苏尼特羔羊肌内脂肪细胞分化相关因子和肌内脂肪代谢关键酶基因表达发育规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用体重约10kg的苏尼特羯羊16只,参照我国肉用绵羊饲养标准(NY/T 816-2004)进行舍饲,分别于体重10kg、20kg、30kg和40kg时选择4只接近目标体重的羊屠宰,研究了10~40kg羔羊肌内脂肪(IMF)随时间的沉积规律、肉质变化规律及IMF与肉质的相关性;采用荧光定量RT-PCR技术,检测了体重10kg、20kg、30kg和40kg羔羊肌内脂肪细胞分化转录因子——过氧化物酶体增殖物激活受体γ(PPARγ)与脂肪细胞定向和分化因子1(ADD1)、肌内前体脂肪细胞标志分子——前体脂肪细胞因子1 (Pref-1)和肌内脂肪代谢关键酶——乙酰辅酶A羧化酶(ACC)、脂肪酸合成酶(FAS)、脂蛋白酯酶(LPL)及激素敏感酯酶(HSL)的mRNA水平,揭示了羔羊肌内脂肪细胞分化相关因子和肌内脂肪代谢关键酶基因表达的发育规律及其与IMF的相关性。试验结果显示:
     1. 10~40kg苏尼特羔羊肌内脂肪含量和肌肉系水率随体重增加而升高(p<0.05),肌肉水分含量和剪切力随体重增加而降低(p<0.05);肌肉剪切力与肌内脂肪含量呈极显著负相关(r=-0.983, p<0.01)。
     2. 10~40kg苏尼特羔羊肌内PPARγ、ADD1和Pref-1基因表达量均呈下降趋势,体重10kg和20kg时的表达量显著高于30kg和40kg(p<0.05);Pref-1的mRNA表达量与IMF呈显著负相关(r=-0.659, p<0.05)。
     3. 10~40kg苏尼特羔羊肌内ACC和LPL基因表达量逐渐上升,30kg时表达量显著高于10kg (p<0.05),40kg时较30kg又有显著增加(p<0.05);ACC和LPL的mRNA表达量与IMF呈极显著(r=0.775, p<0.01)或显著(r=0.758, p<0.05)正相关。
     4. 10~40kg苏尼特羔羊肌内FAS和HSL基因表达量均呈下降趋势,体重30kg和40kg时的表达量显著低于10kg和20kg (p<0.05)。
     试验结果表明:随着体重增加,苏尼特羔羊肌内脂肪细胞分化能力逐渐减弱,肌内脂肪合成逐渐增强,肌内脂肪分解逐渐减弱;脂肪细胞分化对IMF沉积的贡献随体重增加而下降,脂肪细胞中脂质的积累是IMF不断上升的主要因素。
16 castrated Sunit lambs with about 10kg BW were selected and yard-fed. The dietary nutrient levels for the lambs were arranged according to the recommendations of NY/T 816-2004 (Feeding standard of meat-producing sheep and goats). Four animals were slaughtered at 10kg, 20kg, 30kg and 40kg live weight respectively, and Longissimus Dorsi was sampled for further analysis. Intramuscular fat content and shear value were determined to study the developmental pattern of intramuscular fat and the relationship between intramuscular fat and meat quality. PPARγand ADD1 have been implicated as key regulators of adipocyte differentiation while Pref-1 is the marker of preadipocyte. It is well-known that ACC, FAS, LPL and HSL are key enzymes in lipid metabolism. The mRNA levels of these genes were determined to study the developmental expression of the genes involved in intramuscular adipocyte differentiation and of key enzymes involved in intramuscular fat metabolism in Sunit lambs by means of quantitative real-time RT-PCR.
     The results showed that:
     1. Intramuscular fat content and water-holding percentage increased as lambs grew while water content and shear value decreased. There was very significant negative correlation between shear value and intramuscular fat content of mutton (r=-0.983, p<0.01).
     2. There was a decreasing tendency of the developmental expression of PPARγ, ADD1 and Pref-1 genes from 10- to 40 kg BW. The mRNA levels of PPARγ, ADD1 and Pref-1 in 10- and 20kg lambs were significantly higher than that in 30- and 40kg lambs (p<0.05). There was significant negative correlation between Pref-1 mRNA abundance and IMF content (r=-0.659, p<0.05).
     3. As lambs grew, the mRNA levels of ACC and LPL genes increased. Their mRNA levels of 30kg lambs were higher than that of 10kg sheep while lower than that of 40kg lambs (p<0.05). There was very significant or significant positive correlation between ACC or LPL mRNA abundance and IMF content (r=0.775, p<0.01; r=0.758, p<0.05).
     4. The developmental expression of FAS and HSL genes decreased as lambs grew. Their mRNA levels in 10- and 20kg BW lambs were significantly higher than that in 30- and 40kg lambs.
     The results suggested that:
     Intramuscular adipocyte differentiation and IMF degradation in Sunit lambs decreased while IMF synthesis enhanced as lambs grew. In older animals IMF deposition was effected mainly by lipid accumulation in differentiated adipocytes rather than by adipocyte differentiation.
引文
1 吉尔嘎拉, 双金, 刘常乐等. 苏尼特肉羊的肌肉和脂肪组织中脂肪酸组成的研究[J]. 内蒙古农牧学院学报, 1994, 15(3): 59-63
    2 吉尔嘎拉, 满 达, 姚明等. 苏尼特羊肉的营养和保健价值的研究[J]. 中国草食动物, 2005, 25(6): 55-56
    3 孟青龙. 苏尼特羊产肉性能的研究[J]. 内蒙古畜牧科学, 1998, 4: 37-39
    4 Bejerholm C, Barton-Gade P A. Effect of intramuscular fat level on eating quality of pig meat[C]. Proceedings of 32nd European Meeting of Meat Research Workers, Chent, Belgium, August 1986, 389-391
    5 Fernandez X, Monin G, Talmant A, et al. Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum[J]. Meat Science, 1999, 53: 59-65
    6 Purchas R W, Burnham D L, Morris S T. Effects of growth potential and growth path on tenderness of beef longissimus muscle from bulls and steers[J]. J Anim Sci, 2002, 80: 3211-3221
    7 Okeudo N J, Moss B W. Interrelationships amongst carcass and meat quality characteristics of sheep[J]. Meat Science, 2005, 69: 1-8
    8 姜俊芳. 脂肪细胞分化相关因子基因表达在猪生长过程中的变化规律研究[D]. 浙江大学博士学位论文, 2006
    9 廉红霞. 猪肌内脂肪代谢信息传导途径相关因子研究[D].内蒙古农业大学博士学位论文, 2007
    10 Hoffmann K. What is quality?Definition, measurement and evaluation of meat quality[J]. Meat Focus International, 1994, 3: 73-82
    11 南庆贤. 肉类工业手册[M]. 北京: 中国轻工业出版社, 2004
    12 陈润生. 优质猪肉的指标及其度量方法[J]. 东北农业大学学报, 1988, 3: 35-38
    13 周光宏. 肉品学[M]. 北京: 中国农业科技出版社, 1999
    14 侯生珍. 肌肉内脂肪的研究进展[J]. 甘肃畜牧兽医, 2000, 152(3): 30-31
    15 Patricia A. Eating quality of pork in Denmark[J]. Pig Farming (Suppl), 1985, 10: 56-57
    16 Wood J D. Effects of carcass fatness and sex on the composition and quality of pig meat. 34th International Congress of Meat Science and Technology. Australia, 1988, 562-564
    17 Touraille C, Monin G, Legault C. Eating quality of meat from European×Chinese crossbred pigs[J]. Meat Science, 1989, 25: 177-186
    18 Hovenier R, Kanis E, Van Asseldonk T, et al. Breeding for pig meat quality in halothane negative populations —a review[J]. Pig News Info, 1993, 14: 17-25
    19 Seideman S C, Koohmaraie M, Crouse J D. Factors associated with tenderness in young beef[J]. Meat Science, 1987, 20: 281-291
    20 Berg R T, Walters L E. The meat animal: changes and challenges[J]. J Anim Sci, 1983, 57(Suppl 2): 133-146
    21 Trenkle A, Marple D N. Growth and development of meat animals[J]. J Anim Sci, 1983, 57(Suppl 2): 273-283
    22 Walstra P. Growth and Carcass Composition from Birth to Maturity in Relation to Feeding Level and Sex in Dutch Landrace Pigs. Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, 1980
    23 Kauffman R G, Crenshaw T D, Rutledge J J, et al. Porcine growth: postnatal development of major body components in the boar. In: University of Wisconsin-Madison. College of Agricultural and Life Sciences Research Report . 1986, pp. 1-25
    24 Kouba M, Bonneau M, Noble J. Relative development of subcutaneous, intermuscular and kidney fat in growing pigs with different body compositions[J]. J Anim Sci, 1999, 77: 622-629
    25 Mitchell A D, Scholz A M, Mersmann H J. Growth and body composition. In: Pond W G, Mersmann H J (Eds.). Biology of the Domestic Pig, Cornell University Press, Ithaca, NY, 2001, pp. 225-308
    26 Moloney A P, Allen P, Enright W J. Body composition and adipose tissue accretion in lambs passively immunized against adipose tissue[J]. Livest Prod Sci, 2002, 74: 165-174
    27 Truscott T G, Wood J D, Macfie H J H. Fat deposition in Hereford and Friesian steers[J]. J Agr Sci Camb, 1983, 100: 257-270
    28 Adams M, Montague C T, Prins J B, et al. Activators of peroxisome proliferator-activated receptor have depot-specific effects on human preadipocyte differentiation[J]. J Clin Invest, 1997, 100: 3149-3153
    29 Wajchenberg B L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome[J]. Endocr Rev, 2000, 21: 697-738
    30 Broad T E, Davies A S, Tan G Y. Pre- and postnatal study of the carcass growth of sheep[J]. Animal Production, 1980, 31: 73-79
    31 Vernon R G. The growth and metabolism of adipocytes. In: Control and Manipulation of Animal Growth, Buttery P J, Haynes N B and Lindsay D B(Eds.). London: Butterworths,1986, pp 67-83
    32 Allen C E. Cellularity of adipose tissue in meat animals[J]. Fed Proc, 1976, 35: 2302-2307
    33 Mersmann H J and Simth S B, Development of white adipose tissue lipid metabolism. 2004, 275-302
    34 Soret B, Lee H J, Finley E, et al. Regulation of differentiation of sheep subcutaneous and abdominal preadipocytes in culture[J]. Journal of Endocrinology, 1999, 161: 517-524
    35 Taylor S M, Jones P A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine[J]. Cell, 1979, 17: 771-779
    36 Dani C, Smith A G, Dessolin S, et al. Differentiation of embryonic stem cells into adipocytes in vitro[J]. J Cell Sci, 1997, 110: 1279-1285
    37 Ono M, Aratani Y, Kitagawa I, et al. Ascorbic acid phosphate stimulates type Ⅳ collagen synthesis and accelerates adipose conversion of 3T3-L1 cells[J]. Exp Cell Res, 1990, 187: 309-314
    38 Miller W H, Faust I M, Goldberger A C. Effects of severe long term food deprivation and refeeding on adipose tissue cells in the rat[J]. Am J Physiol, 1983, 245: E74-E80
    39 Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development[J]. Annu Rev Nutr, 1992, 12: 207-233
    40 Ailhaud G, Dani C, Amri E Z. Coupling growth arrest and adipocyte differentiation[J]. Environ Health Perspect, 1989, 80: 17-23
    41 Butterwith S C. molecular events in adipocyte development[J]. Pharm Ther, 1994, 61: 99-111
    42 Dani C, Doglio A, Amri E Z, et al. Cloning and regulation of a mRNA specifically expressed in the preadipose state[J]. J Biol Chem, 1989, 264: 10119-10125
    43 Ibrahimi A, Bertrand B, Bardon S, et al. Cloning of alpha 2 chain of type Ⅵ collagen and expression during mouse development[J]. Biochem J, 1993, 289: 141-147
    44 Sul H S, Smas C, Mei B, et al. Function of pref-1 as an inhibitor of adipocyte differentiation[J]. International Journal of Obesity, 2000, 24(Suppl 4): S15-S19
    45 Rosen E D, Walkey C J, Puigserver P, et al. Transcriptional regulation of adipogenesis [J]. Genes & Dev, 2000, 14: 1293-1307
    46 Issemann I, Green S. Activation of a number of the steroid receptor superfamily by peroxisome proliferators[J]. Nature, 1990, 347: 645-650
    47 Juge-Aubry C, Pernin A, Favez T, et al. DNA binding properties of peroxisome proliferator-activated receptor subtypes on variousnatural peroxisome proliferator response elements: importance of the 5′ flanking region[J]. J Biol Chem, 1997, 272: 25252-25259
    48 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism[J]. Endocrine Reviews, 1999, 20: 649-688
    49 Juge-Aubry C E, Gorla-Bajszczak A, Pernin, A , et al. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat[J]. J Biol Chem, 1995, 270: 18117-18122
    50 Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation[J]. Biochim Biophys Acta, 1996, 1302: 93-109
    51 Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR- α , - β , and - γ in the adult rat[J]. Endocrinology, 1996, 137: 354-366
    52 Tontonoz P, Hu E, Devine J, et al. PPARγ 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene[J]. Mol Cell Biol, 1995, 15: 351-357
    53 Mansen A, Guardiola-Diaz H, Rafter J, et al. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa[J]. Biochem Biophys Res Comm, 1996, 222: 844-851
    54 Michael L F, Lazar M A, Mendelson C R. Peroxisome proliferator-activated receptor γ 1 expression is induced during cyclic adenosine monophosphate-stimulated differentiation of alveolar type II pneumocytes[J]. Endocrinology, 1997, 138: 3695-3703
    55 Mueller E, Sarraf P, Tontonoz P, et al. Terminal differentiation of human breast cancer through PPARγ [J]. Mol Cell, 1998, 1: 465-470
    56 Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ [J]. Nat Med, 1998, 4: 1046-1052
    57 Tontonoz P, Nagy L, Alvarez J G A, et al. PPAR γ promotes monocyte/macrophage differentiation and uptake of oxidized LDL[J]. Cell, 1998, 93: 241-252
    58 Lehmann J M, Moore L B, Smith-Oliver T A, et al. An antidiabeticthiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ )[J]. J Biol Chem, 1995, 270: 12953-12956
    59 Larsen T M, Tonbro S, Astmp A. PPAR gamma agonists in the treatment of type II diabetes is increased fatness commensurate with long-term efficiacy[J]? Intern J Obes, 2003, 27: 147-161
    60 Tontonoz P, Hu E, Spiegelman B M. Stimulation of adipogenesis in fibroblasts by PPARγ 2, a lipid-activated transcription factor[J]. Cell, 1994c, 79: 1147-1156
    61 Kletzien R F, Clarke S D, Ulrich R G. Enhancement of adipocyte differentiation by an insulin-sensitizing agent[J]. Mol Pharmacol, 1992, 41: 393-398
    62 Sandouk T, Reda D, Hofman C. Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells[J]. Am J Physiol, 1993, 264: C1600-C1608
    63 Hu E, Tontonoz P, Spiegelman B M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα[J]. Proc Natl Acad Sci, 1995, 92: 9856-9860
    64 Tontonoz P, Singer S, Forman B M, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor[J]. Proc Natl Acad Sci, 1997, 94: 237-241
    65 Barak Y, Nelson M C, Ong E S, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development[J]. Mol Cell, 1999, 4: 585-595
    66 Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance[J]. Mol Cell, 1999, 4: 597-609
    67 Rosen E D, Sarraf P, Troy A E, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro[J]. Mol Cell, 1999, 4: 611-617
    68 Oberfield J L, Collins J L, Holmes C P, et al. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation[J]. Proc Natl Acad Sci, 1999, 96: 6102-6106
    69 Wright H M, Clish C B, Mikami T, et al. A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation[J]. J Biol Chem, 2000, 275: 1873-1877
    70 Gurnell M, Wentworth J M, Agostini M, et al. A dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant is a constitutiverepressor and inhibits PPARgamma-mediated adipogenesis[J]. J Biol Chem, 2000, 275: 5754-5759
    71 Schoonjans K, Peinado-Onsurbe A M, Heyman R A, et al. PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene[J]. EMBO J, 1996, 15: 5336-5348
    72 Frohnert B I, Hui T Y, Bernlohr D A. Identification of a functional peroxisome proliferator-activated responsive element in the murine fatty acid transport protein gene[J]. J Biol Chem, 1999, 274: 3970-3977
    73 Tontonoz P, Hu E, Graves R A, et al. mPPAR γ 2: tissue-specific regulator of an adipocyte enhancer[J]. Genes & Dev, 1994b, 8: 1224-1234
    74 Schoonjans K, Watanabe M, Suzuki H, et al. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter[J]. J Biol Chem, 1995, 270: 19269-19276
    75 Castelein H, Gulick T, Declercq E P, et al. The peroxisome proliferator activated receptor regulates malic enzyme gene expression[J]. J Biol Chem, 1994, 269: 26754-26758
    76 Devine J H, Eubank D W, Clouthier D E, et al. Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor gamma and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo[J]. J Biol Chem, 1999, 274: 13604-13612
    77 Graves R A, Tontonoz P, Spiegelman B M. Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression[J]. Mol Cell Biol, 1992, 12: 1202-1208
    78 Tontonoz P, Graves R A, Budavari A I, et al. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPARγ and RXRα [J]. Nucleic Acids Res, 1994a, 22: 5628-5634
    79 Lapsys N M, Kriketos A D, Lim-Fraser M. Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor gamma expression in human skeletal muscle[J]. J Clin Endocrinol Metab, 2000, 85: 4293-4297
    80 Johnson P F, Landschulz W H, Graves B J, et al. Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses[J]. Genes & Dev, 1987, 1: 133-146
    81 Takiguchi M. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factors in the liver and other organs[J]. Int J Exp Pathol, 1998, 79: 369-391
    82 Lekstrom-Himes J, Xanthopoulos K G. Biological role of the CCAAT/enhancer-binding protein family of transcription factors[J]. J Biol Chem, 1998, 273: 28545-28548
    83 Wang N D, Finegold M J, Bradley A, et al. Impaired energy homeostasis in C/EBP alpha knockout mice[J]. Science, 1995, 269: 1108-1112
    84 Lee Y, Sauer B, Johnson P F. Disruption of the C/EBPα gene in adult mouse liver[J]. Mol Cell Biol, 1997, 17: 6014-6022
    85 Hong S H, Park S J, Kong H J. Functional interaction of bZIP proteins and the large subunit of replication factor in liver and adipose cell[J]. J Biol Chem, 2001, 276: 28098-28105
    86 Cao Z, Umek R M, McKnight S L. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells[J]. Genes & Dev, 1991, 5: 1538-1552
    87 Yeh W C, Cao Z, Classon M, et al. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins[J]. Genes & Dev, 1995, 15: 168-181
    88 Darlington G J, Ross S E, MacDougald O A. The role of C/EBP genes in adipocyte differentiation[J]. J Biol Chem, 1998, 273: 30057-30060
    89 MacDougald O A, Lane M D. Transcriptional regulation of gene expression during adipocyte differentiation[J]. Annu Rev Biochem, 1995, 64: 345-373
    90 Brun R P, Kim J B, Hu E, et al. Adipocyte differentiation: a transcriptional regulatory cascade[J]. Curr Opin Cell Biol, 1996, 8: 826-832
    91 Lane M D, Lin F T, MacDougald O A, et al. Control of adipocyte differentiation by CCAAT/enhancer binding protein alpha (CEBP alpha)[J]. Int J Obesity Related Metab Disorders, 1996, 20(Suppl): S91-S96
    92 Mandrup S, Lane M D. Regulating adipogenesis[J]. J Biol Chem, 1997, 272: 5367-5370
    93 Kaestner K H, Christy R J, Lane M D. Mouse insulin-responsive glucose transporter gene: characterization of the gene and trans-activation by the CCAAT/enhancer binding protein[J]. Proc Natl Acad Sci, 1990, 87: 251-255
    94 Ross S R, Graves R A, Greenstein A, et al. A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo[J]. Proc Natl AcadSci, 1990, 87: 9590-9594
    95 McKeon C, Pham T. Transactivation of the human insulin receptor gene by the CAAT/enhancer binding protein[J]. Biochem Biophys Res Comm, 1991, 174: 721-728
    96 Hwang C S, Mandrup S, MacDougald O A, et al. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha[J]. Proc Natl Acad Sci, 1996, 93: 873-877
    97 Lin F T, Lane M D. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program[J]. Proc Natl Acad Sci, 1994, 91: 8757-8761
    98 Lin F T, Lane M D. Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes[J]. Genes & Dev, 1992, 6: 533-544
    99 Freytag S O, Paielli D L, Gilbert J D. Ectopic expression of the CCAAT/enhancer binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells[J]. Genes & Dev, 1994, 8: 1654-1663
    100 Christy R J, Kaestner K H, Geiman D E, et al. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes[J]. Proc Natl Acad Sci, 1991, 88: 2593-2597
    101 Wu Z, Xie Y, Bucher N L R, et al. Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis[J]. Genes & Dev, 1995, 9: 2350-2363
    102 Tanaka T, Yoshida N, Kishimoto T, et al. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene[J]. EMBO J, 1997, 16: 7432-7443
    103 Osborne T F. Sterol regulatory element-binding proteins: key regulations of nutritional homeostasis and insulin action[J]. J Biol Chem, 2000, 275: 32379-32382
    104 Kim J B, Spotts G D, Halvorsen Y D, et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain[J]. Mol Cell Biol, 1995, 15: 2582-2588
    105 Brown M S, Goldstein J L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J]. Cell, 1997, 89: 331-340
    106 Tontonoz P, Kim J B, Graves R A, et al. ADD1: A novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation[J]. Mol Cell Biol, 1993, 13: 4753-4759
    107 Kim J B, Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism[J]. Genes & Dev, 1996, 10: 1096-1107
    108 Kim J B, Wright H M, Wright M, et al. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand[J]. Proc Natl Acad Sci 1998b, 95: 4333-4337
    109 Fajas L, Schoonjans K, Gelman L, et al. Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: Implications for adipocyte differentiation and metabolism[J]. Mol Cell Biol, 1999, 19: 5495-5503
    110 Chakaravarty K, Leahy P, Becard D. Sterol regulatory element-binding protein-1 emimics the negative effect of insulin on phosphoenolpyruvate carboxykinase(GTP) gene transcription[J]. J Biol Chem, 2001, 276: 34816-34823
    111 Wu Z, Bucher N L R, Farmer S R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ and glucocorticoids[J]. Mol Cell Biol, 1996, 16: 4128-4136
    112 Zhu Y, Qi C, Korenberg J R, et al. Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPARγ) gene: Alternative promoter use and different splicing yield two mPPARγ isoforms[J]. Proc Natl Acad Sci, 1995, 92: 7921-7925
    113 Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis and expression of the human PPARγ gene[J]. J Biol Chem, 1997, 272: 18779-18789
    114 Wu Z, Rosen E D, Brun R, et al. Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity[J]. Mol Cell, 1999b, 3: 151-158
    115 Rosen E D, Chung-Hsin H, Wang X Z, et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway[J]. Genes & Dev, 2002, 16(1): 22-26
    116 El-Jack A K, Hamm J K, Pilch P F, et al. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPAR gamma and C/EBP alpha[J]. J Biol Chem, 1999, 274: 7946-7951
    117 Park E A, Roesler W J, Liu J, et al. The role of the CAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP)[J]. Mol Cell Biol, 1990, 10: 6264-6272
    118 Christy R J, Yang V W, Ntambi J M, et al. Differentiation-induced gene expression in 3T3-L1 preadipocyte: CCAAT/enhancer-binding protein interacts with and activates the promoters of two adipocyte-specific genes[J]. Genes & Dev, 1989, 3: 1323-1335
    119 Gregoire F M, Smas C M, Sul H S. Understanding adipocyte differentiation[J]. Physiological Review, 1998, 78: 783-809
    120 Morikawa M, Nixon T, Green H. Growth hormone and the adipose conversion of 3T3 cells[J]. Cell, 1982, 29: 783-789
    121 Nixon T, Green H. Contribution of growth hormone to the adipogenic activity of serum[J]. Endocrinology, 1984, 114: 527-532
    122 Hauner H, Loffler G. Adipogenic factors in human serum promote the adipose conversion of 3T3-L1 fibroblasts[J]. Int J Obes, 1986, 10: 323-330
    123 Doglio A, Dani C, Grimaldi P, et al. Growth hormone regulation of the expression of differentiation-dependent genes in preadipocyte Ob1771 cells[J]. Biochem J, 1986, 238: 123-129
    124 Hausman G J, Martin R J. The influence of human growth hormone on preadipocyte development in serum-supplemented and serum-free cultures of stromal-vascular cells from pig adipose tissue[J]. Domest Anim Endocrinol, 1989, 6: 331-337
    125 Hausman G J. Responsiveness to adipogenic agents in stromal-vascular cultures derived from lean and preobese pig fetuses: an ontogeny study[J]. J Anim Sci, 1992, 70: 106-114
    126 Wabitsch M, Hauner H, Heinze E, et al. The role of growth hormone/insulin-like growth factors in adipocyte differentiation[J]. Metabolism, 1995, 44(Suppl 4): 45-49
    127 Wabitsch M, Braun S, Hauner H, et al. Mitogenic and antiadipogenic properties of human growth hormone in differentiating human adipocyte precursor cells in primary culture[J]. Pediatr Res, 1996a, 40: 450-456
    128 Wabitsch M, Heinze E, Hauner H, et al. Biological effects of human growth hormone in rat adipocyte precursor cells and newly differentiated adipocytes in primary culture[J]. Metabolism, 1996b, 45: 34-42
    129 Hansen L H, Madsen B, Teisner B, et al. Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation[J]. Mol Endocrinol, 1998, 12: 1140-1149
    130 Adams K S, Flint D J, Cryer A, et al. Regulation of ovine preadipocyte differentiation in vitro. Proceedings of the Nutrition Society, 1996, 55: 25A
    131 Broad T E, Ham R G. Growth and adipose differentiation of sheep preadipocyte fibroblasts in serum-free medium[J]. European Journal of Biochemistry, 1983, 135: 33-39
    132 Casteilla L, Nougues J, Reyne Y, et al. Differentiation of ovine brown adipocyte precursor cells in a chemically defined serum-free medium[J]. EuropeanJournal of Biochemistry, 1991, 198: 195-199
    133 Vierck J L, McNamara J P, Dodson M V. Proliferation and differentiation of progeny of ovine unilocular fat cells(adipofibroblasts)[J]. In Vitro Cellular and Developmental Biology, 1996, 32: 564-572
    134 Smas C M, Chen L, Zhao L, et al. Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation[J]. J Biol Chem, 1999, 274: 12632-12641
    135 Reusch J E, Coltoa L A, Klemm D J. CREB activation induces adipogenesis in 3T3-L1 cells[J]. Mol Cell Biol, 2000, 20: 1008-1020
    136 Smith P J, Wise L S, Berkowitz R, et al. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes[J]. J Biol Chem, 1988, 263: 9402-9408
    137 Torrejon-Escribano B, Gomez de Aranda I, Blasi J. SNARE expression and distribution during 3T3-L1 adipocyte differentiation[J]. FEBS Lett, 2002, 512: 275-281
    138 Cowherd R M, Lyle R E, McGehee R E J. Molecular regulation of adipocyte differentiation[J]. Semin Cell Dev Biol, 1999, 10: 3-10
    139 Ailhaud G. Extracellular factors, signaling pathways and differentiation of adipose precursor cells[J]. Curr Opin Cell Biol, 1990, 2: 1043-1049
    140 Jones P L, Schmidhauser C, Bissell M J. Regulation of gene expression and cell function by extracellular matrix[J]. Crit Rev Eukaryotic Gene Expression, 1993, 3: 137-154
    141 Murphy-Ullrich J E, Schultz-Cherry S, Hook M. Transforming growth factor-beta complexes with thrombospondin[J]. Mol Biol Cell, 1992, 3: 181-188
    142 Yamaguchi Y, Mann D M, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin[J]. Nature, 1990, 346: 281-284
    143 Hausman G J, Richardson R L. Newly recruited and pre-existing preadipocyte in culture of porcine stromal-vascular cells: morphology, expression of extracellular matrix components and lipid accretion[J]. J Anim Sci, 1998, 76: 48-60
    144 Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signaling pathways[J]. Trends Biochem Sci, 1992, 17: 427-433
    145 Safonova I, Darimont C, Amri E -Z, et al. Retinoids are positive effectorsof adipose cell differentiation[J]. Mol Cell Endocrinol, 1994, 104: 201-211
    146 Suryawan A, Hu C Y. Effect of retinoic acid on differentiation of cultured pig preadipocytes[J]. J Anim Sci, 1997, 75: 112-117
    147 Sato M, Hiragun A, Mitsui H. Preadipocytes possess cellular retinoid binding proteins and their differentiation is inhibited by retinoids[J]. Biochem Biophys Res Commun, 1980, 95: 1839-1845
    148 Kuri-Harcuch W. Differentiation of 3T3-F442A cells into adipocytes is inhibited by retinoic acid[J]. Differentiation, 1982, 23: 164-169
    149 Chawla A, Lazar M A. Peroxisome proliferator and retinoid signaling pathways co-regulate preadipocyte phenotype and survival[J]. Proc Natl Acad Sci USA, 1994, 91: 1786-1790
    150 Ohyama M, Matsuda K, Torii S, et al. The interaction between vitamin A and thiazolidinedione on bovine adipocyte differentiation in primary culture[J]. J Anim Sci, 1998, 76: 61-65
    151 Schwarz E J, Reginato M J, Shao D, et al. Retinoic acid blocks adipogenesis by inhibiting C/EBP beta- mediated transcription[J]. Mol Cell Biol, 1997, 17: 1552-1561
    152 Grimaldi P A, Teboul L, Gaillard D, et al. Long chain fatty acids as modulators of gene transcription in preadipose cells[J]. Mol Cell Biochem, 1999, 192: 63-68
    153 Ailhaud G, Abumrad N, Amri E -Z, et al. A new look at fatty acid as signal-transducing factors. In: Galli C, Simopoulos A P, Tremoli E(Eds), Fatty acids and lipids: biological aspects, World Rev Nutr Diet-Basel, Karger, 1994, 75: pp35-45
    154 Wolf G. Fatty acids binding directly to and activate peroxisome proliferator-activated receptors α and γ [J]. Nutr Rev, 1998, 56: 61-63
    155 Amri E -Z, Ailhaud G, Grimaldi P. Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells[J]. J Lipid Res, 1994, 35: 930-937
    156 Amri E -Z, Ailhaud G, Grimaldi P. Regulation of adipose cell differentiation. Ⅱ Kinetics of induction of the aP2 gene by fatty acids and modulation by dexamethasone[J]. J Lipid Res, 1991, 32: 1457-1463
    157 Amri E -Z, Teboul L, Vannier C, et al. Fatty acids regulate theexpression of lipoprotein lipase and activity in preadipose and adipose cells[J]. Biochem J, 1996, 314: 541-546
    158 Waters K M, Miller C W, Ntambi J M. Localization of a polyunsaturated fatty acid response region in stearol-CoA desaturase gene 1[J]. Biochim Biophys Acta, 1997, 1349: 33-42
    159 Brodie A E, Manning V A, Ferguson K R, et al. Conjugated linoleic acid inhibits differentiation of pre- and post-confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent cells[J]. J Nutr, 1999, 129: 602-606
    160 Keller H, Dreyer C, Medin J, et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers[J]. Proc Natl Acad Sci USA, 1993, 90: 2160-2164
    161 Safonova I, Reichert U, Shroot B, et al. Fatty acids and retinoids act synergistically on adipose cell differentiation[J]. Biochem Biophys Res Commun, 1994, 204: 498-504
    162 王建明, 鲁玉辉, 余冰. 猪脂肪营养的应用及调控研究动态[J]. 畜禽业, 1998, (6): 12-15
    163 朱金娈, 邹晓庭. 蛋鸡脂肪代谢及脂肪肝防治研究进展[J]. 黑龙江畜牧兽医, 2002, (11): 46-47
    164 Wakil S, Bressler R. Studies on the mechanism of fatty acid synthesis. X. Reduced triphosphopyridine nucleotide-acetoacetyl coenzyme A reductase[J]. J Biol Chem, 1962, 237(3): 687- 693
    165 Bressler R , Wakil S J. Studies on the mechanism of fatty acid synthesis. XI.The product of the reaction and the role of sulfhydryl groups in the synthesis of fatty acids[J]. J Biol Chem, 1962, 237(5): 1441-1448
    166 Waite M, Wakil S J. Studies on the mechanism of fatty acid synthesis. XII.Acetyl coenzyme A carboxylase[J]. J Biol Chem, 1962, 237(9): 2750-2757
    167 Martin D B, Vagelos P R. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis[J]. Biol Chem, 1962, 237(6): 1787-1792
    168 Wakil S J, Titchener E B, Gibson D M. Evidence for the participation of biotin in the enzymic synthesis of fatty acids[J]. Biochim Biophy Acta, 1958, 29: 225-226
    169 Wakil S J, Stoops J K, Joshi V C. Fatty acid synthesis and its regulation[J]. Annu Rev Biochem, 1983, 52: 537-579
    170 Thampy K G, Wakil S J. Regulation of Acetyl-coenzyme A carboxylase[J]. J Biol Chem,1988, 263: 6447- 6453
    171 Thampy K G. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart[J]. J Biol Chem, 1989, 264: 17631-17634.
    172 McGarry J D, Mannaerts G P, Foster D W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis[J]. J Clin Invest, 1977, 60: 265-270
    173 McGarry J D, Brown N F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis[J]. Eur J Biochem, 1997, 244: 1-14
    174 Bianchi A, Evans J L, Iverson A J, et al. Identification of an isozymic form of acetyl-CoA carboxylase[J]. J Biol Chem, 1990, 265(3): 1502-1509
    175 Abu-Elheiga L, Jayakumar A, Baldini A, et al. Human acetyl-CoA carboxylase: characterization, molecular cloning and evidence for two isoforms[J]. Proc Natl Acad Sci USA, 1995, 92(9), 4011-401571
    176 Iverson A J, Nordlund A C, Witters L A. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition[J]. Biochem J, 1990, 269(2): 365-371
    177 Ha J, Lee J K, Kim K S, et al. Cloning of human acetyl-CoA carboxylase- beta and its unique features[J]. Proc Natl Acad Sci USA, 1996, 93(21): 11466-11470
    178 Abu-Elheiga L, Brinkley W R, Zhong L, et al. The subcellular localization of acetyl-CoA carboxylase 2[J]. Proc Natl Acad Sci USA, 2000, 97(4): 1444-1449
    179 Abu-Elheiga L, Almarza-Ortega D B, Baldini A, et al. Human Acetyl-CoA Carboxylase 2[J]. J Biol Chem, 1997, 272(16): 10669-10677
    180 Lopaschuk G, Gamble J. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart[J]. Can J Physiol Pharma col, 1994, 72(10): 1101-1109
    181 Vavvas D, Apazidis A, Saha A K, et al. Contraction-induced change in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle[J]. J Biol Chem, 1997, 272: 13255-13261
    182 Alam N, Saggerson E D. Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle[J]. Biochem J, 1998, 334: 233-241
    183 颜新春, 汪以真, 许梓荣. 动物脂肪酸合成酶(FAS)基因表达的调控[J].动物营养学报, 2002, 14(2): 1-4
    184 Clay F S. Regulation of fatty acid synthase(FAS)[J]. Prog Lipid Res, 1997, 36: 43-53
    185 Stuart S, Andrzej W, Anil K J. Structural and functional organization of the animalfatty acid synthase[J]. Prog Lipid Res, 2003, 40: 289-317
    186 熊文中, 杨凤, 周安国. 猪重组生长激素对不同肥育猪脂肪代谢调控的研究[J]. 畜牧兽医学报, 2001, 32(1):1-4
    187 Hillgartner F B, Salati L M, Goodridge A G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis[J]. Physiol Rev, 1995, 75: 47-76
    188 Donkin S S, Chiu P Y, Yin D, et al. Porcine somatotropin differentially down-regulates expression of the GLUT4 and fatty acid synthase genes in pig adipose tissue[J]. J Nutr, 1996, 126: 2568-2577
    189 Mildner A M, Clarke S D. Porcine fatty acid synthase: Cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein[J]. J Nutr, 1991, 121: 900-907
    190 Harris D M, Dunshea F R, Bauman D E, et al. Effect of in vivo somatotropin treatment of growing pigs on adipose tissue lipogenesis[J]. J Anim Sci, 1993, 71: 3293-3300
    191 Yin D, Clarke S D, Peters J L, et al. Somatotropin-dependent decrease in fatty acid synthase abundance in 3T3-F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability[J]. Biochem J, 1998, 331(3): 815-820
    192 Kim T S, Freske H C. High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-spectic manner[J]. J Nutr, 1996, 126(3): 611-617
    193 Semenkovich C F, Coleman T, Goforth R. Physiologic concentrations of glucose regulate fatty acid synthase activity in HepG2 cells by mediating fatty acid synthase mRNA stability[J]. J Biol Chem, 1993, 268(10): 6961-6970
    194 Hasegawa J, Osatomi K, Wu R F, et al. A novel factor binding to the glucose response elements of liver pyruvatekinase and fatty acid synthase gene[J]. J Biol Chem, 1999.274(2): 1100-1107
    195 Blake W L, Clarke S D. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by diertary polyunsaturated fat[J]. J Nutr, 1990, 120: 1727-1729
    196 Clarke S D, Armstrong M K, Jump D B. Nutritional control of rat liver fatty acid synthase and S14 mRNA abundance[J]. J Nutr, 1990a, 120: 218-224
    197 Clarke S D, Armstrong M K, Jump D B. Dietary polyunsaturated fats uniquely suppress rat liver fatty acid synthase and S14 mRNA content[J]. J Nutr, 1990b, 120: 225-231
    198 F1ick P K, Chen J L,V agelos P R. Effect of dietary linoleate on synthesis and degradatbn of fatty acid synthase from rat liver[J]. J Biol Chem.1997, 252(12): 4242-4249
    199 Clarke S D. Regulation of fatty acid synthase gene expression: An approach forreducing fat accumulation[J]. J Anim Sci. 1993, 71: 1957-1965
    200 Dana R S, Darrell A K, Stephen B S. Depression of lipogenesis in swine adipose tissue by specific dietary fatty acids[J]. J Anim Sci. 1996, 74: 975-983
    201 杨海玲. 莱芜猪肌内脂肪沉积的生物化学和组织形态学研究[D]. 山东农业大学硕士学位论文, 2005
    202 Muller R, Maileander C H. Selection for the activity of NADPH-generating enzymes in back fat of pigs correlated responses in carcass trait. 38th Annual Meeting of the EAAP in Lisbon. Control and Regulation of Animal Growth, 1987
    203 Bulfield G. Activities of NADPH-generating enzymes in back genetically fat and lean chickens. In: Leelerce B, Whitehead C C (Eds). Leanness in Domestic Birds, London: Butterwopths, 1988, 223-227
    204 刘丑生. 猪脂肪代谢酶特征及其与生产性能的典型相关研究. 中国畜牧杂志[J]. 1999, 35(5)
    205 Strutz C, Rogdakis E. Phenotypic and genetic parameters of NADPH-generating enzymes in porcine adipose tissue[J]. Z Tierz Zuchtungsbiol, 1979, 96: 170-185
    206 季海峰. 猪不同组织中 NADPH 生成酶活性规律的探讨[J]. 山东农业大学学报, 1994, 25(1): 27-31
    207 张卫东. 北京黑猪 NADPH 生成酶活性的遗传分析[J]. 中国畜牧杂志. 1999, 1(35)
    208 Zechner R. The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism[J]. Curr Opin Lipidol. 1997, 8: 77-88
    209 Olivecrona T, Hultin M, Bergo M, et al. Lipoprotein lipase: regulation and role in lipoprotein metabolism[J]. Proc Nutr Soc, 1997, 56: 723-72979
    210 Guenter H, Robert Z, Rudolf Z. Letting lipids go: Hormone-sensitive lipase[J]. Current opinion lipidol, 2003, 14: 289-297
    211 Kazala E C, Jennifer L P, Fred J L, et al. Hormone-sensitive lipase activity in relation to fat content of muscle in Wagyu hybrid cattle[J]. Lives Prod Sci, 2003, 79: 87-96
    212 Lee Y B, Kauffman R G. Cellularity and lipogenic enzyme changes with animal growth in porcine intramuscular adipose tissue[J]. J Anim Sci, 1974, 38(3): 538-544
    213 Frayn K N, Coppack S W, Fielding B A, et al. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in the human adipose tissue in vivo: implications for the control of fat storage and fat mobilization[J]. Advance Enzyme Regulation, 1995, 35: 163-178
    214 Deeb S S, Peng R. Structure of the human lipoprotein lipase gene[J]. Biochemistry, 1989, 28: 4131- 4135
    215 Holm C, Kirchgessner T G, Svenson K L. Hormone-sensitive lipase: sequence, expression and chromosomal localization to 19 cent-q13.3[J]. Science, 1988, 241: 1503-1506
    216 Harbitz I, Langset M, Ege A G, et al. The porcine hormone-sensitive lipase gene: sequence, structure, polymorphism and linkage mapping[J]. Animal Geneics, 1999, 30: 10-15
    217 Gu F, Harbitz I, Chowdhary B P, et al. Chromosomal localizations of the hormone-sensitive lipase and insulin receptor(INSR) genes in pig[J]. Hereditas, 1992, 17: 231-236
    218 Harbitz I, Chowdhary B, Thomsen P D, et al. Assignment of the porcine calcium release channel gene, a candidate for the malignant hyperthermial locus, to the 6p11-q21 segment of chromosome 6[J]. Genomics, 1990, 8: 243-248
    219 Mellink C H, Lahbib-Mansais Y, Yerle M, et al. Localization of four new markers to pig chromosomes 1, 6 and 14 by radioactive in situ hybridization[J]. Cytogenet Cell Genet, 1993, 64: 256-260
    220 Egan J J, Greeberg A S, Chang M K, et al. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to lipid storage droplet[J]. Proc Natl Acad Sci USA, 1992, 89: 8534-8541
    221 Holst L S, Langin D, Mulder H, et al. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase[J]. Genomics, 1996, 35: 441-447
    222 Kraemer F B, Tavangar K, Hoffman A R. Developmental regulation of hormone- sensitive lipase mRNA in the rat: changes in steroidogenic tissues[J]. J Lip Res, 1991, 32: 1303-1310
    223 Kraemer G B, Patel S, Saedi M S, et al. Detection of hormone-sensitive lipase in various tissues.Ⅱ.Regulation in the rat testis by human chorionic gonadotropin[J]. J Lip Res, 1993, 34: 609-616
    224 Yeaman S T. Hormone-sensitive lipase—a multipurpose enzyme in lipid metabolism[J]. Biochim Biophys Acta, 1990, 1052: 128-132
    225 Larsen T S, Nilsson N O, Becfrage P. [J]. Acta Physiologica Scandinavica, 1985, 125(4): 735-738
    226 Wilson B E, Deeb S, Folrant G L. [J]. Amer J Physiol, 1992, 262 (2): 177-181
    227 Tanaka K, Ohtani S. Effects of diets on lipogenesis[J]. Janpannese Journal of Zootechnical Science, 1986, 57(9): 747-757
    228 Stich V. Adipose tissue lipolysis and hornmone-sensitive lipase[J]. Journal ofClinical Endocrinology and Metabolism, 1997, 82(3): 739-744
    229 Takahashi K, Akiba Y. Influence of dietary protein, sulfur amino acid content and their ratio on activities of malic enzyme[J]. Animal Science and Technology, 1996, 67(3): 305-309
    230 杨在清, 马志科, 孙超等. 猪脂肪沉积的品系差异及其 cAMP 的调控作用[J].畜牧兽医学报, 1996, 27(6): 489-494
    231 Goldberg I J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis[J]. J Lipid Res, 1996, 37: 693-707
    232 Beisiegel U, Heeren J. Lipoprotein lipase targeting of lipoproteins to receptors[J]. Proc Nutr Soc, 1997, 56: 731-737
    233 Hahn P F. Abolishment of alimentary lipemia following injection of beyarin[J]. Science, 1943, 98: 19
    234 郑锡熔. 脂蛋白酯酶与肥胖病[J]. 医学综述, 1999, 5(5): 12-14
    235 Wion K L, Kirchgessner T G, Lusis A T, et al. Human lipoprotein lipase complementary DNA sequence[J]. Science, 1987, 235: 1638-1641
    236 Oka K, Tkalcevic G T, Nakano T, et al. Structure and polymorphic map of human lipoprotein lipase gene[J]. Biochim Biophys Acta, 1990, 1049(1): 21- 26
    237 Harbitz I, Kristensen T, Kran S, et al. Isolation and sequencing of porcine lipoprotein lipase cDNA and its use in multiallelic restriction fragment length polymorphism detection[J]. Anim Genet, 1992, 23(6): 517-522
    238 Gu F, Harbitz I. Mapping of the porcine lipoprotein lipase (LPL) gene to chromosome 14q1,2-q1,4 by in situ hybridization[J]. Cytogenet Cell Genet, 1992, 59(1): 63-64
    239 吴桢方. 脂蛋白酯酶(LPL)和激素敏感脂肪酶(HSL)基因的分子遗传学基础研究[D]. 华中农业大学, 1998
    240 叶平. 脂蛋白酯酶的研究进展[J]. 心血管病学进展, 1995, 16 (5): 23-26
    241 胥清富. 猪生长轴有关激素和受体基因在肝脏和肌肉上表达的发育性变化及调控[D]. 南京农业大学博士学位论文, 2002
    242 Bustin S A. Quantification of mRNA using real-time reverse transcription PCR(RT- PCR): trends and problems[J]. J Mol Endocrinol, 2002, 29(1): 23-39
    243 杨建荣, 陈晓东. 应用实时 RT-PCR 技术的 mRNA 定量分析[J]. 中国实验诊断学, 2002, 6: 192-195
    244 王梁燕, 洪奇华, 张耀洲. 实时定量 PCR 技术及其应用[J]. 细胞生物学杂志, 2004, 26: 62-67
    245 Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR[J]. Genome Research, 1996, 6: 986-994
    246 Bengtsson M, Karlsson H J , Westman G, et al. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR[J]. Nucleic Acids Res, 2003, 31(8): 45
    247 陈英剑, 胡成进. 荧光定量逆转录 PCR 定量研究进展[J]. 国外医学: 临床生物化学与检验学分册, 2004, 25(4): 348-351
    248 Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Mol Endo, 2000, 25: 169- 193
    249 Stryer L. Fluorescence energy transfer as a spectroscopic ruler[J]. Ann Rev Bio, 1978, 47: 819-846
    250 Cardullo R A, Agrawal S, Flores C, et al. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer[J]. Proc Natl Acad Sci USA, 1988, 85(23): 8790-8794
    251 洪云, 李津, 汪和睦等. 实时荧光定量 PCR 技术进展[J]. 国外流行病学传染病学杂志, 2006, 33(3): 161-163
    252 Walker N J. Real-time and quantitative PCR: applications to mechanism based toxicology[J]. J Biochem Mol Toxicol, 2001, 15(3): 121-127
    253 Smith R D, Brown B, Ikonomi P, et al. Exogenous reference RNA for normalization of real-time quantitative PCR[J]. Biotechniques, 2003, 34(1): 88-91
    254 Freeman W M, Walker S J, Vrana K E. Quantitative RT-PCR: pitfall and potential[J]. Biotechniques, 1999, 26(1): 112-125
    255 Suzuki T, Higgins P J, Crawford D R. Control selection for RNA quantitation[J]. Biotechniques, 2000, 29: 332-337
    256 Vandesompele J, De-Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2002, 3(7): RESERCH 0034.1-0034.11
    257 高彬, 刘敬忠. 实时荧光 PCR 技术的研究及其应用进展[J]. 诊断学理论与实践, 2005, 4(6): 507-509
    258 Zimmermann B, Holzgreve W, Wenzel F, et al. Novel real-time quantitative PCR test for trisomy 21[J]. Clin Chem, 2002, 48(2): 362-363
    259 Kessler H H, Preininger S, Stelzl E, et al. Identification of different states of hepatitis B virus infection with a quantitative PCR assay[J]. Clin Diagn Lab Immunol, 2000, 7(2): 298-300
    260 NY/T 816-2004,肉羊饲养标准[S]
    261 赵有璋. 羊生产学(第二版)[M]. 北京: 中国农业出版社, 2002
    262 GB/T 14772-1993,食品中粗脂肪的测定方法[S]
    263 Saladin R, Fajas L, Dana S. Differentiational regulation of peroxisomeproliferator-activated receptor-gamma 1(PPAR gamma 1) and PPAR gamma 2 messenger RNA expression in the early stages of adipogenesis[J]. Cell Growth Differ, 1999, 10: 43-48
    264 黄治国. 绵羊生长及肌内脂肪部分相关基因表达的发育性变化研究[D]. 南京农业大学博士学位论文, 2006
    265 高勤学.二花脸猪生长期肌肉内脂肪组织学和分子生物学特征的研究[D]. 南京农业大学博士学位论文, 2003
    266 Ding S T, McNeel R L, Mersmann H J. Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo[J]. Comp Biochem Phys, Part B, 1999, 123: 307-318
    267 赵洪波. 不同日粮营养水平下不同遗传类型猪体内脂肪细胞发育和肌内脂肪酸组成比较的研究[D]. 内蒙古农业大学硕士学位论文, 2007
    268 Yong Q, Zhiguo H, Qifa L, et al. Developmental changes of the FAS and HSL mRNA expression and their effects on the content of intramuscular fat in Kazak and Xinjiang sheep[J]. Journal of Genetics and Genomics, 2007, 34(10): 909-917
    269 乔永, 黄治国, 李齐发等. 绵羊肌肉 LPL 基因表达的发育性变化及其对肌内脂肪含量的影响[J]. 中国农业科学, 2007, 40(10): 2323-2330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700