,尚建岗.影响煤矿顶板事故的地质因素[J].矿业快报,2002,8(15):12-17
    [49]孟召平,程浪洪,雷志勇.淮南矿区地应力条件及其对煤层顶底板稳定性的影响[J].煤田地质与勘探,2007年2月
    [50]煤炭科学研究院北京开采研究所编著.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.12
    [51]孙广忠.岩体结构力学[M].北京:科学出版社,1988
    [52]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [53]王思敬.地下工程岩体稳定分析[M].北京:科学出版社,1984
    [54]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1989
    [55]杨建辉.锚杆支护煤巷层状结构顶板稳定性研究与应用[D],北京:北京科技大学,2002
    [56]黄木坤.ANSYS三维弹塑性结构分析在地下工程围岩稳定性评价中的应用[D],重庆:重庆大学,2002
    [57]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [58]梁晓丹,刘刚,赵坚.地下工程压力拱拱体的确定与成拱分析[J].河海大学学报(自然科学版),2005年5月
    [59]张金才,郭鑫禾.煤层顶板采动影响的模拟试验[J].煤矿开采,第17期p32-36
    [60]刘小红.刘桥矿区主采煤层项板岩体工程地质力学研究[D],淮南:安徽理工大学,2003
    [61]张东日等.拉格朗日元法及其应用软件FLAC[J].矿山压力与顶板管理,1997.No3-4
    [62]查文华,谢广祥,华心祝.综放采场围岩压力分布规律数值模拟研究[J].矿山压力与顶板管理,2004(4):2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700