有序介观结构TiO_2及复合体的控制合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
属于纳米材料范畴的介孔材料由于其特殊的结构性质在催化、分离、离子交换等领域具有很多潜在的应用。但是,传统的介孔材料由于具有较小的介孔孔径(<7nm),从而制约了介孔材料在催化、大分子吸附、分离等领域的进一步应用。为拓展介孔材料的应用领域,合成具有大孔径(>7nm)的介孔材料具有重要意义。
     本文对有序介观结构TiO_2及复合体的控制合成与性能进行了研究,首次设计合成出大孔径的介孔TiO_2材料,研究发现通过改变合成参数可实现介孔TiO_2的孔径在一定范围内可调控。在制备孔径为14nm介孔TiO_2的基础上,加入锆源后,采用一步合成的方法设计合成了一系列介孔TiO_2-ZrO_2复合体材料。研究了介孔TiO_2和介孔TiO_2-ZrO_2复合体材料的光催化和亲水性能,并对其合成机理、光催化机理、亲水性机理作了深入探讨。
     以Ti(OBu~n)_4水解原位释放的丁醇为助表面活性剂,以三嵌段聚合物P123为结构导向剂,在非水介质中采用溶剂蒸发诱导自组装的方法首次设计合成了大孔径的介孔TiO_2并对其进行了表征,结果表明所得材料具有大孔径(14nm)、窄孔径分布、二维六方结构,其晶型为锐钛矿相,BET比表面积为115m~2g~(-1),孔容为0.219cm~3g~(-1)。这是迄今文献报道的孔径最大的介孔TiO_2材料。
     在嵌段聚合物P123-Ti(OBu~n)_4-EtOH-HCl非水体系中,通过调控无机前驱体Ti(OBu~n)_4的量,即可改变原位生成Bu~nOH的量并实现材料孔径在一定范围内的可调控,本文设计合成了孔径可控(8.3-14nm)的一系列透明介孔TiO_2薄膜材料,其合成机理可归纳为以下几点:(ⅰ)原位生成的丁醇起到助表面活性剂的作用;(ⅱ)非水体系的合成条件提供了较大的表面活性剂有效堆积参数;(ⅲ)Ti(OBu~n)_4具有较长的线性和较大的立体构型;(ⅳ)大的水解速率/抑制速率(H/p)比。
Mesoporous materials which belong to the category of nanomaterials have opened some interesting applications in the field of catalysis, separation, ion-exchange, and others due to their unique structural character. However, the conventional mesoporous materials possess small mesopore diameter (<7 run), which limit their potential applications for catalysis, sorption and separation of large molecules. In order to extend the utility of mesoporous materials, it is essential to be able to synthesize large-pore (>7 ran) mesoporous materials.
    The current dissertation concerns study on the controlled synthesis and properties of TiO_2 and its composite with ordered mesostructures. Large-pore meso-nc-TiO2 has been successfully designed and synthesized in our laboratory. Furthermore, the mesopore size can be easily controlled through adjusting the synthetic parameters. In this dissertation, on the basis of the synthetic strategy for the preparation of large-pore meso-nc-TiO_2 with 14 nm mesopore diameter, we also design and synthesize a series of mesoporous TiO_2-ZrO_2 composites using one-step synthesis strategy through introducing different amount of zirconia source. The photocatalytic activity and hydrophilicity of our obtained meso-nc-TiO_2 and mesoporous TiO_2-ZrO_2 composites were investigated in this thesis. The formation mechanism, photocatalysis mechanism and hydrophilicity mechanism of meso-nc-TiO_2 and mesoporous TiO_2-ZrO_2 composites were also presented in this dissertation.
    A novel and facile synthesis strategy was demonstrated for the design and synthesis of large-pore meso-nc-TiO_2 thin films using butanol released in situ as the cosurfactant and triblock copolymer P123 as the template in the non-aqueous
引文
[1] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism. Nature, 1992, 359(6397): 710-712P
    
    [2] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A New Family Of Mesoporous Molecular-Sieves Prepared With Liquid-Crystal Templates. J Am Chem Soc, 1992, 114(27): 10834-10843P
    
    [3] Everett D H. IUPAC: Manual of Symbols and Terminology for Physicochemical Quantities and Units: Appendix II: Definitions, terminology and symbols in colloid and surface chemistry - part 1: Colloid and surface chemistry. Pure Appl Chem, 1972, 31: 577-638P
    
    [4] Lok B M, Messina C A, Lyle Patton R, Gajek R T, Cannan T R, Flanigen E M. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J Am Chem Soc, 1984, 106(20): 6092-6093P
    
    [5] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev, 1997, 97(6): 2373-2419P
    
    [6] Soler-illia G J D, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev, 2002, 102(11): 4093-4138P
    
    [7] Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy forzeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45(10): 1557-1559P
    [8] Sakthivel A, Huang S J, Chen W H, Lan Z H, Chen K H, Kim T W, Ryoo R, Chiang A S T, Liu S B. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chem Mater, 2004, 16(16): 3168-3175P
    
    [9] Qi W Y, Hu C W, Li G Y, Guo L H, Yang Y, Luo J, Miao X, Du Y. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chem. 2006, 8(2): 183-190P
    [10] Serrano D P, van Grieken R. Heterogenous events in the crystallization of zeolites. J Mater Chem, 2001, 11(10): 2391-2407P
    [11] Salama T M, Ahmed A H, El-Bahy Z M. Y-type zeolite-encapsulated copper(II) salicylidene-p-aminobenzoic Schiff base complex: Synthesis, characterization and carbon monoxide adsorption. Microporous Mesoporous Mater, 2006, 89(1-3): 251-259P
    [12] Mukai S R, Shimoda M, Lin L, Tamon H, Masuda T. Improvement of the preparation method of "ship-in-the-bottle" type 12-molybdophosphoric acid encaged Y-type zeolite catalysts. Appl Catal A: Gen, 2003, 256(1-2): 107-113P
    [13] Wloch J, Kornatowski J. Sorption rate and thermal barriers in a gas-zeolite system: Investigation of n-hexane sorption in MFI-type zeolite. Langmuir, 2004,20(4): 1180-1183P
    [14] Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv Mater, 2004, 16(8): 727-732P
    [15] Ali M A, Brisdon B, Thomas W J. Synthesis, characterization and catalyticactivity of ZSM-5 zeolites having variable silicon-to-aluminum ratios. Appl Catal A: Gen, 2003, 252(1): 149-162P
    [16] Tosheva L, Valtchev V P. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem Mater, 2005, 17(10): 2494-2513P
    [17] Kim M J, Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1. Chem Mater, 1999, 11(2): 487-49IP
    [18] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater, 1996, 8(5): 1147-1160P
    [19] Huo Q S, Leon R, Petroff P M, Stucky G D. Mesostructure Design with Gemini Surfactants - Supercage Formation in a 3-Dimensional Hexagonal Array. Science, 1995, 268(5215): 1324-1327P
    [20] Hunter H M, Wright P A. Synthesis and characterisation of the mesoporous silicate SBA-2 and its performance as an acid catalyst. Microporous Mesoporous Mater, 2001, 43(3): 361-373P
    [21] Sakamoto Y, Kaneda M, Terasaki O, Zhao D Y, Kim J M, Stucky G, Shim H J, Ryoo R. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000, 408(6811): 449-453P
    [22] El Haskouri J, Cabrera S, Caldes M, Guillem C, Latorre J, Beltran A, Beltran D, Marcos M D, Amoros P. Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem Mater, 2002, 14(6): 2637-2643P
    [23] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc, 1998, 120(24): 6024-6036P
    [24] Xia Y D, Mokaya R. Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem Mater, 2005, 17(6): 1553-1560P
    [25] Yamada T, Zhou H S, Asai K, Honma I. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Mater Lett, 2002, 56(1-2):93-96P
    [26] Boissiere C, Larbot A, Prouzet E. Synthesis of mesoporous MSU-X materials using inexpensive silica sources. Chem Mater, 2000, 12(7): 1937-1940P
    [27] Zhang W Z, Pauly T R, Pinnavaia T J. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S degrees I degrees) assembly pathway. Chem Mater, 1997. 9(11): 2491-2498P
    128] Li W J, Yao Y W, Wang Z C, Zhao J Z, Zhao M Y, Sun C Q. Preparation of stable mesoporous silica FSM-16 from water glass in the presence of cetylpyridium bromide. Mater Chem Phys, 2001, 70(2): 144-149P
    129] Ryoo R, Kim J M, Ko C H, Shin C H. Disordered molecular sieve with branched mesoporous channel network. J Phys Chem, 1996, 100(45): 17718-17721P
    [30] Kim T W, Kleitz F, Paul B, Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system. J Am Chem Soc, 2005, 127(20): 7601-761 OP
    [31] Yu C Z, Yu Y H. Zhao D Y. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer. Chem Commun, 2000(7): 575-576P
    [32] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angew Chem Int Ed, 2002, 41(20): 3876-3878P
    [33] Fan J, Yu C Z, Gao T, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem Int Ed, 2003, 42(27): 3146-3150P
    [34] Wu C G Bein T. Conducting Polyaniline Filaments In A Mesoporous Channel Host. Science, 1994, 264(5166): 1757-1759P
    [35] Xiong C R, Kim M J, Balkus K J. TiO2 nanofibers and core-shell structures prepared using mesoporous molecular sieves as templates. Small, 2006, 2(1): 52-55P
    [36] Shi K Y, Chi Y J, Yu H T, Xin B F, Fu H G Controlled growth of mesostructured crystalline iron oxide nanowires and Fe-filled carbon nanotube arrays templated by mesoporous silica SBA-16 film. J Phys Chem B, 2005, 109(7): 2546-2551P
    [37] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun, 2003(17): 2136-2137P
    [38] Chomski E, Dag O, Kuperman A, Coombs N, Ozin G A. New forms of luminescent silicon: Silicon-silica composite mesostructures. Chem Vap Deposition, 1996, 2(1): 8-13P
    [39] Lee K B, Lee S M, Cheon J. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration. Adv Mater, 2001, 13(7): 517-520P
    [40] Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999, 285(5436): 2113-2115P
    [41] Kruk M, Jaroniec M, Ryoo R, Joo S H. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. J Phys Chem B, 2000, 104(33): 7960-7968P
    [42] Bechger L, Vos W L. Homogeneity of oxide air-sphere crystals from millimeter to 100-nm length scales: A probe for macroporous photonic crystal formation. Chem Mater, 2004, 16(12): 2425-2432P
    [43] Sadakane M, Asanuma T, Kubo J, Ueda W. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method. Chem Mater, 2005, 17(13): 3546-3551P
    [44] Kuai S, Badilescu S, Bader G, Bruning R, Hu X F, Truong V V. Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating. Adv Mater, 2003, 15(1): 73-75P
    [45] Subramanian G, Manoharan V N, Thorne J D, Pine D J. Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials. Adv Mater, 1999, 11(15): 1261-1265P
    [46] 张立德,解思深等编著.纳米材料和纳米结构—国家重大基础研究项目新进展.北京:化学工业出版社,2005:241-260页
    [47] Zhang W H, Shi J L, Wang L Z, Yah D S. Preparation and characterization of ZnO clusters inside mesoporous silica. Chem Mater, 2000, 12(5): 1408-1413P
    [48] Chae W S, Yoon J H, Yu H N, Jang D J, Kim Y R. Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host. J??Phys Chem B, 2004, 108(31): 11509-11513P
    [49] Wang S, Choi D G, Yang S M. Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange. Adv Mater, 2002, 14(18): 1311-1314P
    [50] Shan Y, Gao L, Zheng S. A facile approach to load CdSe nanocrystallites into mesoporous SBA-15. Mater Chem Phys, 2004, 88(1): 192-196P
    [51] Crepaldi E L, Soler-Illia G J D A, Grosso D, Cagnol F, Ribot F, Sanchez C. Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO_2. J Am Chem Soc, 2003, 125(32): 9770-9786P
    [52] Schuth F. Non-siliceous mesostructured and mesoporous materials. Chem Mater, 2001, 13(10): 3184-3195P
    [53] Xu X Z. Investigation of anion-exchangeable hybrid mesoscopic materials. PhD dissertation, Jilin University. 2004: 11-21P
    [54] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396(6707): 152-155P
    [55] Attard G S, Leclerc S A A, Maniguet S, Russell A E, Nandhakumar I, Gollas B R, Bartlett P N. Liquid crystal phase templated mesoporous platinum alloy. Microporous Mesoporous Mater, 2001, 44: 159-163P
    [56] Kim T W, Park I S, Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew Chem Int Ed, 2003, 42(36): 4375-4379P
    [57] Kruk M, Dufour B, Celer E B, Kowalewski T, Jaroniec M, Matyjaszewski K. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. JPhys Chem B, 2005, 109(19): 9216-9225P
    [58] Kaskel S, Farrusseng D, Schlichte K. Synthesis of mesoporous silicon imido nitride with high surface area and narrow pore size distribution. Chem Commun, 2000(24): 2481-2482P
    [59] Tian B Z, Liu X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, Zhao D Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Mater, 2003, 2(3): 159-163P
    [60] Antonelli D M, Ying J Y. Synthesis Of Hexagonally Packed Mesoporous TiO_2 By A Modified Sol-Gel Method. Angew Chem Int Ed, 1995, 34(18): 2014-2017P
    [61] Antonelli D M, Ying J Y. Mesoporous materials. Curr Opin Colloid Interface Sci, 1996, 1(4): 523-529P
    [62] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater, 1999, 11(10): 2813-2826P
    [63] Wang Y Q, Tang X H, Yin L X, Huang W P, Hacohen Y R, Gedanken A. Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures. Adv Mater, 2000, 12(16): 1183-1186P
    [64] Choi S Y, Mamak M, Coombs N, Chopra N, Ozin G A. Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO_2. Bulk and crack-free thin film morphologies. Adv Funct Mater. 2004, 14(4): 335-344P
    [65] Knowles J A, Hudson M J. Preparation And Characterization Of Mesoporous, High-Surface-Area Zirconium(Iv) Oxides. Journal Of The Chemical Society-Chemical Communications, 1995(20): 2083-2084P
    
    [66] Hudson M J, Knowles J A. Preparation and characterisation of mesoporous, high-surface-area zirconium(IV) oxide. J Mater Chem, 1996, 6(1): 89-95P
    [67] Larsen G, Lotero E, Nabity M, Petkovic L M, Shobe D S. Surfactant-assisted synthesis of mesoporous zirconia powders with high surface areas. J Catal, 1996, 164(1): 246-248P
    [68] Ciesla U, Froba M, Stucky G, Schuth F. Highly ordered porous zirconias from surfactant-controlled syntheses: Zirconium oxide-sulfate and zirconium oxo phosphate. Chem Mater, 1999, 11(2): 227-234P
    [69] Crepaldi E L, Soler-Illia G J D A, Grosso D, Sanchez M. Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New J Chem, 2003, 27(1): 9-13P
    [70] Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L. Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science, 1997, 276(5314): 926-930P
    [71] Braun P V, Osenar P, Tohver V, Kennedy S B, Stupp S I. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals. J Am Chem Soc, 1999, 121(32): 7302-7309P
    [72] MacLachlan M J, Coombs N, Bedard R L, White S, Thompson L K, Ozin G A. Mesostructured metal germanium sulfides. J Am Chem Soc, 1999, 121(51): 12005-12017P
    [73] Gao F, Lu Q Y, Zhao D Y. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv Mater, 2003, 15(9): 739-742P
    [74] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc, 2000, 122(43): 10712-10713P
    
    [75] Kaneda M, Tsubakiyama T, Carlsson A, Sakamoto Y, Ohsuna T, Terasaki O. Joo S H, Ryoo R. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. J Phys Chem B, 2002, 106(6): 1256-1266P
    
    [76] Zhang W H, Liang C H, Sun H J, Shen Z Q, Guan Y J, Ying P L, Li C. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition. Adv Mater, 2002, 14(23): 1776-1778P
    
    [77] Santato C, Odziemkowski M, Ulmann M, Augustynski J. Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications. J Am Chem Soc, 2001, 123(43): 10639-10649P
    
    [78] Subramanian V, Jiang J C, Smith P H, Rambabu B. Mesoporous SnO_2 synthesized with non-ionic surfactants as an anode material for lithium batteries. Journal of Nanoscience and Nanotechnology, 2004, 4(1-2): 125-131P
    
    [79] Nakajima K, Hara M, Domen K, Kondo J N. Synthesis of highly ordered mesoporous tantalum oxide. Chem Lett, 2005, 34(3): 394-395P
    
    [80] Arean C O, Bellan A L, Mentruit M P, Delgado M R, Palomino G T. Preparation and characterization of mesoporous gamma-Ga2O3. Microporous Mesoporous Mater. 2000, 40(1-3): 35-42P
    
    [81] Brezesinski T, Smarsly B, Iimura K, Grosso D, Boissiere C, Amenitsch H, Antonietti M, Sanchez C. Self-assembly and crystallization Behavior of mesoporous, crystalline HfO_2 thin films: A model system for the generation of mesostructured transition-metal oxides. Small, 2005, 1(8-9): 889-898P
    
    [82] Blanchard J, Ribot F, Sanchez C, Bellot P V, Trokiner A. Structuralcharacterization of titanium-oxo-polymers synthesized in the presence of protons or complexing ligands as inhibitors. J Non-Cryst Solids, 2000, 265(1-2): 83-97P
    [83] Soler-Illia G J A A, Louis A, Sanchez C. Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chem Mater, 2002, 14(2): 750-759P
    [84] Kanei N, Tamura Y, Kunieda H. Effect of Types of Perfume Compounds on the Hydrophile-Lipophile Balance Temperature. J Colloid Interface Sci, 1999,218(1): 13-22P
    [85] Jana S K, Nishida R, Shindo K, Kugita T, Namba S. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous Mesoporous Mater, 2004, 68(1-3): 133-142P
    [86] Hamoudi S, Belkacemi K. Cubic mesoporous silica with tailored large pores. J Porous Mater, 2004, 11(1): 47-54P
    [87] Kleitz F, Blanchard J, Zibrowius B, Schuth F, Agren P, Linden M. Influence of cosurfactants on the properties of mesostructured materials. Langmuir. 2002, 18(12): 4963-4971P
    [88] Sayari A. Unprecedented expansion of the pore size and volume of periodic mesoporous silica. Angew Chem Int Ed, 2000, 39(16): 2920-2922P
    [89] Khushalani D, Kuperman A, Ozin G A, Tanaka K, Garces J, Olken M M, Coombs N. Metamorphic Materials - Restructuring Siliceous Mesoporous Materials. Adv Mater, 1995, 7(10): 842-846P
    [90] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548-552P
    [91 ] Yu C Z, Fan J, Tian B Z, Stucky G D, Zhao D Y. Synthesis of mesoporous silica from commercial poly(ethylene oxide)/poly(butylene oxide) copolymers: Toward the rational design of ordered mesoporous materials. J Phys Chem B, 2003, 107(48): 13368-13375P
    [92] Feng P Y, Bu X H, Pine D J. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems. Langmuir, 2000, 16(12): 5304-531 OP
    [93] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): 37-38P
    [94] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO_2 Surfaces - Principles, Mechanisms, and Selected Results. Chem Rev, 1995, 95(3): 735-758P
    [95] Parkin I P, Palgrave R G Self-cleaning coatings. J Mater Chem, 2005, 15(17): 1689-1695P
    [96] Peng T Y, Zhao D. Dai K, Shi W, Hirao K. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J Phys Chem B, 2005, 109(11): 4947-4952P
    [97] Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. Catalysis Communications, 2005,6(2): 119-124P
    [98] Shibata H, Mukai T, Akita T, Ohkubo T, Sakai H, Abe M. Preparation of mesoporous titania particles with photocatalytic activity under visible-light irradiation. Chem Lett, 2005, 34(12): 1696-1697P
    [99] Yu J C, Wang X C, Fu X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem Mater, 2004,16(8): 1523-1530P
    [100] Zhang X H, Li W Z, Xu H Y. Application of zeolites in photocatalysis. Progress in Chemistry, 2004, 16(5): 728-737P
    [101] Wark M, Wellmann H, Rathousky J, Zukal A. Semiconductor nanoparticles in the channels of mesoporous silica and titania thin films. Amsterdam: Elsevier Science By, 2002:1457-1464页
    [102] Andersson M, Birkedal H, Franklin N R, Ostomel T, Boettcher S, Palmqvist A E C, Stucky G D. Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chem Mater, 2005, 17(6): 1409-1415P
    [103] Wang X C, Yu J C, Yip H Y, Wu L, Wong P K, Lai S Y. A mesoporous Pt/TiO_2 nanoarchitecture with catalytic and photocatalytic functions. Chem Eur J, 2005, 11(10): 2997-3004P
    [104] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature, 1997, 388(6641): 431-432P
    [105] Miyauchi M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Photoinduced surface reactions on TiO_2 and SrTiO_3 films: Photocatalvtic oxidation and photoinduced hydrophilicity. Chem Mater, 2000, 12(1): 3-5P
    [106] Henderson M A, Epling W S, Peden C H F, Perkins C L. Insights into photoexcited electron scavenging processes on TiO_2 obtained from studies of the reaction of O-2 with OH groups adsorbed at electronic defects on TiO_2(110). J Phys Chem B, 2003, 107(2): 534-545P
    [107] Machida M, Norimoto K, Watanabe T, Hashimoto K, Fujishima A. The effect of SiO_2 addition in super-hydrophilic property of TiO_2 photocatalyst. J Mater Sci, 1999, 34(11): 2569-2574P[108] Maeda M, Yamasaki S. Effect of silica addition on crystallinity and photo-induced hydrophilicity of titania-silica mixed films prepared by sol-gel process. Thin Solid Films, 2005, 483(1-2): 102-106P
    [109] Ren D S, Cui X L, Shen J, Zhang Q, Yang X L, Zhang Z J. Study on the superhydrophilicity of the SiO_2-TiO_2 thin films prepared by sol-gel method at room temperature. J Sol-Gel Sci Technol, 2004, 29(3): 131-136P
    [110] Guan K S, Lu B J, Yin Y S. Enhanced effect and mechanism of SiO_2 addition in super-hydrophilic property of TiO_2 films. Surf Coat Technol, 2003, 173(2-3): 219-223P
    [111] Miyauchi M, Nakajima A K, Watanabe T, Hashimoto K. Photoinduced hydrophilic conversion of TiO_2/WO_3 layered thin films. Chem Mater, 2002, 14(11): 4714-4720P
    [112] Yu J C, Ho W K, Lin J, Yip K Y, Wong P K. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO_2 films coated on a stainless steel substrate. Environ Sci Technol, 2003, 37(10): 2296-2301P
    [113] Xin J. Chen X M. Crystallization behavior and hydrophilic performances of V_2O_5-TiO_2 filims prepared by sol-gel dip-coating. J Cryst Growth, 2004, 270(3-4): 547-552P
    [114] Miyauchi M, Nakajima A, Watanabe T, Hashimoto K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater, 2002, 14(6): 2812-2816P
    [ 115] Liu Q J, Yang X K, Liu Q, Wang B L, Wu X H. Super-hydrophilicity of TiO_2/SnO_2 composite film. J Inorg Mater, 2003, 18(6): 1331-1336P
    [116] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. JPhotochem Photobiol C, 2000, 1(1): 1-21P
    [117] Oregan B, Gratzel M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO_2 Films. Nature, 1991, 353(6346): 737-740P
    [118] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chem Mater, 2004, 16(23): 4533-4542P
    [119] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583-585P
    [120] Ito S, Takeuchi T, Katayama T, Sugiyama M, Matsuda M, Kitamura T, Wada Y, Yanagida S. Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO_2 electrodes of dye-sensitized solar cells. Chem Mater, 2003, 15(14): 2824-2828P
    [121] Zukalova M, Zukal A, Kavan L, Nazeeruddin M K, Liska P, Gratzel M. Organized mesoporous TiO_2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Letters, 2005, 5(9): 1789-1792P
    
    [122] Ito S, Kitamura T, Wada Y, Yanagida S. Facile fabrication of mesoporous TiO_2 electrodes for dye solar cells: chemical modification and repetitive coating. Sol Energy Mater, 2003, 76(1): 3-13P
    [123] Coakley K M, Liu Y X, McGehee M D, Frindell K L, Stucky G D. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv Funct Mater, 2003, 13(4): 301-306P
    [124] Brinker C J, Lu Y F, Sellinger A, Fan H Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv Mater, 1999, 11(7):579-585P
    [125] Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I. Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature, 1997, 389(6649): 364-368P
    [126] Bruinsma P J, Kim A Y. Liu J. Baskaran S. Mesoporous silica synthesized by solvent evaporation: Spun fibers and spray-dried hollow spheres. Chem Mater, 1997, 9(11): 2507-2512P
    [127] Ogawa M. Formation of Novel Oriented Transparent Films of Layered Silica-Surfactant Nanocomposites. J Am Chem Soc, 1994, 116(17): 7941-7942P
    [128] Yang H, Coombs N, Sokolov I, Ozin G A. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature, 1996, 381(6583): 589-592P
    [129] Aksay I A, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger P M, Gruner S M. Biomimetic Pathways for Assembling Inorganic Thin Films. Science, 1996. 273(5277): 892-898P
    [130] Ogawa M. A simple set-gel route for the preparation of silica-surfactant mesostructured materials. Chem Commun, 1996(10): 1149-1150P
    [131] Klotz M. Albouy P A. Ayral A, Menager C, Grosso D, Van der Lee A. Cabuil V, Babonneau F, Guizard C. The true structure of hexagonal mesophase-templated silica films as revealed by X-ray scattering: Effects of thermal treatments and of nanoparticle seeding. Chem Mater, 2000. 12(6): 1721-I728P
    [132] Cagnol F, Grosso D, Soler-Illia G J d A A, Crepaldi E L, Babonneau F, Amenitsch H, Sanchez C. Humidity-controlled mesostructuration inCTAB-templated silica thin film processing. The existence of a modulable steady state. J Mater Chem, 2003, 13(1): 61-66P
    
    [133] Yusuf M M, Imai H, Hirashima H. Preparation of mesoporous TiO_2 thin films by surfactant templating. J Non-Cryst Solids, 2001, 285(1-3): 90-95P
    
    [134] Perez M D, Otal E, Bilmes S A, Soler-Illia G J A A, Crepaldi E L, Grosso D, Sanchez C. Growth of gold nanoparticle arrays in TiO_2 mesoporous matrixes. Langmuir, 2004, 20(16): 6879-6886P
    
    [135] Yusuf M M, Imai H, Hirashima H. Preparation of Porous Titania Film by Modified Sol-Gel Method and its Application to Photocatalyst. J Sol-Gel Sci Technol, 2002, 25: 65-74P
    
    [136] Holmqvist P, Alexandridis P, Lindman B. Modification of the microstructure in block copolymer-water-"oil" systems by varying the copolymer composition and the "oil" type: Small-angle X-ray scattering and deuterium-NMR investigation. J Phys Chem B, 1998, 102(7): 1149-1158P
    
    [137] Holmqvist P, Alexandridis P, Lindman B. Modification of the microstructure in poloxamer block copolymer-water-"oil" systems by varying the "oil" type. Macromolecules, 1997, 30(22): 6788-6797P
    
    [138] Holmqvist P, Alexandridis P, Lindman B. Phase behavior and structure of ternary amphiphilic block copolymer-alkanol-water systems: Comparison of poly(ethylene oxide) poly(propylene oxide) to poly(ethylene oxide) poly(tetrahydrofuran) copolymers. Langmuir, 1997, 13(9): 2471-2479P
    
    [139] Calleja G, Serrano D P, Sanz R, Pizarro P, Garcia A. Study on the synthesis of high-surface-area mesoporous TiO_2 in the presence of nonionic surfactants. Ind Eng Chem Res, 2004, 43(10): 2485-2492P
    
    [140] Yun H S, Miyazawa K, Zhou H S, Honma I, Kuwabara M. Synthesis ofmesoporous thin TiO_2 films with hexagonal pore structures using triblock copolymer templates. Adv Mater,2001, 13(18): 1377-1380P
    [141] Nagaveni K, Hegde M S, Ravishankar N, Subbanna G N. Madrao G. Synthesis and structure of nanocrystalline TiO_2 with lower band gap showing high photocatalytic activity. Langmuir, 2004, 20(7): 2900-2907P
    [142] Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO_2 in heterogeneous photocata lysis for phenol oxidation in water. J Phys Chem B,2000, 104(19): 4815-4820P
    [143] Peng T Y, Zhao D, Song H B, Yan C H. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. J Mol Cata A, 2005, 238(1-2): 119-126P
    [144] Yu J C, Zhang L Z, Zheng Z, Zhao J C. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater, 2003, 15(11): 2280-2286P
    [145] Soler-Illia G J A A, Scolan E, Louis A. Albouy P-A, Sanchez C. Design of meso-structured titanium oxo based hybrid organic-inorganic networks. New J Chem, 2001, 25: 156-165P
    [146] Bersani D, Lottici P P. Ding X Z. Phonon confinement effects in the Raman scattering by TiO_2 nanocrystals. Appl Phys Lett, 1998, 72(1): 73-75P
    [147] Brioude A, Lequevre F, Mugnier J, Dumas J, Guiraud G Plenet J C. Raman spectroscopy of sol-gel ultrathin films enhanced by surface plasmon polaritons. J Appl Phys, 2000, 88(11): 6187-6191P
    [148] Wu L. Yu J C, Zhang L Z, Wang X C. Ho W K. Preparation of a highly active nanocrystalline TiO_2 photocatalyst from titanium oxo cluster precursor. J Solid State Chem, 2004, 177(7): 2584-2590P
    [149] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater, 2001, 13(10): 3169-3183P
    [150] Ball P C, Evans R. Temperature-Dependence Of Gas-Adsorption On A Mesoporous Solid - Capillary Criticality And Hysteresis. Langmuir, 1989, 5(3):714-723P
    [151] Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Adv Mater, 2003, 15(17): 1462-1465P
    [152] Ostomel T A, Stucky G D. Free-standing mesoporous titania films with anatase nanocrystallites synthesized at 80 degrees C. Chem Commun, 2004(8): 1016-1017P
    [153] Li Q C, Harter P, Xue W M, Zuo J L, Herrmann W A. Mesoporous titania nanostructures thermally stabilized by doping with "sodium oxide". J Chem Soc, Dalton Trans, 2001(19): 2719-2720P
    [154] Liu C Q, Lei F B, Economy J. A simple, template-free route for the synthesis of mesoporous titanium dioxide materials. J Mater Chem. 2004, 14(7): 1187-1189P
    [155] Sen T, Tiddy G J T, Cascic J L, Anderson M W. Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion. Chem Commun, 2003(17): 2182-2183P
    [156] Cheng C F, Lin Y C, Cheng H H, Chen Y C. The effect and model of silica concentrations on physical properties and particle sizes of three-dimensional SBA-16 nanoporous materials. Chem Phys Lett, 2003, 382(5-6): 496-501P
    [157] Tan B, Lehmler H J, Vyas S M, Knutson B L, Rankin S E. Controllingnanopore size and shape by fluorosurfactant templating of silica. Chem Mater. 2005, 17(4): 916-925P
    [158] Agren P, Linden M, Rosenholm J B, Schwarzenbacher R, Kriechbaum M, Amenitsch H, Laggner P, Blanchard J, Schuth F. Kinetics of cosurfactant-surfactant-silicate phase behavior. 1. Short-chain alcohols. J Phys Chem B, 1999, 103(29): 5943-5948P
    [159] Blin J L, Lesieur P, Stebe M J. Nonionic fluorinated surfactant: Investigation of phase diagram and preparation of ordered mesoporous materials. Langmuir, 2004, 20(2): 491-498P
    [160] Wang L M, Tian B Z, Fan H, Liu X Y, Yang H F. Yu C Z, Tu B, Zhao D Y. Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an "acid-base pair" route. Microporous Mesoporous Mater, 2004, 67(2-3): 123-133P
    [161] Hwang Y K, Patil K R, Jhung S H, Chang J S, Ko Y J, Park S E. Control of pore size and condensation rate of cubic mesoporous silica thin films using a swelling agent. Microporous Mesoporous Mater, 2005. 78(2-3): 245-253P
    [162] Kleitz F, Kim T W. Ryoo R. Phase domain of the cubic im3m mesoporous silica in the EO106PO70EO106-butanol-H2O system. Langmuir, 2006, 22(1):440-445P
    [163] Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D Y. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J Am Chem Soc, 2002, 124(17): 4556-4557P
    [164] Bao X Y, Zhao X S, Li X, Chia P A, Li J. A novel route toward the synthesis of high-quality large-pore periodic mesoporous organosilicas. JPhys Chem B, 2004, 108(15): 4684-4689P
    [165] Bao X Y, Zhao X S, Qiao S Z, Bhatia S K. Comparative analysis of structural and morphological properties of large-pore periodic mesoporous organosilicas and pure silicas. J Phys Chem B, 2004, 108(42): 16441-16450P
    [166] Bao X Y, Zhao X S. Morphologies of large-pore periodic mesoporous organosilicas. J Phys Chem B, 2005, 109(21): 10727-10736P
    [167] Zhang Z D, Yan X X, Tian B Z, Shen S D, Chen D H, Zhu G S, Qiu S L, Zhao D Y. Synthesis of large-pore periodic mesoporous organosilica (PMO) with bicontinuous cubic structure of Ia-3d symmetry. Chem Lett, 2005,34(2): 182-183P
    [168] Yang P D, Zhao D Y, Chmelka B F, Stucky G D. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem Mater, 1998, 10(8): 2033-2036P
    [169] Grosso D, Soler-Illia G J D A A, Babonneau F, Sanchez C, Albouy P A, Brunet-Bruneau A, Balkenende A R. Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Adv Mater, 2001, 13(14): 1085-1090P
    [170] Yuan S, Sheng Q R, Zhang J L, Chen F, Anpo M, Zhang Q H. Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater, 2005, 79(1-3): 93-99P
    [171] Zhu K R, Zhang M S, Chen Q, Yin Z. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO_2 nanocrystal. Phys Lett A, 2005, 340(1-4): 220-227P
    [172] Choi H C. Jung Y M, Kim S B. Size effects in the Raman spectra of TiO_2 nanoparticles. Vib Spectrosc, 2005, 37(1): 33-38P
    [ 173] Zhao D, Yang P, Melosh N, Feng J, Chmelka B F, Stucky G D. Continuous mesoporous silica films with highly ordered large pore structures. Adv Mater, 1998. 10(16): 1380-1385P
    [174] Lukens W W, Yang P D, Stucky G D. Synthesis of mesocellular silica foams with tunable window and cell dimensions. Chem Mater, 2001, 13(1): 28-34P
    [175] Klok H A, Lecommandoux S. Supramolecular materials via block copolymer self-assembly. Adv Mater, 2001, 13(16): 1217-1229P
    [176] Soler-Illia G J D A, Crepaldi E L, Grosso D, Sanchez C. Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci, 2003,8(1): 109-126P
    [ 177] Mortensen K. PEO-related block copolymer surfactants. Colloids Surf, A, 2001, 183:277-292P
    [178] Zhao D Y, Yang P D, Huo Q S, Chmelka B F, Stucky G D. Topological construction of mesoporous materials. Curr Opin Solid State Mater Sci, 1998,3(1): 111-121P
    [179] Wanka G, Hoffmann H, Ulbricht W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules, 1994, 27(15): 4145-4159P
    [180] Pedersen J S, Gerstenberg M C. The structure of P85 Pluronic block copolymer micelles determined by small-angle neutron scattering. Colloids Surf, A. 2003, 213(2-3): 175-187P
    [181] Zhang K W. Khan A. Phase-Behavior of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Water. Macromolecules, 1995. 28(11): 3807-3812P
    
    [182] Malmsten M, Lindman B. Water Self-Diffusion in Aqueous Block Copolymer Solutions. Macromolecules, 1992, 25(20): 5446-5450P
    
    [183] Mortensen K, Pedersen J S. Structural Study on the Micelle Formation of Poly(Ethylene Oxide) Poly(Propylene Oxide) Poly(Ethylene Oxide) Triblock Copolymer in Aqueous-Solution. Macromolecules, 1993, 26(4): 805-812P
    
    [184] Sakamoto Y, Kim T W, Ryoo R, Terasaki O. Three-dimensional structure of large-pore mesoporous cubic Ia(3)over-bard silica with complementary pores and its carbon replica by electron crystallography. Angew Chem Int Ed, 2004, 43(39): 5231-5234P
    
    [185] Kleitz F, Solvyov L A, Anilkumar G M, Choi S H, Ryoo R. Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer-butanol-water system. Chem Commun, 2004(13): 1536-1537P
    
    [186] Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem Mater, 2002, 14(8): 3284-3294P
    
    [187] Wark M, Tschirch J, Bartels O, Bahnemann D, Rathousky J. Photocatalytic activity of hydrophobized mesoporous thin films of TiO_2. Microporous Mesoporous Mater, 2005, 84(1-3): 247-253P
    
    [188] Frindell K L, Bartl M H, Popitsch A, Stucky G D. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew Chem Int Ed, 2002, 41(6): 959-962P
    
    [189] Armstrong J, Chowdhry B, Mitchell J, Beezer A, Leharne S. Effect ofCosolvents and Cosolutes upon Aggregation Transitions in Aqueous Solutions of the Poloxamer F87 (Poloxamer P237): A High Sensitivity Differential Scanning Calorimetry Study. J Phys Chem, 1996, 100(5): 1738-1745P
    [190] Soler-Illia G, Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic-inorganic composites. New J Chem, 2000, 24(7): 493-499P
    [191] Scolan E, Magnenet C, Massiot D, Sanchez C. Surface and bulk characterisation of titanium-oxo clusters and nanosized titania particles through O-17 solid state NMR. J Mater Chem, 1999, 9(10): 2467-2474P
    [192] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis. Chem Rev, 1995, 95(1): 69-96P
    [193] Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem Rev, 1995, 95(1): 49-68P
    [194] Zhang X T, Sato O, Taguchi M, Einaga Y, Murakami T, Fujishima A. Self-cleaning particle coating with antireflection properties. Chem Mater, 2005, 17(3): 696-700P
    [195] Liu H, Feng L, Zhai J, Jiang L, Zhu D B. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir, 2004, 20(14): 5659-5661P
    [196] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed, 2004, 43(3): 357-360P[197] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F. Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir, 2006, 22(6): 2856-2862P
    [198] Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546-551P
    [199] Bico J, Thiele U, Quere D. Wetting of textured surfaces. Colloids Surf, A, 2002, 206(1-3): 41-46P
    [200] Bico J, Tordeux C, Quere D. Rough wetting. Europhys Lett, 2001, 55(2): 214-220P
    [201] Bico J, Marzolin C, Quere D. Pearl drops. Europhys Lett, 1999, 47(2): 220-226P
    [202] Shirtcliffe N J, Mchale G, Newton M I, Perry C C, Roach P. Porous materials show superhydrophobic to superhydrophilic switching. Chem Commun, 2005(25): 3135-3137P
    [203] Addamo M, Augugliaro V, Di Paola A, Garcia-Lopez E, Loddo V, Marci G, Molinari R, Palmisano L, Schiavello M. Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO_2 catalysts. J Phys Chem B, 2004, 108(10): 3303-331 OP
    [204] Spurr R A, Myers H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal Chem, 1957, 29: 760-762P
    [205] Yu Y, Yu J C, Yu J G, Kwok Y C, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Enhancement of photocatalytic activity of mesoporous TiO_2 by using carbon nanotubes. Appl Catal A: Gen, 2005, 289(2): 186-196P
    
    [206] Chang H, Huang P J. Thermo-Raman studies on anatase and rutile. J Raman Spectrosc, 1998, 29(2): 97-102P
    [207] Goti M. Ivanda M, Popovi S, Musi S, Sekuli A, Turkovi A, Furi K. Ramaninvestigation of nanosized TiO_2. J Raman Spectrosc, 1997, 28(7): 555-558P
    [208] Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase deposition. J Phys Chem B, 2003, 107(50): 13871-13879P
    [209] Li G S, Li L P, Boerio-Goates J, Woodfield B F. High purity anatase TiO_2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc, 2005, 127(24): 8659-8666P
    [210] Chen H, Dai K, Peng T Y, Yang H P, Zhao D. Synthesis of thermally stable mesoporous titania nanoparticles via amine surfactant-mediated templating method. Mater Chem Phys, 2006, 96(1): 176-181P
    [211] Takeuchi M, Martra G, Coluccia S, Anpo M. Investigations of the structure of H_2O clusters adsorbed on TiO_2 surfaces by near-infrared absorption spectroscopy. J Phys Chem B, 2005, 109(15): 7387-7391P
    [212] Kanta A, Sedev R, Ralston J. Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania. Langmuir, 2005, 21(6):2400-2407P
    [213] Xin B F, Jing L Q, Ren Z Y, Wang B Q, Fu H G Effects of simultaneously doped and deposited ag on the photocatalytic activity and surface states of TiO_2. J Phys Chem B. 2005, 109(7): 2805-2809P
    [214] Zhang Y H, Xu H L, Xu Y X, Zhang H X, Wang Y G The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO_2 aqueous solution. J Photochem Photobiol A, 2005, 170(3): 279-285P
    |2I5] Wu J M. Zhang T W, Zeng Y W. Hayakawa S, Tsuru K, Osaka A. Large-scale preparation of ordered titania nanorods with enhancedphotocatalytic activity. Langmuir, 2005, 21(15): 6995-7002P
    [216] Mao L Q, Li Q L, Dang H X, Zhang Z J. Synthesis of nanocrystalline TiO_2 with high photoactivity and large specific surface area by sol-gel method. Mater Res Bull, 2005, 40(2): 201-208P
    [217] You X F, Chen F, Zhang J L. Effects of calcination on the physical and photocatalytic properties of TiO_2 powders prepared by sol-gel template method. J Sol-Gel Sci Technol, 2005, 34(2): 181-187P
    [218] Kominami H, Murakami S, Kato J, Kera Y, Ohtani B. Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems. J Phys Chem B, 2002, 106(40): 10501-10507P
    [219] Wang C C, Zhang Z B, Ying J Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostructured Materials, 1997, 9(1-8): 583-586P
    [220] Zhang Z, Wang C-C, Zakaria R, Ying J Y. Role of Particle Size in Nanocrystalline TiO_2-Based Photocatalysts. J Phys Chem B, 1998, 102(52): 10871-10878P
    [221] Yu J C, Zhang L Z, Yu J G Direct sonochemical preparation and characterization of highly active mesoporous TiO_2 with a bicrystalline framework. Chem Mater, 2002, 14(11): 4647-4653P
    [222] Zhao J, Wu T, Wu K, Oikawa K, Hidaka H, Serpone N. Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine Bin Aqueous Anionic Surfactant/TiO_2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO_2 Particles. Environ Sci Technol, 1998, 32(16): 2394-2400P
    [223] Zhang T Y, Oyama T, Aoshima A, Hidaka H, Zhao J C, Serpone N.Photooxidative N-demethylation of methylene blue in aqueous Ti dispersions under UV irradiation. J Photochem Photobiol A, 2001, 140(2): 163-172P
    [224] Serpone N, Salinaro A, Emeline A V, Horikoshi S, Hidaka H, Zhao J C. An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochemical & Photobiological Sciences, 2002, 1(12): 970-981P
    [225] McHale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I. Topography Driven Spreading. Phys Rev Lett, 2004, 93(3): 036102P
    [226] Salem I. Recent studies on the catalytic activity of titanium, zirconium, and hafnium oxides. Cat Rev-Sci Eng, 2003, 45(2): 205-296P
    [227] Dhar G M, Srinivas B N, Rana M S, Kumar M, Maity S K. Mixed oxide supported hydrodesulfurization catalysts - a review. Catal Today, 2003, 86(1-4): 45-60P
    [228] Reddy B M, Khan A. Recent advances on TiO_2-ZrO_2 mixed oxides as catalysts and catalyst supports. Cat Rev-Sci Eng, 2005, 47(2): 257-296P
    [229] Cao Y, Zhang X T, Yang W S, Du H, Bai Y B, Li T J, Yao J N. A bicomponent TiO_2/SnO_2 particulate film for photocatalysis. Chem Mater, 2000, 12(11): 3445-3448P
    [230] Higashimoto S, Kitahata N, Mori K, Azuma M. Photo-electrochemical properties of amorphous WO_3 supported on TiO_2 hybrid catalysts. Catal Lett. 2005, 101(1-2): 49-51P
    [231] Tada H, Kokubu A, Iwasaki M, Ito S. Deactivation of the TiO_2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO_3. Langmuir, 2004, 20(11): 4665-4670P
    [232] Nakamura M. Hydrophilic and photocatalytic properties of the SiO_2/TiO_2 double layers. Thin Solid Films, 2006, 496(1): 131-135P
    [233] Reddy B M, Chowdhury B, Smirniotis P G An XPS study of the dispersion of MoO_3 on TiO_2-ZrO_2, TiO_2-SiO_2, TiO_2-Al2_O_3, SiO_2-ZrO_2, and SiO_2-TiO_2-ZrO_2 mixed oxides. Appl Catal A: Gen, 2001, 211(1): 19-30P
    [234] Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M. Photoactivity and phase stability of ZrO_2-doped anatase-type TiO_2 directly formed as nanometer-sized particles by hydrothermal conditions. J Solid State Chem, 2003, 170(1): 39-47P
    [235] Hirano M, Nakahara C, Ota K, Inagaki M. Direct formation of zirconia-doped titania with stable anatase-type structure by thermal hydrolysis. J Am Ceram Soc, 2002, 85(5): 1333-1335P
    [236] Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A, 1976, 32(5):751-767P
    [237] Sobol A A, Voronko Y K. Stress-induced cubic-tetragonal transformation in partially stabilized ZrO_2: Raman spectroscopy study. J Phys Chem Solids, 2004, 65(6): 1103-1112P
    [238] Lottici P P, Bersani D, Braghini M, Montenero A. Raman scattering characterization of gel-derived titania glass. J Mater Sci, 1993, 28(1): 177-183P
    [239] Shi L, Tin K C, Wong N B. Thermal stability of zirconia membranes. J Mater Sci, 1999, 34(14): 3367-3374P
    [240] Mirgorodsky A P, Smirnov M B, Quintard P E. Phonon spectra evolution and soft-mode instabilities of zirconia during the c-t-m transformation. J Phys Chem Solids, 1999, 60(7): 985-992P
    [241] C. H. Perry F L D W L B A. Phonons and phase transitions in zirconia. J Raman Spectrosc, 1990, 21(9): 577-584P
    [242] Stefanic G, Music S, Sekulic A. Influence of precipitation chemistry and ball-milling on the thermal behavior of zirconium hydroxide. Thermochim Acta, 1996,273: 119-133P
    [243] Li Y L, Ishigaki T. Controlled one-step synthesis of nanocrystalline anatase and rutile TiO_2 powders by in-flight thermal plasma oxidation. J Phys Chem B, 2004, 108(40): 15536-15542P
    [244] Yu X F, Wu N Z, Xie Y C, Tang Y Q. A monolayer dispersion study of titania-supported copper oxide. J Mater Chem, 2000, 10(7): 1629-1634P
    [245] Riyas S, Das P N M. Effect of Fe_2O_3 and Cr_2O_3 on anatase-rutile transformation in TiO_2. Br Ceram Trans, 2004, 103(1): 23-28P
    [246] Gennari F C, Pasquevich D M. Enhancing effect of iron chlorides on the anatase-rutile transition in titanium dioxide. J Am Ceram Soc, 1999, 82(7): 1915-1921P
    [247] Cristallo G, Roncari E, Rinaldo A, Trifiro F. Study of anatase-rutile transition phase in monolithic catalyst V_2O_5/TiO_2 and V_2O_5-WO_3/TiO_2. Appl Catal A: Gen, 2001, 209(1-2): 249-256P
    [248] Grzmil B, Kic B, Rabe M. Inhibition of the anatase - Rutile phase transformation with addition of K_2O, P_2O_5, and Li_2O. Chem Pap-Chem Zvesti.2004, 58(6):410-414P
    [249] Komornicki S, Radecka M, Sobas P. Structural properties of TiO_2-WO_3 thin films prepared by rf sputtering. J Mater Sci - Mater Electron, 2004, 15(8): 527-531P
    [250] Sekulic J, Magraso A, ten Elshof J E, Blank D H A. Influence of ZrO_2 addition on microstructure and liquid permeability of mesoporous TiO_2
    membranes. Microporous Mesoporous Mater, 2004, 72(1-3): 49-57P
    [251] Liu B S, Zhao X J, Zhao Q N, Li C L, He X. The effect of O-2 partial pressure on the structure and photocatalytic property of TiO Tio-2 films prepared by sputtering. Mater Chem Phys, 2005, 90(1): 207-212P
    [252] Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sekulic A, uric K. Chemical and microstructural properties of TiO_2 synthesized by sol-gel procedure. Mater Sci Eng, B, 1997, 47(1): 33-40P
    [253] Fan J F, Yates J T. Mechanism of photooxidation of trichloroethylene on TiO_2: Detection of intermediates by infrared spectroscopy. J Am Chem Soc, 1996, 118(19): 4686-4692P
    [254] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Photogeneration of highly amphiphilic TiO_2 surfaces. Adv Mater, 1998, 10(2): 135-138P
    [255] Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K. Effect of ultrasonic treatment on highly hydrophilic TiO_2 surfaces. Langmuir, 1998, 14(20): 5918-5920P
    [256] Takeuchi M, Sakamoto K, Martra G, Coluccia S, Anpo M. Mechanism of photoinduced superhydrophilicity on the TiO_2 photocatalyst surface. J Phys Chem B, 2005, 109(32): 15422-15428P
    [257] Peiro A M, Peral J, Domingo C, Domenech X, Ayllon J A. Low-temperature deposition of TiO_2 thin films with photocatalytic activity from colloidal anatase aqueous solutions. Chem Mater, 2001, 13(8): 2567-2573P
    [258] Stefanc I I, Music S, Stefanic G, Gajovic A. Thermal behavior of ZrO_2 precursors obtained by sol-gel processing. J Mol Struct, 1999, 480-481: 621-625P
    [259] Petkov N, Holzl M, Metzger T H, Mintova S, Bein T. Ordered micro/mesoporous composite prepared as thin films. J Phys Chem B, 2005, 109(10): 4485-4491P
    
    [260] Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chem Commun, 2002(5): 504-505P
    
    [261 ] Wang X C. Yu J C, Ho C M, Hou Y D, Fu X Z. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552-2559P
    
    [262] Yu J C, Yu J G, Zhang L Z, Ho W K. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO_2 powders. J Photochem Photobiol A, 2002, 148(1-3): 263-271P
    
    [263] Das D, Mishra H K, Pradhan N C, Dalai A K, Parida K M. Studies on structural properties, surface acidity and benzene isopropylation activity of sulphated ZrO_2-TiO_2 mixed oxide catalysts. Microporous Mesoporous Mater. 2005, 80(1-3): 327-336P
    
    [264] Das D, Mishra H K, Parida K M, Dalai A K. Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO_2-TiO_2 mixed oxides. J Mol Cata A, 2002, 189(2): 271-282P
    
    [265] Hernandez-Alonso M D, Tejedor-Tejedor I, Coronado J M. Soria J, Anderson M A. Sol-gel preparation of TiO_2-ZrO_2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity. Thin Solid Films, 2006, 502(1-2): 125-131P
    
    [266] Tanabe K, Sumiyoshi T, Shibata K, Kiyoura T, Kitagawa J. A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bull Chem Soc Jpn, 1974,47(5): 1064-1066P
    [267] Kung H H. Formation of new acid sites in dilute oxide solid solutions: A predictive model. J Solid State Chem, 1984, 52(2): 191-196P
    [268] Fu X Z, Clark L A, Yang Q, Anderson M A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO_2/SiO_2 and TiO_2/ZrO_2. Environ Sci Technol, 1996, 30(2): 647-653P
    [269] Samantaray S K, Parida K. Effect of phosphate ion on the textural and catalytic activity of titania-silica mixed oxide. Appl Catal A: Gen, 2001, 220(1-2): 9-20P
    [270] Dines T J, MacGregor L D, Rochester C H. IR spectroscopic investigation of the interaction of quinoline with acidic sites on oxide surfaces. Langmuir, 2002, 18(6): 2300-2308P
    [271] Manriquez M E, Lopez T, Gomez R, Navarrete J. Preparation of TiO_2-ZrO_2 mixed oxides with controlled acid-basic properties. J Mol Cata A, 2004, 220(2): 229-237P
    [272] Yu J C, Lin J, Kwok R W M. Ti_1-xZr_xO_2 solid solutions for the photocatalytic degradation of acetone in air. J Phys Chem B, 1998, 102(26): 5094-5098P
    [273] Sclafani A, Herrmann J M. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. J Phys Chem, 1996, 100(32): 13655-13661P
    [274] Vafaei S, Podowski M Z. Analysis of the relationship between liquid droplet size and contact angle. Adv Colloid Interface Sci, 2005, 113(2-3): 133-146P
    [275] Kwok D Y, Neumann A W. Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci, 1999, 81(3): 167-249P
    [276] Young T. An Essay on the Cohesion of Fluids. Philos Trans R Soc London, 1805, 95:65-87P
    
    [277] Leboda R, Turov V V, Marciniak M, Malygin A A, Malkov A A. Characteristics of the hydration layer structure in porous titania-silica obtained by the chemical vapor deposition method. Langmuir, 1999, 15(24): 8441-8446P
    
    [278] Zhang F, Wolf G K, Wang X H, Liu X H. Surface properties of silver doped titanium oxide films. Surf Coat Technol, 2001, 148(1): 65-70P
    
    [279] Grzybowska B, Sloczyski J, Grabowski R, Samson K, Gressel I, Wcislo K, Gengembre L, Barbaux Y. Effect of doping of TiO_2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia-titania catalysts. Appl Catal A: Gen. 2002. 230(1-2): 1-10P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700