锰离子增强磁共振成像技术及其在研究大鼠脑功能活动和神经投射中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙离子(Ca~(2+))是重要的神经传导介质,在神经元的功能活动中起着极为重要的作用。生物学上,锰离子(Mn~(2+))是Ca~(2+)的类似物,可通过电压门控Ca~(2+)通道进入神经元,并可通过微管系统在神经细胞内传输。同时,Mn~(2+)具有顺磁性,可用作磁共振成像造影剂。基于Mn~(2+)的这两个特性,Lin和Koretsky在1997年提出了锰离子增强磁共振成像(MEMRI)技术,他们利用Mn~(2+)作为Ca~(2+)的示踪剂,显示功能或病理状态下Ca~(2+)在神经细胞内外以及神经突触间的传递过程,并以此来记录和反映神经元的功能活动。经过几年的发展,该项技术已被广泛用来研究大脑功能活动,追踪神经传导路径和显示脑组织精细结构等方面。
     本论文首先研究了在进行MEMRI时所涉及的一些基础问题,包括锰化合物的选择、脑内注射锰化合物对神经元的影响以及不同引入锰离子方式对磁共振成像结果的影响等。综合考虑其易得性、水溶性、氧化还原性以及对水质子弛豫时间影响大小等多种因素,我们决定采用MnCl2作为锰离子增强磁共振成像的对比剂。鉴于Mn~(2+)具有生物毒性,我们观察了脑内注射不同浓度MnCl2溶液对注射点附近神经元数目的影响。发现注射100 nL浓度为200mM的MnCl2溶液不会导致注射点附近神经元数量的显著减少,而相同体积的浓度为400mM的溶液会导致神经元数目明显减少。在生物体内引入外源性Mn~(2+)的不同方式(如自由口腔摄入、腹腔注射和侧脑室注射等)会对MEMRI的结果产生影响。自由口腔摄入是一种较为安全的方式,但通过此种方式进入脑组织的Mn~(2+)量比较少,不易产生高对比度的T1加权磁共振像。腹腔注射条件下,Mn~(2+)可较快进入脑室,但是由于血脑屏障的存在使之不能快速进入脑组织,即使在使用α-氯代丙三醇部分破坏血脑屏障后也不能快速进入,说明了Mn~(2+)通过血脑屏障的能力有限。侧脑室注射可使Mn~(2+)更快进入脑实质,并在海马锥体细胞区及腹侧苍白球处产生明显沉积。这些研究结果说明,锰化合物的种类,Mn~(2+)的浓度以
Calcium ion (Ca~(2+)) is an important substrate for neurotransmission, which plays an essential role in neural function. Biologically divalent manganese ion (Mn~(2+)) is an analog to Ca~(2+), which can enter neurons via voltage-gated Ca~(2+) channels and be transported through neuronal microtubule system. In addition, Mn~(2+) is paramagnetic and can be used as contrast agent in magnetic resonance imaging (MRI). Taking advantage of these properties of Mn~(2+), Lin and Koretsky developed manganese-enhanced magnetic resonance imaging (MEMRI) in 1997. Using Mn~(2+) as the tracer for Ca~(2+), they showed that, serving as the surrogate for neuronal activities, the intracellular and trans-synaptic transport of Mn~(2+) in the central nervous system could be monitored and recorded by MRI. Nowadays, this method has found wide applications in studying brain and heart activities, neuronal tracts tracing and delineation of fine cerebral neuroarchitecture etc.
     In this dissertation, three basic questions in MEMRI were addressed. First, which manganese compound is the most suitable for MEMRI? Based on experimental evidence and taking into account the availability, water solubility, redox properties, toxicity and relaxitivity of the manganese compounds, MnCl2 were selected for use in MEMRI. Secondly, at which concentration and dosage, intracerebrally injected MnCl2 will not cause significant toxicity to neurons near the injection site? The experiments showed that injecting 100 nL of 400mM MnCl2 solution into brain result in significant neuronal loss, but injection of the same amount of 200mM MnCl2 solution is safe. Thirdly, how should exogenous Mn~(2+) be administered into the subjects? The results showed that oral administration, though safe and less stressful, results in only minimal manganese deposition in the brain. Intraperitonially injected Mn~(2+) rapidly enters cerebral ventricles via choroid plexus in mice, but the transportation to brain parenchyma is slow due to the limited ability of Mn~(2+) to cross blood brain barrier (BBB) even when it is partly damaged by (S)-3-chloro-1,2-propanediol. In comparison, intraventricularlly injected Mn~(2+) can enter brain parenchyma more rapidly, and deposit selectively in the hippocampus and ventral globus pallidus. These studies suggest that in MEMRI one should choose the
引文
[1] Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69(1-2): 37-8
    [2] Bloch F. Nuclear induction. Phys Rev 1946; 70(7-8): 460-85
    [3] Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Nature 1973; 242: 190-1
    [4] Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C 1977; 10: 55-8
    [5] Price RR, Creasy JL, Lorenz CH, et al. Magnetic resonance angiography techniques. Invest Radiol 1992; 27 Suppl 2: S27-32
    [6] Brown TR. Practical applications of chemical shift imaging. NMR Biomed 1992; 5(5): 238-43
    [7] Ahn CB, Cho ZH. Diffusion and perfusion in high resolution NMR imaging and microscopy. Magn Reson Med 1991; 19(2): 228-32
    [8] Moseley M. Diffusion tensor imaging and aging - a review. NMR Biomed 2002; 15(7-8): 553-60
    [9] Ogawa S, Lee TM, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14(1): 68-78
    [10] Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87(24): 9868-72
    [11] Detre JA, Leigh JS, Williams DS, et al. Perfusion imaging. Magn Reson Med 1992; 23(1): 37-45
    [12] Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89(12): 5675-9
    [13] Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997; 38(3): 378-88
    [14] Hunter DR, Komai H, Haworth RA, et al. Comparison of Ca2+, Sr2+, and Mn2+ fluxes in mitochondria of the perfused rat heart. Circ Res 1980; 47(5): 721-7
    [15] Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984; 348: 493-510
    [16] Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990; 510(2): 289-95
    [17] Aoki I, Tanaka C, Takegami T, et al. Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med 2002; 48(6): 927-33
    [18] Duong TQ, Silva AC, Lee SP, et al. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med 2000; 43(3): 383-92
    [19] Geraldes CF, Sherry AD, Brown RD, 3rd, et al. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging. Magn Reson Med 1986; 3(2): 242-50
    [20] Lauterbur PC, Mendonca Dias MH, Rudin AM. Augmentation of tissue proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. In Dutton PO, Leigh J, Scarpa A, eds. Frontiers of Biological Energetics. New York: Academic Press, 1978. pp. 752-9
    [21] Mildvan AS, Cohn M. Magnetic Resonance Studies of the Interaction of the Manganous Ion with Bovine Serum Albumin. Biochemistry 1963; 2: 910-9
    [22] Eisinger J, Fawaz-Estrup F, Shulman RG. Binding of Mn2+ to Nucleic Acids. J Chem Phys 1965; 42: 43-53
    [23] Fabry ME, Eisenstadt M. Water exchange between red cells and plasma. Measurement by nuclear magnetic relaxation. Biophys J 1975; 15(11): 1101-10
    [24] Koretsky AP, Silva AC. Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 2004; 17(8): 527-31
    [25] Minamitani H, Tsukada K, Sekizuka E, et al. Optical bioimaging: from living tissue to a single molecule: imaging and functional analysis of blood flow in organic microcirculation. J Pharmacol Sci 2003; 93(3): 227-33
    [26] Aoki I, Ebisu T, Tanaka C, et al. Detection of the anoxic depolarization of focal ischemia using manganese-enhanced MRI. Magn Reson Med 2003; 50(1): 7-12
    [27] Aoki I, Wu YJ, Silva AC, et al. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 2004; 22(3): 1046-59
    [28] Watanabe T, Natt O, Boretius S, et al. In vivo 3D MRI staining of mouse brain after subcutaneous application of MnCl2. Magn Reson Med 2002; 48(5): 852-9
    [29] Morita H, Ogino T, Fujiki N, et al. Sequence of forebrain activation induced by intraventricular injection of hypertonic NaCl detected by Mn2+ contrasted T1-weighted MRI. Auton Neurosci 2004; 113(1-2): 43-54
    [30] Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002; 16(2): 441-8
    [31] Allegrini PR, Wiessner C. Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnCl2. NMR Biomed 2003; 16(5): 252-6
    [32] Leergaard TB, Bjaalie JG, Devor A, et al. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. Neuroimage 2003; 20(3): 1591-600
    [33] Lin CP, Tseng WY, Cheng HC, et al. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001; 14(5): 1035-47
    [34] Pautler RG, Mongeau R, Jacobs RE. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003; 50(1): 33-9
    [35] Saleem KS, Pauls JM, Augath M, et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 2002; 34(5): 685-700
    [36] Tindemans I, Verhoye M, Balthazart J, et al. In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 2003; 18(12): 3352-60
    [37] Watanabe T, Michaelis T, Frahm J. Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn Reson Med 2001; 46(3): 424-9
    [38] Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998; 40(5): 740-8
    [39] Van der Linden A, Verhoye M, Van Meir V, et al. In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal controlsystem. Neuroscience 2002; 112(2): 467-74
    [40] Van der Linden A, Van Meir V, Tindemans I, et al. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 2004; 17(8): 602-12
    [41] Chiu JH, Cheng HC, Tai CH, et al. Electroacupuncture-induced neural activation detected by use of manganese-enhanced functional magnetic resonance imaging in rabbits. Am J Vet Res 2001; 62(2): 178-82
    [42] London RE, Toney G, Gabel SA, et al. Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride. Brain Res Bull 1989; 23(3): 229-35
    [43] Lucchini R, Albini E, Placidi D, et al. Brain magnetic resonance imaging and manganese exposure. Neurotoxicology 2000; 21(5): 769-75
    [44] Morita H, Ogino T, Seo Y, et al. Detection of hypothalamic activation by manganese ion contrasted T(1)-weighted magnetic resonance imaging in rats. Neurosci Lett 2002; 326(2): 101-4
    [45] Sun N, Li Y, Tian S, et al. Dynamic changes in orbitofrontal neuronal activity in rats during opiate administration and withdrawal. Neuroscience 2006; 138(1): 77-82
    [46] Yu X, Wadghiri YZ, Sanes DH, et al. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 2005; 8(7): 961-8
    [47] Krombach GA, Saeed M, Higgins CB, et al. Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl2 in rats. Radiology 2004; 230(1): 183-90
    [48] Hu TC, Pautler RG, MacGowan GA, et al. Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 2001; 46(5): 884-90
    [49] Brurok H, Skoglund T, Berg K, et al. Myocardial manganese elevation and proton relaxivity enhancement with manganese dipyridoxyl diphosphate. Ex vivo assessments in normally perfused and ischemic guinea pig hearts. NMR Biomed 1999; 12(6): 364-72
    [50] Wendland MF, Krombach GA, Higgins CB, et al. Contrast enhanced MRI of stunned myocardium using Mn-based MRI contrast media. Acad Radiol 2002; 9 Suppl 2: S341-2
    [51] Wendland MF, Saeed M, Lund G, et al. Contrast-enhanced MRI for quantification of myocardial viability. J Magn Reson Imaging 1999; 10(5): 694-702
    [52] Wyttenbach R, Saeed M, Wendland MF, et al. Detection of acute myocardial ischemia using first-pass dynamics of MnDPDP on inversion recovery echoplanar imaging. J Magn ResonImaging 1999; 9(2): 209-14
    [53] Wendland MF. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to imaging of the heart. NMR Biomed 2004; 17(8): 581-94
    [54] Nairismagi J, Pitkanen A, Narkilahti S, et al. Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo. Neuroimage 2006; 30(1): 130-5
    [55] Tindemans I, Boumans T, Verhoye M, et al. IR-SE and IR-MEMRI allow in vivo visualization of oscine neuroarchitecture including the main forebrain regions of the song control system. NMR Biomed 2006; 19(1): 18-29
    [56] Van Meir V, Verhoye M, Absil P, et al. Differential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic resonance imaging study. Neuroimage 2004; 21(3): 914-23
    [57] Chuang KH, Koretsky A. Improved neuronal tract tracing using manganese enhanced magnetic resonance imaging with fast T(1) mapping. Magn Reson Med 2006; 55(3): 604-11
    [58] Wu CW, Dodd SJ, Koretsky AP. In vivo visualization of cytoarchitecture to define boundaries in cortex, thalamic nuclei and superior colliculus using manganese enhanced MRI. Proc. Intl. Soc. Mag. Reson. Med. 2006; 14: 223
    [59] Smith K, Zheng H, Pautler RG. Manganese synaptic transfer index (MSTI): a novel approach to assess neuronal physiology in mouse models of neurodegeneration. Proc. Intl. Soc. Mag. Reson. Med. 2006; 14: 224
    [60] Cross DJ, Minoshima S, Anzai Y, et al. Statistical mapping of functional olfactory connections of the rat brain in vivo. Neuroimage 2004; 23(4): 1326-35
    [61] Sumino K, Hayakawa K, Shibata T, et al. Heavy metals in normal Japanese tissues. Amounts of 15 heavy metals in 30 subjects. Arch Environ Health 1975; 30(10): 487-94
    [62] Murphy VA, Wadhwani KC, Smith QR, et al. Saturable transport of manganese(II) across the rat blood-brain barrier. J Neurochem 1991; 57(3): 948-54
    [63] Aschner M, Gannon M. Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 1994; 33(3): 345-9
    [64] Rabin O, Hegedus L, Bourre JM, et al. Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem 1993; 61(2): 509-17
    [65] Zheng W, Kim H, Zhao Q. Comparative toxicokinetics of manganese chloride andmethylcyclopentadienyl manganese tricarbonyl (MMT) in Sprague-Dawley rats. Toxicol Sci 2000; 54(2): 295-301
    [66] Newland MC, Cox C, Hamada R, et al. The clearance of manganese chloride in the primate. Fundam Appl Toxicol 1987; 9(2): 314-28
    [67] Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed 2004; 17(8): 544-53
    [68] Davidsson L, Cederblad A, Lonnerdal B, et al. Manganese retention in man: a method for estimating manganese absorption in man. Am J Clin Nutr 1989; 49(1): 170-9
    [69] Mena I, Marin O, Fuenzalida S, et al. Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 1967; 17(2): 128-36
    [70] Newland MC, Ceckler TL, Kordower JH, et al. Visualizing manganese in the primate basal ganglia with magnetic resonance imaging. Exp Neurol 1989; 106(3): 251-8
    [71] Chang EC, Kosman DJ. Intracellular Mn (II)-associated superoxide scavenging activity protects Cu,Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 1989; 264(21): 12172-8
    [72] Sziraki I, Rauhala P, Chiueh CC. Novel protective effect of manganese against ferrous citrate-induced lipid peroxidation and nigrostriatal neurodegeneration in vivo. Brain Res 1995; 698(1-2): 285-7
    [73] Weisiger RA, Fridovich I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem 1973; 248(13): 4793-6
    [74] Brurok H, Schjott J, Berg K, et al. Manganese and the heart: acute cardiodepression and myocardial accumulation of manganese. Acta Physiol Scand 1997; 159(1): 33-40
    [75] Horner WH, Kligfield P. Antidysrhythmic and dose-related hemodynamic effects of manganese in perfused isolated rabbit hearts. J Cardiovasc Pharmacol 1982; 4(1): 149-56
    [76] Feldman RG. Manganese as possible ecoetiologic factor in Parkinson's disease. Ann N Y Acad Sci 1992; 648: 266-7
    [77] Sloot WN, Gramsbergen JB. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 1994; 657(1-2): 124-32
    [78] Zhang S, Fu J, Zhou Z. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol In Vitro 2004; 18(1): 71-7
    [79] Aschner M, Aschner JL. Manganese neurotoxicity: cellular effects and blood-brain barrier transport. Neurosci Biobehav Rev 1991; 15(3): 333-40
    [80] Henriksson J, Tjalve H. Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol Sci 2000; 55(2): 392-8
    [81] Pal PK, Samii A, Calne DB. Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 1999; 20(2-3): 227-38
    [82] Migheli R, Godani C, Sciola L, et al. Enhancing effect of manganese on L-DOPA-induced apoptosis in PC12 cells: role of oxidative stress. J Neurochem 1999; 73(3): 1155-63
    [83] Spranger M, Schwab S, Desiderato S, et al. Manganese augments nitric oxide synthesis in murine astrocytes: a new pathogenetic mechanism in manganism? Exp Neurol 1998; 149(1): 277-83
    [84] Chang JY, Liu LZ. Manganese potentiates nitric oxide production by microglia. Brain Res Mol Brain Res 1999; 68(1-2): 22-8
    [85] Malecki EA. Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 2001; 55(2): 225-8
    [86] Low W, Brawarnick N, Rahamimoff H. The inhibitory effect of Mn2+ on the ATP-dependent Ca2+ pump in rat brain synaptic plasma membrane vesicles. Biochem Pharmacol 1991; 42(8): 1537-43
    [1] WHO. Manganese and its compounds: environmental aspects. Concise International Chemical Assessment Document -CICAD-63. Geneve: World Health Organization, 2005
    [2] Kalinin VL, Kuznetsova LV. [Mutagenic effect of oxidizing agents on the thermally-induced prophage lambda cI857: effect of a system of oxidative stress]. Genetika 1995; 31(6): 784-7
    [3] Straus DL. Comparison of the acute toxicity of potassium permanganate to hybrid striped bassin well water and diluted well water. Journal of the World Aquaculture Society 2004; 35(1): 55-60
    [4] Archibald FS, Tyree C. Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 1987; 256(2): 638-50
    [5] 吴春夏, 余应年, 卢建主编. 病理生理学. 北京: 高等教育出版社, 2003
    [6] Kellar KE, Foster N. Determination of the relative amounts of free and complexed manganese ions in aqueous solution by nuclear magnetic resonance. Anal Chem 1991; 63(24): 2919-24
    [7] Koenig SH, Brown RD, 3rd, Kurland R, et al. Relaxivity and binding of Mn2+ ions in solutions of phosphatidylserine vesicles. Magn Reson Med 1988; 7(2): 133-42
    [8] Duong TQ, Silva AC, Lee SP, et al. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med 2000; 43(3): 383-92
    [9] Chuang KH, Koretsky A. Improved neuronal tract tracing using manganese enhanced magnetic resonance imaging with fast T(1) mapping. Magn Reson Med 2006; 55(3): 604-11
    [10] Kang YS, Gore JC. Studies of tissue NMR relaxation enhancement by manganese. Dose and time dependences. Invest Radiol 1984; 19(5): 399-407
    [11] Elizondo G, Fretz CJ, Stark DD, et al. Preclinical evaluation of MnDPDP: new paramagnetic hepatobiliary contrast agent for MR imaging. Radiology 1991; 178(1): 73-8
    [12] Liu CH, D'Arceuil HE, de Crespigny AJ. Direct CSF injection of MnCl2 for dynamic manganese-enhanced MRI. Magn Reson Med 2004; 51(5): 978-87
    [13] Gallez B, Demeure R, Baudelet C, et al. Non invasive quantification of manganese deposits in the rat brain by local measurement of NMR proton T1 relaxation times. Neurotoxicology 2001; 22(3): 387-92
    [14] Zhang N, Fitsanakis VA, Aschner M, et al. Variations in relaxivity of manganese between regions in rat brain. Proc. Intl. Soc. Mag. Reson. Med. 2006; 14: 226
    [15] Silva AC, Lee JH, Aoki I, et al. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 2004; 17(8): 532-43
    [16] Morita H, Ogino T, Fujiki N, et al. Sequence of forebrain activation induced by intraventricular injection of hypertonic NaCl detected by Mn2+ contrasted T1-weighted MRI. Auton Neurosci 2004; 113(1-2): 43-54
    [17] Swanson LW. Brain maps: Structure of the rat brain: Amsterdam: Elsevier, 1992
    [18] Zhang S, Fu J, Zhou Z. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol In Vitro 2004; 18(1): 71-7
    [19] Zwingmann C, Leibfritz D, Hazell AS. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab 2003; 23(6): 756-71
    [20] Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JB. Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem 1994; 62(1): 205-16
    [1] Aoki I, Ebisu T, Tanaka C, et al. Detection of the anoxic depolarization of focal ischemia using manganese-enhanced MRI. Magn Reson Med 2003; 50(1): 7-12
    [2] Aoki I, Wu YJ, Silva AC, et al. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 2004; 22(3): 1046-59
    [3] Aoki I, Tanaka C, Takegami T, et al. Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med 2002; 48(6): 927-33
    [4] Watanabe T, Natt O, Boretius S, et al. In vivo 3D MRI staining of mouse brain after subcutaneous application of MnCl2. Magn Reson Med 2002; 48(5): 852-9
    [5] Morita H, Ogino T, Fujiki N, et al. Sequence of forebrain activation induced by intraventricular injection of hypertonic NaCl detected by Mn2+ contrasted T1-weighted MRI. Auton Neurosci 2004; 113(1-2): 43-54
    [6] Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002; 16(2): 441-8
    [7] Allegrini PR, Wiessner C. Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnCl2. NMR Biomed 2003; 16(5): 252-6
    [8] Leergaard TB, Bjaalie JG, Devor A, et al. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. Neuroimage 2003; 20(3): 1591-600
    [9] Lin CP, Tseng WY, Cheng HC, et al. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001; 14(5): 1035-47
    [10] Pautler RG, Mongeau R, Jacobs RE. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003; 50(1): 33-9
    [11] Saleem KS, Pauls JM, Augath M, et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 2002; 34(5): 685-700
    [12] Tindemans I, Verhoye M, Balthazart J, et al. In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 2003; 18(12): 3352-60
    [13] Banta RG, Markesbery WR. Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology 1977; 27(3): 213-6
    [14] Holzgraefe M, Poser W, Kijewski H, et al. Chronic enteral poisoning caused by potassium permanganate: a case report. J Toxicol Clin Toxicol 1986; 24(3): 235-44
    [15] Bleich S, Degner D, Sprung R, et al. Chronic manganism: fourteen years of follow-up. J Neuropsychiatry Clin Neurosci 1999; 11(1): 117
    [16] Kondakis XG, Makris N, Leotsinidis M, et al. Possible health effects of high manganese concentration in drinking water. Arch Environ Health 1989; 44(3): 175-8
    [17] Bonilla E. L-tyrosine hydroxylase activity in the rat brain after chronic oral administration of manganese chloride. Neurobehav Toxicol 1980; 2(1): 37-41
    [18] Eriksson H, Lenngren S, Heilbronn E. Effect of long-term administration of manganese on biogenic amine levels in discrete striatal regions of rat brain. Arch Toxicol 1987; 59(6): 426-31
    [19] Roels H, Meiers G, Delos M, et al. Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol 1997; 71(4): 223-30
    [20] Davidsson L, Cederblad A, Hagebo E, et al. Intrinsic and extrinsic labeling for studies of manganese absorption in humans. J Nutr 1988; 118(12): 1517-21
    [21] Mena I, Horiuchi K, Burke K, et al. Chronic manganese poisoning. Individual susceptibility and absorption of iron. Neurology 1969; 19(10): 1000-6
    [22] Lipe GW, Duhart H, Newport GD, et al. Effect of manganese on the concentration of amino acids in different regions of the rat brain. J Environ Sci Health B 1999; 34(1): 119-32
    [23] Ponnapakkam T, Iszard M, Henry-Sam G. Effects of oral administration of manganese on the kidneys and urinary bladder of Sprague-Dawley rats. Int J Toxicol 2003; 22(3): 227-32
    [24] Torrente M, Colomina MT, Domingo JL. Behavioral effects of adult rats concurrently exposed to high doses of oral manganese and restraint stress. Toxicology 2005; 211(1-2): 59-69
    [25] Dorman DC, Struve MF, Vitarella D, et al. Neurotoxicity of manganese chloride in neonatal and adult CD rats following subchronic (21-day) high-dose oral exposure. J Appl Toxicol 2000; 20(3): 179-87
    [26] Kabata H, Matsuda A, Yokoi K, et al. [The effect of the dosage and route of manganese administration on manganese concentration in rat brain]. Nippon Eiseigaku Zasshi 1989; 44(2): 667-72
    [27] Thomsen HS, Svendsen O, Klastrup S. Increased manganese concentration in the liver after oral intake. Acad Radiol 2004; 11(1): 38-44
    [28] Morita H, Ogino T, Seo Y, et al. Detection of hypothalamic activation by manganese ion contrasted T1-weighted magnetic resonance imaging in rats. Neurosci Lett 2002; 326(2): 101-4
    [29] Sun N, Li Y, Tian S, et al. Dynamic changes in orbitofrontal neuronal activity in rats during opiate administration and withdrawal. Neuroscience 2006; 138(1): 77-82
    [30] Kaur G, Hasan SK, Srivastava RC. The distribution of manganese-54 in fetal, young and adult rats. Toxicol Lett 1980; 5(6): 423-6
    [31] Crossgrove JS, Allen DD, Bukaveckas BL, et al. Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology 2003; 24(1): 3-13
    [32] Aschner M, Aschner JL. Manganese transport across the blood-brain barrier: relationship to iron homeostasis. Brain Res Bull 1990; 24(6): 857-60
    [33] Crossgrove JS, Yokel RA. Manganese Distribution Across the Blood-Brain Barrier III; The Divalent Metal Transporter-1 is not the Major Mechanism Mediating Brain Manganese Uptake. Neurotoxicology 2004; 25(3): 451-60
    [34] Aschner M, Gannon M. Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 1994; 33(3): 345-9
    [35] Cavanagh JB, Nolan CC, Seville MP. The neurotoxicity of alpha-chlorohydrin in rats and mice: I. Evolution of the cellular changes. Neuropathol Appl Neurobiol 1993; 19(3): 240-52
    [36] Willis CL, Nolan CC, Reith SN, et al. Focal astrocyte loss is followed by microvascular damage, with subsequent repair of the blood-brain barrier in the apparent absence of direct astrocytic contact. Glia 2004; 45(4): 325-37
    [37] Romero IA, Rist RJ, Chan MW, et al. Acute energy deprivation syndromes: investigation of m-dinitrobenzene and alpha-chlorohydrin toxicity on immortalized rat brain microvessel endothelial cells. Neurotoxicology 1997; 18(3): 781-91
    [38] Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28(5): 897-916
    [39] Cavanagh JB, Nolan CC. The neurotoxicity of alpha-chlorohydrin in rats and mice: II. Lesion topography and factors in selective vulnerability in acute energy deprivation syndromes. Neuropathol Appl Neurobiol 1993; 19(6): 471-9
    [40] Prior MJ, Brown AM, Mavroudis G, et al. MRI characterisation of a novel rat model of focal astrocyte loss. Magma 2004; 17(3-6): 125-32
    [41] Aschner M. Manganese homeostasis in the CNS. Environ Res 1999; 80(2 Pt 1): 105-9
    [42] Fang K, Li YX, Liu H, et al. Tracing neuronal tracts in the olfactory system of rat and detecting ischemia core in a rat model of focal ischemia using manganese enhanced magnetic resonance imaging. Chinese Science Bulletin 2004; 49(17): 1834-40
    [43] Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997; 38(3): 378-88
    [44] Duong TQ, Silva AC, Lee SP, et al. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med 2000; 43(3): 383-92
    [45] Murphy VA, Rosenberg JM, Smith QR, et al. Elevation of brain manganese in calcium-deficient rats. Neurotoxicology 1991; 12(2): 255-63
    [46] Rabin O, Hegedus L, Bourre JM, et al. Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem 1993; 61(2): 509-17
    [47] Murphy VA, Wadhwani KC, Smith QR, et al. Saturable transport of manganese(II) across the rat blood-brain barrier. J Neurochem 1991; 57(3): 948-54
    [48] Li GJ, Zhao Q, Zheng W. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood-CSF barrier in vitro. Toxicol Appl Pharmacol 2005; 205(2): 188-200
    [49] Di Chiro G, Knop RH, Girton ME, et al. MR cisternography and myelography with Gd-DTPA in monkeys. Radiology 1985; 157(2): 373-7
    [50] Kramer N, Berlis A, Klisch J, et al. Intrathecal gadolinium-enhanced MR-cisternography: depiction of the subarachnoidal space and evaluation of gadobenat-dimeglumin-(Gd-BOPTA, "Multihance") toxicity in an animal model and a clinical case. Acad Radiol 2002; 9 Suppl 2: S447-51
    [51] Liu CH, D'Arceuil HE, de Crespigny AJ. Direct CSF injection of MnCl2 for dynamic manganese-enhanced MRI. Magn Reson Med 2004; 51(5): 978-87
    [52] Chen JY, Tsao GC, Zhao Q, et al. Differential cytotoxicity of Mn(II) and Mn(III): specialreference to mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol 2001; 175(2): 160-8
    [53] Gallez B, Baudelet C, Geurts M. Regional distribution of manganese found in the brain after injection of a single dose of manganese-based contrast agents. Magn Reson Imaging 1998; 16(10): 1211-5
    [54] Swanson LW. Brain maps: Structure of the rat brain: Amsterdam: Elsevier, 1992
    [55] Wan X, Fu TC, London RE. Charge dependence of the distribution of contrast agents in rat cerebral ventricles. Magn Reson Med 1992; 27(1): 135-41
    [56] Cserr H. Potassium exchange between cerebrospinal fluid, plasma, and brain. Am J Physiol 1965; 209(6): 1219-26
    [57] Keen CL, Lonnerdal B, Hurley LS. Manganese. In Frieden E, ed. Biochemistry of the essential ultratrace elements. New York: Plenum Press, 1984. pp. 89-132
    [58] Norenberg MD. Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 1979; 27(3): 756-62
    [59] Wedler FC, Denman RB. Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul 1984; 24: 153-69
    [60] Akai F, Maeda M, Suzuki K, et al. Immunocytochemical localization of manganese superoxide dismutase (Mn-SOD) in the hippocampus of the rat. Neurosci Lett 1990; 115(1): 19-23
    [61] Garner CD, Nachtman JP. Manganese catalyzed auto-oxidation of dopamine to 6-hydroxydopamine in vitro. Chem Biol Interact 1989; 69(4): 345-51
    [62] Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984; 348: 493-510
    [63] Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990; 510(2): 289-95
    [64] Suzuki WA. Episodic memory signals in the rat hippocampus. Neuron 2003; 40(6): 1055-6
    [65] Cimadevilla JM, Garcia Moreno LM, Gonzalez Pardo H, et al. Glial and neuronal cell numbers and cytochrome oxidase activity in CA1 and CA3 during postnatal development and aging of the rat. Mech Ageing Dev 1997; 99(1): 49-60
    [1] Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science 1997; 278(5335): 58-63
    [2] Leshner AI. Drug addiction research: moving toward the 21st century. Drug Alcohol Depend 1998; 51(1-2): 5-7
    [3] Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1993. Peptides 1994; 15(8): 1513-56
    [4] Angulo JA, McEwen BS. Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Brain Res Rev 1994; 19(1): 1-28
    [5] Kalivas PW, Nakamura M. Neural systems for behavioral activation and reward. Curr Opin Neurobiol 1999; 9(2): 223-7
    [6] Opris I, Bruce CJ. Neural circuitry of judgment and decision mechanisms. Brain Res Brain Res Rev 2005; 48(3): 509-26
    [7] Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science 1988; 242(4879): 715-23
    [8] Wise RA. Drug-activation of brain reward pathways. Drug Alcohol Depend 1998; 51(1-2): 13-22
    [9] Robbins TW, Everitt BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 1996; 6(2): 228-36
    [10] Wise RA. Neurobiology of addiction. Curr Opin Neurobiol 1996; 6(2): 243-51
    [11] Pontieri FE, Tanda G, Orzi F, et al. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996; 382(6588): 255-7
    [12] Spinella M. Relationship between drug use and prefrontal-associated traits. Addict Biol 2003; 8(1): 67-74
    [13] Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992; 13(5): 177-84
    [14] Masserano JM, Baker I, Natsukari N, et al. Chronic cocaine administration increases tyrosine hydroxylase activity in the ventral tegmental area through glutaminergic- and dopaminergic D2-receptor mechanisms. Neurosci Lett 1996; 217(2-3): 73-6
    [15] Schmidt EF, Sutton MA, Schad CA, et al. Extinction training regulates tyrosine hydroxylase during withdrawal from cocaine self-administration. J Neurosci 2001; 21(7): RC137
    [16] Ray JP, Price JL. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 1993; 337(1): 1-31
    [17] Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 1987; 434(2): 117-65
    [18] Cetin T, Freudenberg F, Fuchtemeier M, et al. Dopamine in the orbitofrontal cortex regulates operant responding under a progressive ratio of reinforcement in rats. Neurosci Lett 2004; 370(2-3): 114-7
    [19] Bolla KI, Eldreth DA, London ED, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 2003; 19(3): 1085-94
    [20] Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 2000; 10(3): 318-25
    [21] London ED, Ernst M, Grant S, et al. Orbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex 2000; 10(3): 334-42
    [22] Daglish MR, Weinstein A, Malizia AL, et al. Changes in regional cerebral blood flow elicited by craving memories in abstinent opiate-dependent subjects. Am J Psychiatry 2001; 158(10): 1680-6
    [23] Daglish MR, Weinstein A, Malizia AL, et al. Functional connectivity analysis of the neural circuits of opiate craving: "more" rather than "different"? Neuroimage 2003; 20(4): 1964-70
    [24] Sell LA, Morris JS, Bearn J, et al. Neural responses associated with cue evoked emotionalstates and heroin in opiate addicts. Drug Alcohol Depend 2000; 60(2): 207-16
    [25] Simonato M. The neurochemistry of morphine addiction in the neocortex. Trends Pharmacol Sci 1996; 17(11): 410-5
    [26] Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 1991; 251(4989): 85-7
    [27] Pu L, Bao GB, Xu NJ, et al. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci 2002; 22(5): 1914-21
    [28] Yang Y, Zheng X, Wang Y, et al. Stress enables synaptic depression in CA1 synapses by acute and chronic morphine: possible mechanisms for corticosterone on opiate addiction. J Neurosci 2004; 24(10): 2412-20
    [29] Swanson LW. Brain maps: Structure of the rat brain: Amsterdam: Elsevier, 1992
    [30] Van der Linden A, Verhoye M, Van Meir V, et al. In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience 2002; 112(2): 467-74
    [31] Watanabe T, Radulovic J, Spiess J, et al. In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2. Neuroimage 2004; 22(2): 860-7
    [32] Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 2000; 153(1): 31-43
    [33] Lee SY, Song DK, Jang CG. Effects of Coptis japonica on morphine-induced conditioned place preference in mice. Arch Pharm Res 2003; 26(7): 540-4
    [34] Tsuji M, Nakagawa Y, Ishibashi Y, et al. Activation of ventral tegmental GABAB receptors inhibits morphine-induced place preference in rats. Eur J Pharmacol 1996; 313(3): 169-73 B[35] Duong TQ, Silva AC, Lee SP, et al. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med 2000; 43(3): 383-92
    [36] Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997; 38(3): 378-88
    [37] Yu X, Wadghiri YZ, Sanes DH, et al. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 2005; 8(7): 961-8
    [38] Zheng W, Kim H, Zhao Q. Comparative toxicokinetics of manganese chloride and methylcyclopentadienyl manganese tricarbonyl (MMT) in Sprague-Dawley rats. Toxicol Sci2000; 54(2): 295-301
    [39] Silva AC, Lee JH, Aoki I, et al. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 2004; 17(8): 532-43
    [40] Pautler RG, Mongeau R, Jacobs RE. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003; 50(1): 33-9
    [41] Takeda A, Ishiwatari S, Okada S. In vivo stimulation-induced release of manganese in rat amygdala. Brain Res 1998; 811(1-2): 147-51
    [42] Traub RD, Contreras D, Cunningham MO, et al. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 2005; 93(4): 2194-232
    [43] Foucher JR, Otzenberger H, Gounot D. The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci 2003; 4: 22
    [44] Sun N, Li Y, Tian S, et al. Dynamic changes in orbitofrontal neuronal activity in rats during opiate administration and withdrawal. Neuroscience 2006; 138(1): 77-82
    [45] London ED, Broussolle EP, Links JM, et al. Morphine-induced metabolic changes in human brain. Studies with positron emission tomography and [fluorine 18]fluorodeoxyglucose. Arch Gen Psychiatry 1990; 47(1): 73-81
    [46] Volkow ND, Fowler JS, Wolf AP, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 1991; 148(5): 621-6
    [47] Vaidya CJ, Austin G, Kirkorian G, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 1998; 95(24): 14494-9
    [48] Casey BJ, Trainor RJ, Orendi JL, et al. A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J. Cogn. Neurosci. 1997; 9(6): 835-847
    [49] Goldstein RZ, Volkow ND, Wang GJ, et al. Addiction changes orbitofrontal gyrus function: involvement in response inhibition. Neuroreport 2001; 12(11): 2595-9
    [1] Carr DB, Sesack SR. GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 2000; 38(2): 114-23
    [2] Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 1993; 18(1): 75-113
    [3] Sesack SR, Carr DB, Omelchenko N, et al. Anatomical substrates for glutamate-dopamineinteractions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci 2003; 1003: 36-52
    [4] Steffensen SC, Svingos AL, Pickel VM, et al. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 1998; 18(19): 8003-15
    [5] Segal M. Afferents to the entorhinal cortex of the rat studied by the method of retrograde transport of horseradish peroxidase. Exp Neurol 1977; 57(3): 750-65
    [6] Beckstead RM. Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidase. Brain Res 1978; 152(2): 249-64
    [7] Dinopoulos A, Parnavelas JG. The development of ventral tegmental area (VTA) projections to the visual cortex of the rat. Neurosci Lett 1991; 134(1): 12-6
    [8] Takada M, Hattori T. Organization of ventral tegmental area cells projecting to the occipital cortex and forebrain in the rat. Brain Res 1987; 418(1): 27-33
    [9] Datiche F, Cattarelli M. Catecholamine innervation of the piriform cortex: a tracing and immunohistochemical study in the rat. Brain Res 1996; 710(1-2): 69-78
    [10] Van Bockstaele EJ, Pickel VM. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 1995; 682(1-2): 215-21
    [11] Li YQ, Takada M, Shinonaga Y, et al. The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat. J Comp Neurol 1993; 333(1): 118-33
    [12] Gasbarri A, Sulli A, Packard MG. The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21(1): 1-22
    [13] Kelley AE, Domesick VB, Nauta WJ. The amygdalostriatal projection in the rat--an anatomical study by anterograde and retrograde tracing methods. Neuroscience 1982; 7(3): 615-30
    [14] Klitenick MA, Deutch AY, Churchill L, et al. Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience 1992; 50(2): 371-86
    [15] Takada M. The A11 catecholamine cell group: another origin of the dopaminergic innervation of the amygdala. Neurosci Lett 1990; 118(1): 132-5
    [16] Fallon JH, Hicks R, Loughlin SE. The origin of cholecystokinin terminals in the basal forebrain of the rat: evidence from immunofluorescence and retrograde tracing. Neurosci Lett 1983; 37(1): 29-35
    [17] Seroogy KB, Fallon JH. Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain. J Comp Neurol 1989; 279(3): 415-35
    [18] Lanca AJ, De Cabo C, Arifuzzaman AI, et al. Cholecystokinergic innervation of nucleus accumbens subregions. Peptides 1998; 19(5): 859-68
    [19] Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 1987; 434(2): 117-65
    [20] Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992; 13(5): 177-84
    [21] Self DW, Nestler EJ. Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci 1995; 18: 463-95
    [22] Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998; 80(1): 1-27
    [23] Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci 1999; 22(11): 521-7
    [24] Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 1997; 275(5306): 1593-9
    [25] White FJ. Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 1996; 19: 405-36
    [26] Rebec GV, Grabner CP, Johnson M, et al. Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience 1997; 76(3): 707-14
    [27] Angulo JA, McEwen BS. Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Brain Res Rev 1994; 19(1): 1-28
    [28] Masserano JM, Baker I, Natsukari N, et al. Chronic cocaine administration increases tyrosine hydroxylase activity in the ventral tegmental area through glutaminergic- and dopaminergic D2-receptor mechanisms. Neurosci Lett 1996; 217(2-3): 73-6
    [29] Schmidt EF, Sutton MA, Schad CA, et al. Extinction training regulates tyrosine hydroxylase during withdrawal from cocaine self-administration. J Neurosci 2001; 21(7): RC137
    [30] Le Moal M, Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 1991; 71(1): 155-234
    [31] Williams SM, Goldman-Rakic PS. Widespread origin of the primate mesofrontal dopaminesystem. Cereb Cortex 1998; 8(4): 321-45
    [32] Bagetta G, De Sarro G, Priolo E, et al. Ventral tegmental area: site through which dopamine D2-receptor agonists evoke behavioural and electrocortical sleep in rats. Br J Pharmacol 1988; 95(3): 860-6
    [33] Fallon JH, Riley JN, Sipe JC, et al. The islands of Calleja: organization and connections. J Comp Neurol 1978; 181(2): 375-95
    [34] Albanese A, Minciacchi D. Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 1983; 216(4): 406-20
    [35] Fallon JH, Moore RY. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978; 180(3): 545-80
    [36] Gerfen CR, Herkenham M, Thibault J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 1987; 7(12): 3915-34
    [37] Peyron C, Luppi PH, Kitahama K, et al. Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport 1995; 6(18): 2527-31
    [38] Gasbarri A, Campana E, Pacitti C, et al. Organization of the projections from the ventral tegmental area of Tsai to the hippocampal formation in the rat. J Hirnforsch 1991; 32(4): 429-37
    [39] Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984; 348: 493-510
    [40] Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990; 510(2): 289-95
    [41] Sloot WN, Gramsbergen JB. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 1994; 657(1-2): 124-32
    [42] Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997; 38(3): 378-88
    [43] Allegrini PR, Wiessner C. Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnCl2. NMR Biomed 2003; 16(5): 252-6
    [44] Leergaard TB, Bjaalie JG, Devor A, et al. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing.system. Cereb Cortex 1998; 8(4): 321-45
    [32] Bagetta G, De Sarro G, Priolo E, et al. Ventral tegmental area: site through which dopamine D2-receptor agonists evoke behavioural and electrocortical sleep in rats. Br J Pharmacol 1988; 95(3): 860-6
    [33] Fallon JH, Riley JN, Sipe JC, et al. The islands of Calleja: organization and connections. J Comp Neurol 1978; 181(2): 375-95
    [34] Albanese A, Minciacchi D. Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 1983; 216(4): 406-20
    [35] Fallon JH, Moore RY. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978; 180(3): 545-80
    [36] Gerfen CR, Herkenham M, Thibault J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 1987; 7(12): 3915-34
    [37] Peyron C, Luppi PH, Kitahama K, et al. Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport 1995; 6(18): 2527-31
    [38] Gasbarri A, Campana E, Pacitti C, et al. Organization of the projections from the ventral tegmental area of Tsai to the hippocampal formation in the rat. J Hirnforsch 1991; 32(4): 429-37
    [39] Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984; 348: 493-510
    [40] Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990; 510(2): 289-95
    [41] Sloot WN, Gramsbergen JB. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 1994; 657(1-2): 124-32
    [42] Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997; 38(3): 378-88
    [43] Allegrini PR, Wiessner C. Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnCl2. NMR Biomed 2003; 16(5): 252-6
    [44] Leergaard TB, Bjaalie JG, Devor A, et al. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing.
    [57] Grafstein B, Forman DS. Intracellular transport in neurons. Physiol Rev 1980; 60(4): 1167-283
    [58] Rogers RC, Butcher LL, Novin D. Effects of urethane and pentobarbital anesthesia on the demonstration of retrograde and anterograde transport of horseradish peroxidase. Brain Res 1980; 187(1): 197-200
    [59] Gronier B, Perry KW, Rasmussen K. Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology (Berl) 2000; 147(4): 347-55
    [60] Tamaki Y, Araie M, Fukaya Y, et al. Effects of lomerizine, a calcium channel antagonist, on retinal and optic nerve head circulation in rabbits and humans. Invest Ophthalmol Vis Sci 2003; 44(11): 4864-71
    [61] Low W, Brawarnick N, Rahamimoff H. The inhibitory effect of Mn2+ on the ATP-dependent Ca2+ pump in rat brain synaptic plasma membrane vesicles. Biochem Pharmacol 1991; 42(8): 1537-43
    [62] Lowe A, Thompson ID, Sibson NR. Quantitative manganese tract tracing: concentration dependence. Proc. Intl. Soc. Mag. Reson. Med. 2006; 14: 225
    [63] Ochs S. Retention and redistribution of proteins in mammalian nerve fibres by axoplasmic transport. J Physiol 1975; 253(2): 459-75
    [64] Bisby MA, Bulger VT. Reversal of axonal transport at a nerve crush. J Neurochem 1977; 29(2): 313-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700