紫色土丘陵山区田间道路基工程设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
田间道是居民点到田间的通道,主要为货物运输,作为机械向田间转移及为机械加水、加油生产服务的道路。随着国民经济建设的发展,我国的道路建设有了飞速发展,并不断地向经济不发达的丘陵山区农村延伸。因紫色土丘陵山区的复杂性,导致田间道沿线不可避免的要经过各种具有不同的地形地貌、不同工程地质及水文条件的地区,因而这些地区的田间道路质量主要取决于这些因素,在这些因素影响下的田间道路路基稳定性分析及设计尤为重要。目前国内外对路基稳定性因素分析及设计处理的研究主要是针对铁路路基、等级公路路基等投资大、技术支撑强的研究上,而对针对小区域内投资规模相对较小,而涉及范围更广的田间道路基研究较少。本文通过对紫色土丘陵山区不同土地利用类型、工程地质条件和水文条件下的田间道路基稳定性的分析,进行了相应的路基处理或工程设计。
     (1)在冲田、塝田以及旱地三种不同的土地利用方式下,田间道路基的设计处理应该区别分析。冲田的土壤由于地势低洼地下水丰富或地表积水,长期受水浸泡,而造成土质软化及有机物淤积,力学性质普遍低,含水量高,抗剪强度弱、易触变,为高液限土。因此在冲田上新建道路路基时应进行换土处理,先挖除表层含水量高的淤泥,然后就近取工程性质较好的砂土或者碎石换填并分层压实;塝田的地势一般较冲田高,土质软化程度较冲田低,有机物淤积较少,力学性质不高,抗剪强度较弱,天然土体含水量较高,不易蒸发,但是经过晾晒,可以达到最佳含水量。反之,含水量较低时,土体性质跟天然土体相近,因此在塝田上新修路基时,应先将田内的水放干、并将上层固结土层粉碎、晾晒,晾干后压实;旱地只有少量有机物富集,力学性质较好,含水量接近于天然含水量,抗剪强度较高,土在击实状态下,结构较紧密。旱地段则只需将表层清理,即可压实。同时,各种利用方式下路基的压实度应严格控制在93%以上。
     (2)道路沿线的地质条件,如岩石的种类、成因、节理,风化程度和裂隙情况,岩石走向、倾向、倾角、层理和岩层厚度,有无夹层或遇水软化的夹层、以及有无断层或其他不良地质现象(岩溶、冰川、泥石流、地震等)都对路基稳定性有一定的影响。在过硬质砂岩和软泥岩两种不同的工程地质条件下,路基的设计应该区别处理。遇硬质岩层时,应该开挖路堑,以防路基不稳,产生滑动;如遇软岩层,也尽量开挖路堑,如果路基标高较地面线高,也可设计路堤,但需要在路堤两边设计加固措施,例如挡土墙等,开挖路堑后还需要进行路基碾压,碾压遍数在三遍以上,使其压实度达到93%,碾压后再铺设路面基层,另外,应控制边坡比在1:1以上并做好边坡防护,以防边坡上的碎石滑落,影响通行。
     (3)减少水文因素对路基稳定性影响主要有两种方法,一种是提高路基设计标高,使路基土体保持良好的干湿度。即使路肩边缘高出路基两侧地面积水高度,同时考虑地下水、毛细水的作用,不致影响路基的强度和稳定性。地面排水状况良好,无积水,路基可以就原地面或略高于原地面。常有积水或地下水位较高,或者根据路面平整需要进行填方的,填方高度根据不同土壤在0.5m-2.5m之间选定。另外一种是修建适当的排水设施。一般过旱地田间道修建的主要排水设施为路边沟,当坡面较大,则应在适当位置修建过水涵洞,将坡面来水引到地势低洼处的承泄区:过水田田间道则主要是修建过水涵洞,涵洞的位置及规格根据上游水田的大小及来水量确定,当来水量过大时,需新建大规格的箱涵,以满足水田的排水需求,保护路基免受冲刷侵蚀。
     本文是以重庆紫色土丘陵山区大量田间道路基工程处理或工程设计成果为基础,研究结果符合紫色土丘陵山区田间道工程建设情况,对正确指导道路路基工程设计,进一步提高田间道工程的质量将发挥积极作用。
Field road, as a servicing for production,is a channel crossing to the field from the residential area. It is used for transporting goods, transfering the farm machine to the field and adding water or oil to it. With the development of national economy, the road construction in China has rapidly progressed, and was gradually extending to the undeveloped countryside of purple soil hilly area. Owing to the complexity of the purple soil hilly area, there are various regions with different land use patterns, different engineering geology and hydrological conditions along the field roads, which contribute to the road quality of these areas. Just because of all these factors, it is very important to analyze and design the subgrade stability of field roads. At present, the studies on the analysis and design of the subgrade stability from home and abroad mainly focus on those with large investment and strong technology such as railway subgrade and graded highway subgrade, while there are fewer studies on the rural road subgrade with a relatively small investment in small areas but broader scopes. In this dissertation, we analyze the subgrade stability of field roads in purple soil hilly area with different types of land utilization, engineering geology and hydrological conditions, and put forward the following experience of design.
     (1) The design of the field roads subgrade should differentiate as the three types of 1 land use patterns, the valley paddy field and the slope paddy field as well as dry land. The valley paddy field with low-lying topography are long immersed in water because of the abundant groundwater or surface water, leading to the soil softening, organic deposition, low dynamic quality, high water content, weak shear strength and easily thixotropic. This kind of soil is called High Liquid Limit Soil. Therefore, constructing new subgrade on the valley should change the soil, that is, first get rid of the surface silt with high water content and then fill in sand or macadam with good engineering characters and compact layer by layer. The slope paddy field, with higher topography and lower soil softening than valley, has low dynamic quality and weak shear strength. Its natural soil contains high water content, difficult to evaporate, but after drying in the sun, it would get to the optimum moisture content. In contrast, the soil with low water content is like the natural soil. As a result, constructing new subgrade on the slope paddy field should first discharge the water inside the land, and then smash the upper consolidating soil and compact after drying. While the dry land has small organic deposition and good dynamic quality as well as stronger shear strength, and its water content was close to the natural water content. In the state of compaction, the structure of the soil is tight. So, constructing new subgrade on the dry land only need to clean the surface layer in order to compact. At the same time, the extent of the subgrade compaction with the three types must control up to more than 93%.
     (2) The geologic conditions along the road, such as the rocks'kind, cause, joints, degree of weathering and fracture cases, the track, trend, obliquity, texture and the thickness of terrane, with or without interlayer or the interlayer softened after meeting water and with or without faultage or other bad geologic phenomena (karst, glacier, debris flow, earthquake and so on) will influence the subgrade stability to some extent. The subgrade design should be treated differently as two different geological conditions of excellently hard sandstone and soft mudstone. When meeting the hard terrane, we should dig road cutting in order to prevent the subgrade instability resulting in sliding; as regards as the soft mudstone, we should also try our best to dig road cutting. If the subgrade height is higher than the ground, embankment can also be designed, but there should be strengthening measures at both sides of the embankment, e.g. retaining wall. After digging road cutting, subgrade rolling is necessary, and the times of rolling should be more than three in order to obtain the compaction extent of 93%. After rolling, we can pave the based layer of road. In addition, the proportion of side and slope should be controlled to more than 1:1 and the defense of side and slope was also necessary preventing the fall of rubble on the slope to affect traffic.
     (3) Two main methods that improving the design of embankment elevation and the construction of proper drainage facilities could reduce the impact of hydrological factors on the stability of roadbed. Specifically, improving the design of embankment elevation can make the sub grade soil maintain moderate moisture which keep the strength and stability of the roadbed even when the edge of hard shoulder is above high the ground water on both sides of roadbed, and the effects from the groundwater, the role of capillary water and frozen are considered. The raised height of the design of embankment elevation depends on ground's situation:when surface drainage in good condition, the height coud be equal with the ground surfaces or slightly above. When ground's surface is often in water or underground water level is high or the pavement needs to be filled, the height of fill depends on the different kinds of soil selecting between the 0.5m to 2.5m. Considering another method that the construction of proper drainage facilities, on the one hand, the main drainage channels for field road which across the dry field are the roadside ditch. The culvert should be built in the right place to lead the slope water to drainage receiver when the ground is steeply. On the another hand, the culvert should be built for the field Road crossing the paddy field.the location and size of culvert depends on the size of the paddy field in the upstream and water. It needs to build the large size of the box culvert to meet the demand for paddy field drainage and protecting embankment from erosion in excessive runoff situation.
     The results of this paper was based on a large number of investigations to field roads in the purple soil hilly area of Chongqing and analysis of a lot design results. The character of this thesis is the analysis on a case of the design of field roads in purple soil hilly area of Chongqing under the guidance of theory. So the results can reflect the situation of field road construction in hills and mountains with purple soil. It will help to correctly guide the design of roadbed, and to improve the quality of field road projects.
引文
[1]李丽,吴群琪,张跃智.农村道路对农业现代化发展的影响分析[J].长安大学学报(社会科学版).2008(3):22-26.
    [2]刘雅芬.城市道路路基压实度的控制与检测[J].科技信息.2009(5):309.
    [3]郭书云.铁路膨胀土路基的设计研究[J].山西建筑.2009,35(15):270-271.
    [4]刘永胜,李毅.广西山区高速公路分离式路基设计实践[J].西部交通科技.2009(9):166-172.
    [5]张琪.青藏线西格段增建二线盐湖路基设计[J].山西建筑.2009,35(10):286-288.
    [6]许健,牛富俊,牛永红,等.季节冻土区保温路基设计参数[J].土木建筑与环境工程.2009,31(3):83-89.
    [7]陈致远.市政道路有关膨胀土地段的路基处理技术[J].科技创新导报.2008(27):97.
    [8]王多青.青藏铁路望昆—布强格段多年冻土路基设计[J].资源环境与工程.2009:143-147.
    [9]付治国.关于路基改善土在公路施工中应用的研究[J].山西建筑.2009,35(4):301-302.
    [10]张敬伟.浅谈市政道路工程路基施工质量控制[J].中国新技术新产品.2009(1):71.
    [11]张泰安.过、强盐渍土地区路基施工工艺试验研究[J].西部探矿工程.2009,21(1):200-201.
    [12]黄晓明,朱湘,李昶等.路基路面工程[M].2006.
    [13]田永,刘彩红,刘海燕.电石渣制作公路路基材料的生命周期评价及经济性分析[J].黑龙江环境通报.2008(2):64-66.
    [14]刘红军,程显春,马介峰.多年冻土的力学性质[J].东北林业大学学报.2005,33(2):102-103.
    [15]Saitoh M. Effect of local nonlinearity in cohesionless soil on optimal radius minimizing fixed-head pile bending by inertial and kinematic interactions[J]. Acta Geotechnica.2010,5(4): 273.
    [16]钱春香,刘建坤,肖军华.铁路粉土路基土的变形与强度特性试验研究[J].铁道建筑技术.2007(6):66-69.
    [17]肖军华,刘建坤,彭丽云,等.黄河冲积粉土的密实度及含水率对力学性质影响[J].岩土力学.2008,29(2):409-414.
    [18]黄明奎,张学富,王成.多年冻土区路基填土力学参数实验研究[J].重庆交通大学学报:自然科学版.2008,27(3):413-415.
    [19]Ampadu S. A Laboratory Investigation into the Effect of Water Content on the CBR of a Subgrade soil[M]. Experimental Unsaturated Soil Mechanics, Schanz T, Springer Berlin Heidelberg,2007:112,137.
    [20]凌建明,陈声凯,曹长伟.路基土回弹模量影响因素分析[J].建筑材料学报.2007,10(4):446-451.
    [21]龙海翔,刘涛,兰伟.路基土回弹模量湿度调整系数研究[J].公路工程.2009,34(1):67-71.
    [22]欧伟宾.含水量对路基回弹模量影响分析[J].广东建材.2009,32(6):215-216.
    [23]闵涛,熊彬彬,李启.压实度与含水量对路基基底承载力影响的研究[J].山西建筑.2008,34(11):18-19.
    [24]Zhu M, Deng R, Li F. Model Tests on Subgrade in Seasonal Frozen Region Under Freezing-Thawing Circulation[M]. Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Liu H, Deng A, Chu J, Springer Berlin Heidelberg,2008,989.
    [25]马立峰,刘建坤,牛富俊.基于可靠度的多年冻土区路基稳定性评价及应用分析[J].工程地质学报.2009,17(4):522-527.
    [26]黄雨,江席苗,刘高.软土路基稳定性影响因素分析[J].地下空间与工程学报.2009,5(2):372-377.
    [27]向先超,朱长歧.考虑强度增长的淤泥路基稳定性研究[J].三峡大学学报:自然科学版.2008,30(6):60-63.
    [28]曹著.粘性土路基的施工[J].山西建筑.2008,34(1):111-112.
    [29]胡雪梅.土质对路基压实度控制的影响[J].中国西部科技(学术).2007(4):25-26.
    [30]金元德.路基土的压实度分析[J].山西建筑.2006,32(11):307-308.
    [31]张明清.影响路基整体强度及稳定性的因素和防范措施[J].山西建筑.2007(5):285-286.
    [32]李连宏.水稻田、沼泽地段路基沉降量观测方法的探讨[J].辽宁交通科技.2002,25(6):50-52.
    [33]刘建磊,佴磊,习晓红.半填半挖路基稳定性影响因素灵敏度分析[J].中外公路.2009,29(2):26-28.
    [34]Ju N, Zhao J, Huang R, et al. Dynamic design and construction of highway cut slopes in Huangshan area, China[J]. Journal of Mountain Science.2011,8(2):154.
    [35]周娟,佴磊.影响半堤半堑填方边坡整体稳定的因素分析[J].路基工程.2007(6):104-105.
    [36]常伟涛.半填半挖路基差异沉降分析研究[D].湖南大学,2008.
    [37]唐善普,胡光伟.扬溧高速路基岩土工程地质特性勘察与分析[J].西部探矿工程.2006:15-16.
    [38]侯春艳.路基风化岩击实标准及检测方法探讨[J].湖南交通科技.2008(1):70-71.
    [39]刘新喜,夏元友,刘祖德,等.强风化软岩路基填筑适宜性研究[J].岩土力学.2006(6):903-907.
    [40]熊跃华.路基软质岩块填料室内试验研究[Jl.路基工程.2009(3):32-33.
    [41]蔡俊杰,刘新喜.强风化软岩用于路基填土时的工程特性研究[J].湖南城市学院学报(自然科学版).2006(1):10-13.
    [42]张廷明,王新增.强风化岩填筑路基施工技术与质量控制[J].公路与汽运.2008(2):84-86.
    [43]郑明新,方焘,刁心宏,等.风化软岩填筑路基可行性室内试验研究[J].岩土力学.2005:53-56.
    [44]但汉成,李亮,胡萍,等.风化软岩路基填料击实工程特性室内试验研究[J].铁道学报. 2009(4):75-81.
    [45]况漠,尹璐.基于无限元的含节理路基的非线性分析[J].广州大学学报(自然科学版).2008(2):75-77.
    [46]黄勇,章斌.山区公路路基顺坡层理岩体稳定性分析及施工[J].山西建筑.2008(7):277-278.
    [47]王方杰,邱陈瑜.基于有限元强度折减法的岩腔路基稳定性分析[J].城市道桥与防洪.2009(10):62-64.
    [48]Jiang C, Zhao M, Cao W. Stability analysis of subgrade cave roofs in karst region[J]. Journal of Central South University of Technology.2008,15(0):38.
    [49]杨锡武,赵明阶,王昌贤.岩堆路基沉降稳定性及处治方法的离心模型试验研究[J].重庆交通大学学报:自然科学版.2009,28(2):236-240.
    [50]丁春林,甘百先,钟辉虹,等.含土洞、溶洞的机场滑行道路基稳定性评估[J].岩石力学与工程学报.2003(8):1329-1333.
    [51]方涛.溶洞路基稳定性分析研究[J].公路工程.2009,34(2):147-152.
    [52]袁红庆,王再喜,汪海生,等.高速公路岩溶路基处理措施研究[J].华东交通大学学报.2007(2):33-36.
    [53]全志刚.路基岩隙裂缝的形成分析、调查验证及防治措施[J].中国水运(下半月).2009(9):218-220.
    [54]杨大勇,高玮.地表水入渗下道路基础稳定性研究[J].路基工程.2008(6):158-159.
    [55]虞挺,吴道尧.渗流水对路基稳定的影响分析[J].水运工程.2007(6):90-93.
    [56]黄春娥,龚晓南.条分法与有限元法相结合分析渗流作用下的基坑边坡稳定性[J].水利学报.2001(3):6-10.
    [57]张洪举,凌天清,杨慧丽.山区填方路基的地下水渗流防治[J].重庆交通学院学报.2006,25(1):61-64.
    [58]冯五一,王俊杰,柴贺军.水位升降对岩质路基边坡稳定性的影响分析[J].交通标准化.2009(9):225-227.
    [59]王燕.水对高速公路路基影响的探讨[J].山西建筑.2009(30):290-291.
    [60]黄玉和.沿河土质路基稳定性影响因素分析[J].重庆交通大学学报:自然科学版.2008,27(B11):960-963.
    [61]孔小玲.浅谈山区公路路基的地下水害防治[J].湖南交通科技.2005(3):9-10.
    [62]张学志,杜国臣,纪小飞.排除路基地下水问题的探讨[J].内蒙古科技与经济.2005(z1):38-39.
    [63]阿布拉·米吉提.浅谈地下水对公路路基的影响与防治[J].民营科技.2009(9):181.
    [64]顾德银.道路路基穿过水塘的施工技术处理方案[J].中国高新技术企业.2009(6):182-184.
    [65]孙巧银.浸水路基稳定性研究[D].长安大学,2005.
    [66]郭筱薇.浸水路基的工程特点和稳定性分析[J].黑龙江科技信息.2009(8):221.
    [67]陈辉棠,陈培熊,朱晓锋.金秀至平南二级公路浸水路基病害成因与处理[J].山西建筑.2009(29):251-252.
    [68]尚新鸿.低液限粉性土作为路基填料的改良试验研究[D].长安大学,2009.
    [69]韩建刚,李占斌.紫色土小流域土壤流失对不同土地利用类型的响应[J].中国水土保持科学.2005(4):37-41.
    [70]刘刚才,高美荣,张建辉,等.川中丘陵区典型耕作制下紫色土坡耕地的土壤侵蚀特征[J].山地学报.2001:65-70.
    [71]何毓蓉,廖超林,张保华.长江上游人工林与天然林土壤结构质量及保水抗蚀性研究[J].水土保持学报.2005(5):3-6.
    [72]王子芳,屈双容,李阳兵,等.重庆岩溶地区不同土壤类型的土地利用多样性分析[J].水土保持学报.2006(2):153-156.
    [73]李阳兵,高明,魏朝富,等.土地利用对岩溶山地土壤质量性状的影响[J].山地学报.2003(1):41-49.
    [74]谢均强,史东梅,张兵,等.紫色丘陵坡地不同用地类型土壤理化特征分析[J].西南大学学报:自然科学版.2008,30(9):108-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700