帕金森病的功能磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分相位图用于脑铁沉积测量的研究
     目的:探讨相位图用于脑铁沉积测量的可行性。
     方法:选取30名健康成年志愿者作为研究对象,男20名,女10名,平均年龄36岁(20-65岁),所有志愿者均经GE HD 1.5T磁共振扫描仪进行常规MR平扫和SWI检查,经工作站Functool软件后处理在相位校正图上分别测量双侧黑质、红核、苍白球、壳核、尾状核和丘脑的相位校正值CP。并将对照组所得CP值与相应部位脑组织所含铁量进行直线回归分析。
     结果:黑质、红核、苍白球在相位校正图和SWI重建图上均呈对称的均匀低信号,所显示核团边界清晰,与周围脑组织信号强度对比明显,壳核和尾状核的信号也较低,平均CP值分别为-0.1554、-0.1272、-0.1119、-0.0807和-0.1034,与脑白质内的校正相位值差异有显著性意义(P<0.01)。CP值与铁含量呈负线性相关(R=-2.81,p=0.048<0.05),y=-0.0058x-0.0152(y为局部组织CP值,x为局部脑组织所含铁量)。
     结论:相位图可以清晰显示脑铁沉积的分布特点;1.5T磁共振条件下,CP值与脑铁含量呈负线性相关;在相位校正图上测量所得CP值可用以量化分析脑组织铁含量。
     第二部磁敏感成像在颅内钙化灶和铁沉积鉴别中的运用
     目的:对比研究颅内钙化和铁沉积在磁敏感成像(SWI)序列中的信号特点,并评价SWI技术在颅内病变诊断中的应用。
     方法:分别收集13例颅内钙化患者和20例健康志愿者的头部MR资料(包括常规T1WI,T2WI,SWI)。所有钙化灶均经过头颅CT检查证实,CT值>90 HU。将20例健康志愿者纳入铁沉积的研究组。SWI采用高分辨率的3D-SPGR(3D spoiled gradient echo)序列,同时得到幅度图和相位图,图像在工作站经Functool软件处理。对13例颅内钙化患者共计56个钙化灶和20例志愿者的黑质SWI上的信号特点进行分析对比。在校正相位图上分别测量钙化灶、对照组的黑质和正常脑白质的校正相位(CP)值,并进行统计分析。
     结果:55(98.2%,55/56)个钙化灶在SWI上得到良好显示,在校正相位图上表现为高信号或以高信号为主的混杂信号,在SWI重建图上表现为均匀的极低信号。40个黑质代表铁沉积,在SWI重建图和校正相位图上均表现为均匀的极低信号。钙化灶和正常的脑白质校正相位值CP分别为+0.734±0.073,0.002±0.007,差异有显著性意义(R=8.6305,P<0.01)。黑质校正相位值为-0.092±0.016,与脑白质内的校正相位值差异有显著性意义(R=-5.3293,P<0.01)。
     结论:SWI对铁和钙沉积的检出有高敏感性;利用钙化和铁沉积在相位校正图上的信号差异可以对两者进行鉴别。
     第三部分帕金森病脑铁沉积的定量研究
     目的:研究帕金森病(Parkinson's disease,PD)的发病和进展与脑铁沉积的关系。
     方法:PD患者30名作为研究组,男22名,女8名,平均年龄57.7岁(38-74岁),按Hoehn- Yahr分级量表将双侧症状患者20名作为PD组1(中晚期),单侧症状PD患者10名作为PD组2(早期)。选取年龄和性别匹配的健康志愿者30个作为对照组。所有对象均进行常规MR头部平扫和SWI检查。经后处理在相位校正图上分别测量双侧黑质、红核、苍白球、壳核、尾状核和丘脑的相位校正值CP。并将所获得数据进行统计分析。
     结果:PD组1、PD组2与对照组在以下核团(黑质、红核、苍白球和壳核)的CP值有统计差异(p<0.05),但是在丘脑和尾状核无统计差异(p>0.05)。PD组1和PD组2各兴趣区CP值之间无统计差异(p>0.05)。PD组2的症状同侧和对侧之间CP值无统计差异。
     结论:1) CP值与脑铁含量呈负线性相关联。2)铁含量的增加与PD的发病有关,但与病情的严重程度无关。3)在PD的亚临床期就有铁异常沉积。4) PD铁异常沉积的部位包括黑质、红核、苍白球和壳核,丘脑和尾状核的铁沉积变化不明显。
     第四部分帕金森病的DTI研究
     目的:研究帕金森病(PD)锥体外系和部分功能区的DTI改变状况,探讨PD早期诊断的线索及DTI参数与PD的关系。
     方法:PD患者30名作为研究组,男22名,女8名,平均年龄57.7岁(38-74岁),按Hoehn-Yahr分级量表将双侧症状患者20名作为PD组1(中晚期),单侧症状PD患者10名作为PD组2(早期)。选取年龄和性别匹配的健康志愿者30个作为对照组。所有对象均进行常规MR头部平扫和DTI检查。经后处理得到FA图和ADC图,用手动描绘法测量各兴趣区的FA值和ADC值,兴趣区包括双侧的黑质、红核、苍白球、壳核、尾状核、丘脑、胼胝体膝部、胼胝体压部、扣带回、额叶白质和中央前回。并将所获得数据进行统计分析。
     结果:PD组的黑质、尾状核和丘脑的FA值较对照组明显减低(P<0.05),PD组1黑质的FA值较PD组2双侧的FA值明显减低(p<0.05),PD组2的症状对侧和同侧黑质FA值之间有明显统计差异(p<0.05),PD组1和组2的胼胝体压部的FA值较对照组明显减低(p<0.05),PD组1的中央前回的FA值较对照组和PD组2明显减低(p<0.05),PD组1的扣带回的FA值较对照组减低(p<0.05);PD组余兴趣区的FA值和对照组之间无明显统计差异(p>0.05),PD组1和2之间也无明显统计学差异;PD组兴趣区的ADC值和对照组之间无明显统计差异(p>0.05),PD组1和2之间以及PD组2症状对侧和同侧之间也无明显统计学差异(p>0.05),但是随着病情级别的增加,ADC值呈增高趋势。
     结论:DTI特别是黑质、尾状核、丘脑和胼胝体压部的FA值有助于PD的早期诊断;黑质FA值的变化与PD分级负相关;中晚期PD患者的扣带回和中央前回的FA值减低;DTI为PD的在体研究提供更多与病理机制和临床表现有关的大量有用信息;
     第五部分帕金森病的脑基底节区MRS研究
     目的:研究分析帕金森病基底节区代谢变化,探讨磁共振质子波谱分析对帕金森病的临床应用价值。
     方法:对15例PD患者和8例健康志愿者对照进行双侧基底节区质子波谱检查,其中10例PD患者和8例志愿者均行双侧豆状核单体素质子波谱检查,5例PD患者行双侧基底节区2D-多体素质子波谱检查,并对所得结果进行分析统计。
     结果:PD患者豆状核的NAA/Cr的比值小于正常对照组(p<0.05),Cho/Cr与正常对照组无明显统计差异。2D-多体素MRS检查中PD患者双侧的NAA/Cr不对称,较重症状对侧的壳核和丘脑的NAA/Cr低于同侧。
     结论:质子波谱分析是研究PD患者基底节神经元是否遭受破环的一种无创性技术,2D-多体素MRS适宜于PD的检查,NAA/Cr比值的变化反应了PD的病理改变。
PartⅠPhase images in study of quantifying brain iron
     Objective: To explore whether the phase images has potential for quantifying brain iron invivo.
     Methods : Thirty healthy adult volunteers (20 males,10 females ) were studied with a GE1.5 T scanner. The subjects ranged from 20 to 65 years old ( mean = 36). All subjects wereimaged with SWI sequence. The correct phase shift value (CP) of substantia nigra (SN),red nucleus (RN),, globus pallidus (GP), putamen (PU), caudate (CA) and thalamus (TH)were measured on the corrected phase images. Regional CP values were compared withpublished brain iron concentration by linear correlation analysis.
     Results : The SN, RN and GP showed symmetrically homogeneous low intensity both inthe CP images and SWI reconstruction images. And their mean CP value were -0.1554,-0.1272, -0.1119, -0.0807 and -0.1034, Significant difference was demonstrated at the CPvalues of ROI and white matter (p<0.01). There was negative linear correlation betweenCP value and brain iron store (R=-2.81, p=0.048<0.05), y=-0.0058x-0.0152.
     Conclusions : The phase shift images could be used to detect minor iron concentrationdifferences in the brain. There was negative linear correlation between CP value and brainiron store in 1.5 T MR. The phase shift images may be useful for estimating the amount ofbrain iron in vivo.
     PartⅡApplication of MR Susceptibility Weighted Imaging inthe Differential Diagnosis of Intracranial Calcification and IronAccumulation
     Objective: To study the signal character of intracranial calcification and ironaccumulation by using MR SWI (susceptibility weighed imaging, SWI) technology, andevaluate the value of SWI sequence in diagnosis of intracranial lesions.
     Methods: The materials of 13 cases with intracranial calcification and 20 cases volunteerMRI(including routine T1Wi,T2Wi and SWI) were collected. All calcification areconfirmed by CT scan with their CT value beyond 90 HU . And the 20 volunteersrepresentiron accumulation group. 3D-SPGR(3D spoiled gradient echo) sequence is applied insusceptibility weighed imaging. Magnitude images and phase images are obtained. AndSWI reconstruction images will be obtained at the workstation AW4.2 . The MR signalcharacter of 56 calcification and that of substantia nigra in 20 volunteers werecompared..The CP(corrected phase ,CP) values of calcification ,substantia nigra andnormal alba are measured in corrected phase images. And statistical analysis is carried out.
     Results: All 55 (98.2%) calcification were well demonstrated in SWI sequence. Incorrected phase images, calcification showed high signal intensity or heterogeneously highsignal intensity, and hypointensity in SWI reconstruction images. 40 substantia nigrarepresenting iron accumulation showed extremely homogeneous low intensity both incorrected phase and SWI reconstruction images. The CP value of calcification is+0.734±0.073 ; The CP value of alba is +0.002±0.007 .There is significant differencebetween calcification and alba (t=8.6305,p<0.01). There is significant differencebetween substantia nigra(-0.092±0.016) and alba (t=-5.3293,p<0.01).
     Conclusion: SWI has high sensitivity in detection of iron accumulation and intracranial calcification. The signal difference in phase corrected images is valuable in differentialdiagnosis of intracranial calcification and iron accumulation.
     PartⅢThe quantitative study of iron stores in the brain ofParkinson's disease
     Objective: To explore MR technology for the quantitative study of iron store inbrain. And to invest the relationship between PD's pathogenesy and progress and ironstore in brain.
     Methods : 10 PD patients with unilateral symptoms and 20 PD patients with bi-lateralsymptoms were enrolled in PD group 1 and PD group 2. The 30 PD patients included 22males and 8 females .The average age was 57.7 years old (38-74). The PD group and thecontrol group which including 30 age and sex matched healthy volunteers were underwentthe routine MR plain scan and SWI scan. The phase correction value (CP) of substantianigra, red nucleus, globus pallidus, putamen, caudate and thalamus were measured inCP imaging. The statistical analysis was underwent.
     Result : There was negative linear correlation between CP value and iron store (R=-2.81,p=0.048<0.05) . The CP value of substantia nigra , red nucleus, globus pallidus andputamenl were significantly lower in PD groups (p<0.05). No significant difference wasdemonstrated at CP value of caudate and thalamus (p>0.05). No significant differencewas demonstrated at CP value of all ROI between PD group 1 and PD group 2 (p>0.05).And no significant difference was demonstrated at the CP value between the two sides ofthe PD group 2.
     Conclusions : 1) There was negative linear correlation between CP value and iron store. 2)Increasing of iron store concerned with PD's pathogenesy, not with severity degree. 3) There has abnormal iron store before clinical period. 4) The site of pathologic iron storeinclude substantia nigra, red nucleus, globus pallidus, putamen, not including caudateand thalamus.
     PartⅣDTI study of Parkinson's disease
     Objective: To investigate the diffusion tensor imaging (DTI) change on extracorticospinaltract and some domain in Parkinson's disease (PD). To explore some clues for PD's earlydiagnosis. And to explore the relationship between DTI and PD.
     Methods: 10 PD patients with unilateral symptoms and 20 PD patients with bi-lateralsymptoms were enrolled in PD group 1 and PD group 2. The 30 PD patients included 22males and 8 females .The average age was 57.7 years old (38-74). The PD group and thecontrol group which including 30 age and sex matched healthy volunteers were underwentthe routine MR plain scan and DTI scan .There would be FA imaging and ADC imagingafter postprocessing. And the FA values and ADC values of ROI (region of interest) weremeasured .The ROI included SN (substantia nigra)、NR (red nucleus)、GP (globuspallidus)、PUT (putamen)、CN (caudate nucleus)、thalamus、genu of corpus callosum、splenium of corpus callosum、callosal gyms、white matter of frontal lobe and anteriorcentra gyms. All data were analyzed.
     Results : The FA value of SN、CN and thalamus of PD group degraded obviouslycompared with control group (p<0.05).The FA value of PD group 1 degraded comparedwith that of PD group 2. There was significant diference at SN's FA value between thetwo sides of PD group 2. The FA value of splenium of corpus callosum of PD groups weresignificant lower than control group. The FA value of PD group 1 was lower compared withcontrol group and PD group2 at anterior central gyms and callosal gyms (p<0.05). There was no significant diference among PD groups and contra group at other ROI's FA value.And there was no significant diference between PD group 1 and PD group 2 at other ROI.There were no significant diference at ADC value among PD group 1、PD group 2 andcontrol group .But there was an increasing tendency at ADC value along with the progressof PD.
     Conclusions: The FA values of SN、CN、thalamus and splenium of corpus callosum offeredsome important informations for the early diagnosis of PD.There was negative correlationbetween the change of FA value at SN and PD grade.The FA values of callosal gyrus andanterior central gyms decreased at advanced stage of PD .DTI was useful to the study aboutPD's pathomechanism and clinical manifestation in vivo.
     PartⅤMagnetic resonance spectroscopy study on basal gangliadomain of idiopathic Parkinson's disease
     Objective : To analyze the metabolism change on basal ganglia of idiopathic Parkinson'sdisease. And to explore the clinical application of magnetic resonance spectroscopy (MRS)on Parkinson's disease (PD).
     Methods : 15 PD patients and 8 healthy volunteers underwent MRS study on their basalganglia. Among them ,10 PD patients and the volunteers underwent single-voxel MRSstudy. And 5 PD patients underwent multi-voxel MRS study.
     Results : NAA/Cr radio on lenticular of PD patients were decrease .There was no statisticsdifference on Cho/Cr radio between the PD patients and volunteers. NAA/Cr radio of PDpatients was asymmetry in 2D multi-voxel MRS study.
     Conclusions: H-MRS was a useful technique in study the function and quantity of basalganglia neuron of PD. 2D multi-voxel MRS lend itself to the study of PD. The NAA/Cr radiochange was the reaction of the pathology change of PD.
引文
1. Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI)。Magn Resom Med, 2004; 52 (3): 612-8.
    2. Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging, 2005; 22 (4). 439-50.
    3. Barbikian T, Freier MC, Tong KA, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatric Neurolll, 2005; 33(3): 184-94.
    4. E. Mark Haacke, Norman Y. C. Cheng, et al. Imaging iron stores in the brain using magnetic resonance imaging J Magnetic Resonance Imaging, 2005; 23 (1): 14-15.
    5. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem, 1958; (3): 41-51.
    6. Gupta R K, Rao S B, Jain R, et al. Differentiation of calcification from chronic hemorrhage with corrected gradient echo phase imaging. [J]. J Comput Assist Tomogr, 2001, 25 (5): 698-704.
    7. Griffiths PD, Crossman AR. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson's disease and Alzheimer's disease. Dementia, 1993; (4): 61-65.
    8. Spatz H. Uber Den Eisennachweis im Gehrin , besonders in Zentren des extrapyrimidal-motorishcen systems . Z Ges Neuronal Psychiat Berl 1922; (77): 261 .
    9. Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens R, Riederer SJ . Parkinson's plus syndrome: diagnosis using high field MR imaging of brain iron . Radiology 1986; (159) : 493-498.
    10. Riederer P, Sofic E, Rausch W D, Schmidt B, Reynolds GP, Jellinger K, et al . Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains . J Neurochem ,1989; (52) : 515-520 .
    11. Chen CJ, Hardy PA, Clauberg M, et al. T2 values in the human brain:comparison with quantitative assays of iron and ferritin . Radiology, 1989; (173:) : 521- 526 .
    12. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, et al . Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia . Brain, 1991; (114): 1953-1975.
    13. Levi S, Yewdall SJ, Harrison PM, et al . Evidence that H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin . J Biochem , 1992; (288) : 591-596.
    14. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB . Selective increase of iron in substantia nigra zona compacta of parkinsonian brains . J Neurochem , 1991; (56): 978-982 .
    15. Small SA, Perera GM, DelaPaz R, Mayeux R, Stern Y . Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease . Ann Neurol , 1999; (45) : 466-472.
    16. Small SA, Nava AS, Perera GM, DelaPaz R, Stern Y . Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging . Microsc Res Tech, 2000; (51): 101-108.
    17. Chen JC, Hardy PA, Kucharczyk W, Clauberg M, Joshi JG, Vourlas A, et al.MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington Disease . AJNR Am J Neuroradiol , 1993; (14) : 275-281 .
    18. Connor JR, Menzies SL, Burdo JR, Boyer PJ . Iron and iron management proteins in neurobiology . Pediatr Neurol , 2001; (25) : 118-129.
    19. Reichenbach JR, Barth M, Haacke EM,et al. High-resolution MR venography at 3.0 Tesla[J].J Comput Assist Tomogr, 2000, 24(6) : 949-957.
    20. Silliman CC, Peterson VM, Mellman DL, et al. Iron chelation by desferrioxamine in sickle cell patients with severe transfusioninduced hemosiderosis: a randomized, , double-blind study of the dose-response relationship . J Lab Clin Med , 1993; (122): 48- 54 .
    21. Wang YX, Hyssain SM, Krestin GP . Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging . Eur Radiol , 2001; (11) : 2319-2331 .
    22. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H . Tissuespecific MR contrast agents . Eur J Radiol , 2003; (46) : 33 - 44 .
    1. SEHGAL V, DELPROPOSTO Z, HAACKE E M, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging [J]. J Magn Reson Imaging, 2005; 22 (4): 439-450.
    2. BRODERICK L S, SBEMESH J, WILENSKY R L, et al. Measurement of coronary angiography: evaluation of CT Scoring method, interobserver variation and reproducibility[J]. MR, 1996,167(2): 439-444.
    3. E. MARK HAACKE, NORMAN Y. C. CHENG, MICHAEL J, et al. Imaging iron stores in the brain using magnetia resonance imaging [J]. Magnetic Resonance Imaging, 2005; 23 (1): 1-25.
    4. HAACKE E M, XU Y, CHENG Y C, et al. Susceptibility weighted imaging (SWI) [J].Magn Resom Med, 2004; 52 (3): 612-618.
    5. BARBIKIAN T, FREIER M C, TONG K A, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury [J]. Pediatric Neurolll, 2005; 33 (3): 184-194.
    6. XU Y, HAACKE E M. The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging [J]. Magn Reson Imaging, 2006; 24 (2): 155-160.
    7. RAUSCHER A, SEDLACIK J, BARTH M, et al. Magnetic susceptibility weighted MR phase imaging of the human brain [J]. AJNR, 2005; 26 (4): 736-742.
    8. HAN HB. Sequence design of magnetic resonance imaging and the clinical application [M]. Bei Jing: Peking University(health)Press, 2003.181.
    9. GUPTA R K, RAO S B, JAIN R, et al. Differentiation of calcification from chronic hemorrhage with corrected gradient echo phase imaging [J]. J Comput Assist Tomogr, 2001; 25 (5): 698-704.
    10.龚向阳,李森华.钙化磁共振信号演变规律的实验研究[J].中华放射学杂,1999;33(10):708-712.
    11.朱文珍,漆剑频,申皓,等.磁敏感成像技术在脑部血管性病变的应用[J].中华放射学杂志,2007;41(10):1040-1043.
    1. Bartzokis G, Tishler TA. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntington's disease. Cell Mol Biol, 2000; (46): 821-823.
    2. Bartzokis G, Sultzer D, Cummings J, Holt L, Hance DB, Henderson VW, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry, 2000; (57): 47-53.
    3. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem, 1958; (3): 41-51.
    4. Griffiths PD, Crossman AR. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson's disease and Alzheimer's disease. Dementia, 1993; (4): 61-5.
    5. Ke Y, Qian ZM. Brain iron metabol ism: Neurobiology and neurochemistry [J].Progress in Neurobiology, 2007; (83): 149-173.
    6. Connor JR, Menzies SL, Burdo JR, et al. Iron and iron management proteins in neurobiology [J]. Pediatric Neurology, 2001: (25): 118-129.
    7. Jiang H, Luan Z, Wang J, et al. Neuroprotective effects of iron chelator desferal on dopaminergic neurons in the substantia nigra of rat s with iron overload [J]. Neurochem Int, 2006: (49): 605-609.
    8.杨卉,曹学兵,黄振秀,等.铁与帕金森病相关性研究的近况[J].国外医学神经病学神经外科学分册,2000,4(27):180-183.
    9.王俊,姜宏,谢俊霞。中枢神经系统铁代谢与帕金森病的关系[J]青岛大学医学院学报,2002;38(2):100-102.
    10. Fearnley,. Julian Superficial siderosis of the central nervous system. [J] Practical Neurology, 2002; 2(1): 50-54.
    1. LeBihanD, ManginJF, PouponC, et al. Diffusion tensor imaging: concepts and applications . J Magn Reson Imaging, 2001, 13 (4): 535-546.
    2. Taber KH, Pierpaoli C, Rose SE, et al . The future for diffusion tensor imaging in neuropsychiatry . J Neuropsychiatry Clin Neurosci, 2002, 14 (1): 1-5.
    3. Lu S , Ahn D, Johnson G, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. Am J Neuroradiol , 2003; (24): 937-1941.
    4. Yoshikawa K, Nakata Y, Yamada K, et al . Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI . J Neurol Neurosurg Psychiatry , 2004; (75): 481-484.
    5. Chan LL, Rumpel H , Yap K , et al. Case control study of diffusion tensor imaging in Parkinson disease. J. Neurol Neurosurg Psychiatry, 2007, (78) : 1383.
    6. GalvinJE, Lee VM, Trojanowske JQ. Synucleinopathies: clinical and pathological implications [J]. Arch Neurol, 2001; (58) : 186-190.
    7. Katzenschlager R, Lees AJ. Olfaction and Parkinson s syndromes: its role in differential diagnosis. Curr O pin Neurol, 2004; 17 (4) : 417-423.
    8. Wenning GK, Shephard B. Hawkes C. et al. Olfactory function in atypical parkinsonian syndromes. Acta Neurol Scand, 1995; 91 (4) : 247-250.
    9. Mueller A , Abolmaali ND, Hakimi AR, et al. Olfactory bulb volumes in patients with idiopathic Parkinson s disease a pilot study. J Neural Transm . 2005, 112(10): 1363-1370.
    10. OtsukaM, IchiyaY, KuwabaraY, etal. Diferencesinthe redueed 18F-dopa uptakes of the caudate and putarnen in Parkinson's disease: correlations with the three main symptoms. JNeurelSci. 1996; (136) : 169-173.
    11. Eidelberg D, Moel]er JR, Ishikawa T, et al. Assessment of disease severity in Parkinsonism with fluorine-18-fluomdeoxyg / ucose an PET. J Nucl Med, 1995; (36): 378-383.
    12. Schocke MF, Seppi K, Esterhammer R, et al . Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson's disease . Neuroimage , 2004; (21): 1443-1451.
    1.徐健 磁共振波谱成像的基本原理、序列设计与临床应用,[J]世界医疗器械,2004;10(10):104-109.
    2. Sager TN, Topp S, TorupL, et al. Evaluation of CA1 damage using single-voxelH-M RS and unbiased stereology: can non-invasive measures of N- acetyl aspartate following global isehemia be used as a reliable measure of neuronal damage?Brain Res, 2001, 892: 166.
    3. Firbank MJ. Harrison RM, 0Brien JT。et al. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson s disease. Dement-Geriatr-Cogn-Disord, 2002, 14: 64.
    4.陈薇,谢惠君,汪剑 磁共振波谱分析在帕金森病早期诊断应用中的价值,[J]中国临床康复,2004,01(8):34-35.
    5.李鹏,王伟,古燕 等 改良质子波谱技术观察帕金森患者黑质内神经代谢的改变[J]中国临床康复,2006,09(10):112-114.
    6. Zheng XN, Zhu XC, Ruan LX. et al. M RS study on lentiform nucle-us in idiopathic Parkinson s disease with unilateral symptom s. Zhejiang Univ Sci, 2004; 5(2): 246-50.
    7.郑旭宁,朱雄超,阮凌翔,等 原发单侧症状帕金森病双侧壳核磁共振波谱研究[J]中华神经科杂志2004,2(37):37-40.
    8.邢永红,张本恕,张云亭,等帕金森病患者壳核质子磁共振波谱研究,[J]天津医药,2007;35(8):581-584.
    9. Clark CE, Lowry M. Basal ganglia metabolitc concentration in idiopath-ic Parkinson's disease and multiple system atrophy measured by proton magnetic resonance spectroscopy. Eur J Neurol. 2000, 7: 661.
    10.居胜红.陈峰,滕高军,等.MR单体素波谱和化学位移成像在颞叶癫痫中的研究.中华放射学杂志.2004.38:1180
    1. Loeffier DA, Connor JR, Juneau PL, et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J Neuroche 1995; (65): 710-716.
    2. Gelman BB, Iron in CNS disease, J Neuropathol Exp Neurol 1995; (54): 477-486.
    3. Vymazal J, Urgosik D, Bulte JW. Differentiation between hemosiderin and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. Cell Mol Biol 2000; (46): 835-842.
    4. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ. Regional distribution of iron and iron regulatory proteins in the brain in aging and disease. J Neurosci Res 1992; (31) : 327-335.
    5. Hinzmann RD . Ferritin and transferrin in iron deficiency and overload . Immunodiagn Today 1999; (12) : 1-4.
    6. Spatz H . Uber Den Eisennachweis im Gehrin , besonders in Zentren des extrapyrimidal-motorishcen systems . Z Ges Neuronal Psychiat Berl 1922; (77): 261 .
    7. Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens R, Riederer SJ . Parkinson's plus syndrome: diagnosis using high field MR imaging of brain iron . Radiology 1986; (159) : 493-498.
    8. Hallgren B, Sourander P . The effect of age on the non-haemin iron in the human brain . J Neurochem l958; (3) : 41-51.
    9. Griffiths PD,, Crossman AR . Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson's disease and Alzheimer's disease . Dementia 1993; (4) : 61-65.
    10. Levi S, Yewdall SJ, Harrison PM, et al . Evidence that H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin . J Biochem 1992; (288) : 591-596.
    11. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB . Selective increase of iron in substantia nigra zona compacta of parkinsonian brains . J Neurochem 1991; (56) : 978-982 .
    12. Small SA, Perera GM, DelaPaz R, Mayeux R, Stern Y . Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease . Ann Neurol 1999; (45) : 466-472.
    13. Small SA, Nava AS, Perera GM, DelaPaz R, Stern Y . Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging . Microsc Res Tech 2000; (51): 101- 108 .
    14. Chen JC, Hardy PA, Kucharczyk W, Clauberg M, Joshi JG, Vourlas A, et al. MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington Disease . AJNR Am J Neuroradiol 1993; (14): 275-281 .
    15. Connor JR, Menzies SL, Burdo JR, Boyer PJ . Iron and iron management proteins in neurobiology . Pediatr Neurol 2001; (25) : 118-129.
    16. An H, Lin W . Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach . Magn Reson Med 2003; (50) : 708-716 .
    17. Vymazal J, Brooks RA, Baumgarner C, et al. The relation between brain iron and NMR relaxation times: an in vitro study . Magn Reson Med 1996; (35) : 56-61.
    18. Dhenain M, Duyckaerts C, MichotJL, et al. Cerebral T2 weighted signal decrease during in the n use lemur primate reflects iron accumulation. Neurobiol Aging, 1998, 19(1): 65-69
    19. Ogg RJ, Steen RG . Age related changes in brain T1 are correlated with putative iron concentration . Magn Reson Med 1998; (40) : 749- 753 .
    20. Vymazal J, Brooks RA, Patronas N, Hajek M, Bulte JWM, DiChiro G . Magnetic resonance imaging of brain iron in health and disease . J Neurol Sci 1995; (134) : 19-26 .
    21. Bartzokis G, Tishler TA, Shin IS, et al. Brain ferritin iron as a risfactor for age at on set in neurodegenerative diseases . AnnN YAcaSci, 2004; (1012): 224-236 .
    22. Vymazal J, RighiniA, BrooksRA, et al. T1 and T2 in the brain ohealthy subjects, patientswith Parkinson disease, and patientswitmultiple system atrophy: relation to iron content. Radiology, 1999; (211): 489-495 .
    23. Gelman N, Ewign JR, Gorell JM, Spickler EM, Solomon EG . Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents . Magn Reson Med ,2001; (45) : 71-79.
    24. Bartzokis G, Sultzer D, Cummings J, Holt L, Hance DB, Henderson VW, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging . Arch Gen Psychiatry , 2000; (57) : 47-53.
    25. Metafratzi Z, Argyropoulou MI, Kiortsis DN, Tsampoulas C, Chaliassos N, Efremidis SC . T(2) relaxation rate of basal ganglia and cortex in patients with beta-thalassaemia major . Br J Radiol , 2001; (74) : 407-410.
    26. Graham JM, Paley MNJ, Grunewald RA, Hoggard N, Griffiths PD . Brain iron deposition in Parkinson's disease imaged using the PRIME magnetic resonance sequence . Brain, 2000; 123: 2423-2431.
    27. Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A . Age distribution and iron dependency of the T2-relaxation time in the globus pallidus and putamen . Neurology , 1993; (35) : 119-124.
    28. Besson JA, Best PV, Skinner ER . Post-mortem proton magnetic resonance spectrometric measures of brain regions in patients with a pathological diagnosis of Alzheimer's disease and multi-infarct dementia . Br J Psychiatry, 1992; (160) : 187-190.
    29. Bartzokis G, Tishler TA . MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer'sand Huntington's disease . Cell Mol Biol, 2000; (46) : 821-833.
    30. Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA . Assessment of relative brain iron concentrations using T2-weighted and T2~*-weighted MRI at 3 Tesla . Magn ResonMed , 1994; (32) : 335-341.
    31. Gorell JM, Ordidge RJ, Brown GG, Deniau J-C, Buderer NM, Helpern JA . Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease . Neurology, 1995; (45) : 1138-1143.
    32. Gilissen EP, Jacobs RE, Allman JM . Magnetic resonance microscopy of iron in the basal forebrain cholinergic structures of the aged mouse lemur . J Neurol Sci, 1999; (168) : 21-27.
    33. E .Mark Haacke, Norman Y .C .Cheng, Michael J, et al . Imaging iron stores in the brain using magnetia resonance imaging [J]. Magnetic Resonance Imaging, 2005; 23 (1) 1-25.
    34. Barbikian T, Freier M C, Tong K A, et al . Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. [J]. Pediatric Neurolll, 2005; 33 (3): 184-194.
    35. Xu Y, Haacke E M. The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. [J]. Magn Reson Imaging, 2006; 24 (2): 155-160.
    36. Rauscher A, Sedlacik J, Barth M, et al. Magnetic susceptibility-weighted MR phase imaging of the human brain. [J]. AJNR, 2005; 26 (4): 736-742.
    37. Gupta R K, Rao S B, Jain R, et al . Differentiation of calcification from chronic hemorrhage with corrected gradient echo phase imaging.[J]. J Comput Assist Tomogr, 2001, 25 (5): 698-704.
    38. Wang Y, Yu Y, Li D, Bae KT, Brown JJ, LinW, et al. Artery and vein separation using susceptibility dependent phase in contrast-enhanced MRA. [J] Magn Reson Imaging, 2000; (12): 661-670.
    39.孙勤学,张敏鸣 磁敏感成像的原理及其应用进展 国外医学临床放射学分册2007,30(6):377-380。
    40. Reichenbach JR, Barth M, Haacke EM, et al. High-resolution MR venography at 3.0 Tesla[J].J Comput Assist Tomogr, 2000,24(6):949-957.
    41. Silliman CC, Peterson VM, Mellman DL, et al. Iron chelation by desferrioxamine in sickle cell patients with severe transfusioninduced hemosiderosis: a randomized, double-blind study of the dose-response relationship. J Lab Clin Med, 1993; 122: 48-54.
    42. Wang YX, Hyssain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol, 2001; (11): 2319-2331.
    43. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H . Tissuespecific MR contrast agents . Eur J Radiol , 2003; (46) : 33-44.
    1. PolymeropoulosMH, HigginsJJ, GolbeLI1 Mapping ofgenefor Parkinson's disease to chromosome 4q21- q23〔J〕 Science, 1996, 274: 1197-11991.
    2. Herishanu YO, Medvedovski M, Goldsmith JR, et al. A case control study of Parkinson's disease in urban population of southern Israel[J]. Can J Neurol Sei, 2001, 28(2): 144-147.
    3. Perl DP, Olanow CW. The neuropathology of manganese induced Parkin -sonism[J]. J Neuropathol Exp Neurol, 2007, 66(8): 675-682.
    4. BlumD, TorchS, NissouMF1 Molecular pathway sinvolved in the neurotoxicity of 6- OHDA, dopamine and MPTP: contribution to the apoptotictheory in Parkinson's disease〔J〕Progress inneurobiology, 2001 , 65: 135-1721.
    5.五雪英,龚玉来,何进宇 帕金森病的研究进展[J]现代临床医学,2007;4(33):174-175.
    6.朱珍,耿道颖,等 帕金森病MRI白质高信号研究[J]中国康复理论与实践.,2005;11(10):834-837
    7. Duguid JR, de La Paz R, de Groot J·Magnetic resonance imaging of the midbrain in Parkinson's disease Ann Neurol, 1986; 20: 744.
    8. Mauricio JC, Coelho H, Sa J, et al·Importance of magnetic resonance in Parkinon disease: An analytic study of the pars compacta ·Acta Med Port, 1990; 3: 85.
    9. Moriwaka F, Tashiro K, Itoh K, et. al· Magnetic resonance imaging in Parkinson's disease: the evaluation of thewidth of pars compacta onT2 weighted image·Clin Neurol, 1992; 32: 8.
    10. Aotsuka A, Shinotoh H, Hirayama K, et al. MRI in Parkinson's disease and vascular parkinsonism study on the lesion of substantia nigra. Rinsho Shinkeigaku, 1991; 31: 619.
    11. Bartzokis G, Cummings JL, Markham CH, et al. MRI evaluation of brain iron in earlier and later-onset Parkinson's disease and normal subjects. Magn Reson Imaging, 1999; 17: 213-222.
    12. Oikawa H, Sasaki M, Tamakawa Y, et al. The substantia nigra in Parkinson's disease: proton density weighted spin- echo and fast short inversion time inversion-recoveu, MR findings. Am J Neuroradiol 2002, 23: 1747
    13.李郁欣,耿道颖,蒋雨平,等.基底节、黑质的MRI体积测量在帕金森病中的应用研究,[J]中国医学计算机成像杂志,2006,12(1):6-10.
    14.沈黎玮等 磁共振测量基底节区、黑质体积在帕金森病及其相关疾病诊断中的意义[J]中国临床神经科学.2005,13(1).-105-109.
    15.黄海东 邓敬兰等 磁共振测量黑质致密带宽度在帕金森病和血管性帕金森综合征鉴别诊断上的应用[J]临床神经病学杂志.2004,17(1).-11-13.
    16. Grittqths PD, Dobson BR. Jones GR et al. Iron in the "basal ganglia inParkinson's disease. An in vitro study using extended X-ray absorptionfine structure and cryo-electron microscopy. Brain, 1999; 122 (4): 667.
    17. Bartzokis G, Tishler TA, Shin IS, et al1 Brain ferritin iron as a risfactor for age at on set inneurodegenerative diseases AnnN YAcaSci, 2004; 1012: 224-236.
    18. Bartzokis G, Tishler TA, Shin IS, et all Brain ferritin iron as a risfactor for age at on set in neurodegenerative diseases AnnN YAcaSci, 2004; 1012: 224-236.
    19. An H, Lin W . Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach . Magn Reson Med 2003; (50) : 708- 716.
    20. Vymazal J, Brooks RA, BaumgarnerC, et al. The relation between brain iron and NMR relaxation times: an in vitro study . Magn Reson Med 1996; (35) : 56- 61 .
    21. Dhenain M, Duyckaerts C, Michot JL, et al. Cerebral T2 weighted signal decrease during in the n use lemur primate reflects iron aecumula tion. Neurobiol Aging, 1998, 19(1): 65-69
    22. Ogg RJ, Steen RG . Age related changes in brain T1 are correlated with putative iron concentration . Magn Reson Med 1998; (40) : 749- 753 .
    23. Vymazal J, Brooks RA, Patronas N, Hajek M, Bulte JWM, DiChiro G . Magnetic resonance imaging of brain iron in health and disease . J Neurol Sci 1995; (134) : 19-26.
    24. Bartzokis G, Tishler TA, Shin IS, et al. Brain ferritin iron as a risfactor for age at on set in neurodegenerative diseases . AnnN YAcaSci, 2004; (1012): 224-236 .
    25. VymazalJ, RighiniA, BrooksRA, et al. Tl and T2 in the brain ohealthy subjects, patientswith Parkinson disease, and patientswitmultiple system atrophy: relation to iron content. Radiology, 1999; (211): 489-495 .
    26. Gelman N, Ewign JR, Gorell JM, Spickler EM, Solomon EG . Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents . Magn Reson Med , 2001; (45) : 71- 79 .
    27. Bartzokis G, Sultzer D, Cummings J, Holt L, Hance DB, Henderson VW, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging . Arch Gen Psychiatry , 2000; (57) : 47-53.
    28. Metafratzi Z, Argyropoulou MI, Kiortsis DN, Tsampoulas C, Chaliassos N, Efremidis SC . T(2) relaxation rate of basal ganglia and cortex in patients with beta-thalassaemia major . Br J Radiol ,2001; (74) : 407-410.
    29. Graham JM, Paley MNJ, Grunewald RA, Hoggard N, Griffiths PD . Brain iron deposition in Parkinson's disease imaged using the PRIME magnetic resonance sequence . Brain, 2000; 123: 2423-2431.
    30. Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A . Age distribution and iron dependency of the T2-relaxation time in the globus pallidus and putamen . Neurology , 1993; (35) : 119-124.
    31. Bartzokis G, Tishler TA . MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer'sand Huntington's disease . Cell Mol Biol, 2000; (46) : 821-833.
    32. Ordidge RJ, Gorell JM, DeniauJC, Knight RA, Helpern JA . Assessment of relative brain iron concentrations using T2-weighted and T2~*-weighted MRI at 3 Tesla . Magn ResonMed , 1994; (32) : 335-341.
    33. Gorell JM, Ordidge RJ, Brown GG, Deniau J-C, Buderer NM, Helpern JA . Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease . Neurology, 1995; (45) : 1138-1143.
    34. Gilissen EP, Jacobs RE, Allman JM . Magnetic resonance microscopy of iron in the basal forebrain cholinergic structures of the aged mouse lemur . J Neurol Sci, 1999; (168) : 21-27.
    35. E .Mark Haacke, Norman Y .C .Cheng, Michael J, et al. Imaging iron stores in the brain using magnetia resonance imaging [J] . Magnetic Resonance Imaging , 2005; 23 (1) 1-25.
    36. Wang Y, Yu Y, Li D, Bae KT, Brown JJ, LinW, et al. Artery and vein separation using susceptibility dependent phase in contrast-enhanced MRA . [J] Magn Reson Imaging , 2000; (12) : 661-670.
    37. SillimanCC, Peterson VM, MellmanDL, et al. Iron chelation by desferrioxamine in sickle cell patients with severe transfusioninduced hemosiderosis: a randomized, double-blind study of the dose-response relationship. J Lab Clin Med, 1993; 122: 48-54.
    38. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. Tissuespecific MR contrast agents. Eur J Radiol, 2003; (46): 33-44.
    39.陈薇,谢惠君,汪剑 磁共振波谱分析在帕金森病早期诊断应用中的价值,[J]中国临床康复,2004,01(8):34-35.
    40.李鹏,王伟,古燕 等 改良质子波谱技术观察帕金森患者黑质内神经代谢的改变[J]中国临床康复,2006,09(10):112-114.
    41. Zheng XN, Zhu XC, Ruan LX. et al. M RS study on lentiform nucle-us in idiopathic Parkinson s disease with unilateral symptom s. Zhe jiang Univ Sci, 2004; 5(2): 246-50.
    42.郑旭宁,朱雄超,阮凌翔,等 原发单侧症状帕金森病双侧壳核磁共振波谱研究[J]中华神经科杂志2004,2(37):37-40.
    43. Choe BY, Park JW, Lee KS, et al. Neuronal laterality in Parkinson's disease with unilateral symptom by in vivo1H-MRS resonance spectroscopy [J]. Invest Radiol, 1998, 33(8):450-45.
    44.邢永红,张本恕,张云亭,等帕金森病患者壳核质子磁共振波谱研究,[J]天津医药,2007:35(8):581-584.
    45.邢永红,张本恕,张云亭,等帕金森病患者额叶质子磁共振波谱研究,[J]天津医科大学学报,2007;13(2):240-243。
    46. Griffiths PD, Dobson BR, Jones GR, et al·Iron in the basal ganglia in Parkinson's disease.An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy.Brain, 1999, 122: 667.
    47. Bowen BC, Block RE, Sanchez RJ, et al. Proton MR spectroscopy of the brain in 14 patients with Parkinson disease[J]. AJNR Am J Neuroradiol, 1995, 16:61-68.
    48. Davie CA, Wenning GK, Barker GJ, et al. Differentiation of multiple system atrophy from idiopathic Parkinson's disease using proton magnetic resonance spectroscopy[J]. Ann Neurol; 1995, 37:204-210 .
    49. Le Bihan D, ManginJF, PouponC, et al. Diffusion tensor imaging: concepts and applications . J Magn Reson Imaging, 2001, 13 (4): 535-546.
    50. Taber KH, Pierpaoli C, Rose SE, et al . The future for diffusion tensor imaging in neuropsychiatry . J Neuropsychiatry Clin Neurosci, 2002, 14 (1): 1-5.
    51. Lu S , Ahn D, Johnson G, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. Am J Neuroradiol , 2003; (24): 937-1941.
    52. Yoshikawa K, Nakata Y, Yamada K, et al . Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI . J Neurol Neurosurg Psychiatry , 2004; (75): 481-484.
    53. Chan LL, Rumpel H , Yap K , etal. Case control study of difusion 54. tensor imaging in Parkinson disease. J. Neurol Neurosurg Psychiatry, 2007, (78) : 1383.
    55. Schocke MF, Seppi K, Esterhammer R, et al . Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson's disease . Neuroimage , 2004; (21): 1443-1451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700